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labor market equilibrium. The study explores the work of Yuri Kuznetsov and Ronald Shone regarding the 
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The aim of this paper is to develop dynamic models in order to explain a set of facts regarding job flows. The 
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xpp.exe. The main results of this research are the theorems on the existence and location of Hopf bifurcation 

boundaries in each of the considered cases. 
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I. Introduction 
Despite some scattered signs of improvement, the world economic situation is still facing a serious jobs 

challenge, with global unemployment above its pre-crisis level and unemployment in the euro area rising rapidly. 

Most developed economies are still struggling to overcome four major issues: the continued deleveraging by 

banks, firms and households holding back normal credit flows and consumer and investment demand, high 

unemployment which is both cause and effect of the lack of economic recovery, third, the fiscal austerity 

responses to deal with rising public debts and fourth, bank exposure to sovereign debts, the financial sector 

fragility (World Economic Situation and Prospects, 2012). Due to worsening economic conditions and drastic 

spending cuts, unemployment in the euro area rises to record levels and it is expected to stabilize and gradually 

decline as growth recovers (The Current Economic Situation - Euro Challenge, March 2012). A long standing 

challenge in macroeconomics is developing a unique and comprehensive model which could explain all relevant 

observations to the level and evolution of unemployment. Since the early 1960, the interest in dynamical 

characteristics of unemployment has been rapidly growing. This study aims to develop dynamic models in order 

to explain a set of facts regarding job flows, unemployment and output. The paper is organized as follows: after a 

brief introduction, the second section brings evidence on the work of Yuri Kuznetsov and Ronald Shone regarding 

the dynamics of unemployment (and employment). The core of dynamics is bifurcation theory which is 

fundamental to systems theory. 

 

Section 3 introduces basic definitions and theorems of bifurcation theory employed in this paper, Hopf 

bifurcation being the most commonly seen type of bifurcation since the existence of its boundary is accompanied 

by regular oscillations when the parameters are within a neighborhood of the boundary, and where the oscillations 

may damp to a stable steady state or may never damp depending upon the side of the bifurcation boundary on 

which the parameter might lie (William A. Barnett et all., 2008). As within the development of the theory, the 

matching function has been widely used to help model the inefficiencies in labor markets, further on, the study 

extends the framework along with the findings of its most proeminent theorists, Diamond, Mortensen and 

Pissarides. 

 

Section 4 extends Ronald Shone’s approach to the dynamics of unemployment by providing two 

different settings for the matching rate m(u,v). Propositions establishing the existence of Hopf bifurcation are also 

formulated and proved for each case. This section also lays out their phase diagrams and their economic 

application. Central results in this research are the theorems on the existence and location of Hopf bifurcation 

boundaries in each of the considered cases. The main results of the research are summarized in section 5. 

 

II. The Basic Model   
In order to study the dynamics of labour market, this research is based on the model developed by Ronald 

Shone (2002), who considers that at the ruling wage there is full employment in the sense that the number of jobs 

is matched by the number of households seeking employment. The working population population, N, is 
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considered to be fixed and the number of jobs available to be constant. At any instant of time a fraction s of 

individuals become unemployed and search over firms to find a suitable job. Let f  denote the probability of 

finding a job, i.e., the fraction finding a job. At any moment of time, if u  is the fraction of the participating 

labour force unemployed, then 

 

𝑠 1 − 𝑢 𝑁 = individuals entering the unemploymet pool 

𝑓𝑢𝑁 =  individuals exiting the unemployment pool 

 

The change in the unemployment pool, 𝑢𝑁, is therefore given by the differential equation  

 
𝑑(𝑢𝑁)

𝑑𝑡
= 𝑠 1− 𝑢 𝑁 − 𝑓𝑢𝑁                0 < 𝑠 < 1,   0 < 𝑓 < 1 

Since 𝑁 is constant then  

 (∗)        𝑢 =
𝑑𝑢

𝑑𝑡
= 𝑠(1− 𝑢)− 𝑓𝑢 

or  

 𝑢 = 𝑠 − (𝑠 + 𝑓)𝑢 

The Equilibrium requires that 
𝑑𝑢

𝑑𝑡
= 0, or  

 𝑠 − (𝑠 + 𝑓)𝑢∗ = 0 
i.e.,  

 𝑢∗ =
𝑠

𝑠+𝑓
=

𝑠/𝑓

1+(𝑠/𝑓)
 

where  

 
∂𝑢∗

∂𝑠
=

𝑓

(𝑠+𝑓)2 > 0,        
∂𝑢∗

∂𝑠
=

−𝑠

(𝑠+𝑓)2 < 0 

          In other words, the equilibrium unemployment rate- the natural rate in this model- rises as more 

individuals enter the unemployment pool to actively search for a job and falls when the job-finding rate becomes 

greater. But this simple model says more than this about the equilibrium (natural) level of unemployment. It says 

that the level of 𝑢∗ occurs because individuals need to seek alternative unemployment and that the search for a 

new jobs takes time. 

 The time path is readily found by solving the differential equation (∗). If 𝑢(0) = 𝑢0, then  

 𝑢(𝑡) = 𝑢∗ + (𝑢0 − 𝑢
∗)𝑒−(𝑠+𝑓)𝑡 ,    𝑢∗ =

𝑠

𝑠+𝑓
 

Since both 𝑠 and 𝑓 are positive, then this solution implies that unemployment tends to its equilibrium value over 

time. 

 In this model, the focus is on the level of  unemployment. Of course, if 𝑁  is fixed, then the 

employment, 𝐸, is simply  

 𝐸 = (1− 𝑢)𝑁 
or  

 𝑒 = 𝐸/𝑁 = (1− 𝑢), 
where 𝑒 is the employment rate. In order to lay the foundation for other dynamic theories, it is worth noting that at 

any moment of time there will be an unemployment rate of 𝑢 = 𝑈/𝑁, and a vacancy rate of 𝑣 = 𝑉/𝑁. Since 𝑁 

is constant throughout, we can concentrate on the rates 𝑢, 𝑣 and 𝑒. 

 At any moment of time there will be an unemployment rate 𝑢 and a vacancy rate 𝑣, where those 

individuals who are unemployed are attempting to match themselves with the available vacancies. Since we have 

assumed that the number of jobs is matched by the number of those seeking employment, then 𝑢 = 𝑣., the 

problem is one of matching the unemployment to the vacancies. Accordingly, the literature refers to the matching 

rate or the  exchange technology (Mortensen, 1990) [23]. In other words, the unemployment and the jobs that 

employers are seeking to fill are  inputs into the meeting process. Let this be denoted 𝑚(𝑢, 𝑣). 
 Given 𝑚(𝑢, 𝑣), then for such a meeting to take place must either be some unemployment or some 

vacancies. More formally 𝑚(0, 𝑣) = 𝑚(𝑢, 0) = 0. Furthermore, the marginal contribution of each  input is 

positive,i.e., ∂𝑚/ ∂𝑢 > 0  and ∂𝑚/ ∂𝑣 > 0.  Following Diamond 1982 [14], it is further assumed that the 

average return to each  input is diminishing, i.e., 𝑚/𝑢  and 𝑚/𝑣  diminishes with 𝑢  and 𝑣,  respectively. 

Finally, and purely for mathematical convenience, we assume that 𝑚(𝑢, 𝑣) is homogeneous of degree 𝑘, so that  

 𝑚(𝑢, 𝑣) = 𝑢𝑘𝑚(1, 𝑣/𝑢) 
 Using this analysis we can write the change in employment as the total match 𝑁𝑚(𝑢, 𝑣) minus those losing a job 

𝑠(1− 𝑢)𝑁, i.e.  
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∂𝐸

∂𝑡
=

∂(𝑒𝑁)

∂𝑡
= 𝑁𝑚(𝑢, 𝑣) − 𝑠(1− 𝑢)𝑁 

or  

 
∂𝑒

∂𝑡
= 𝑒 = 𝑚(𝑢, 𝑣) − 𝑠𝑒 

Although the time path of employment, 𝑒(𝑡), must mirror the time path of the unemployment rate , 𝑢(𝑡), since 

𝑒 = 1− 𝑢, the present formulation directs attention to the matching rate 𝑚(𝑢, 𝑣). 
 In general (Mortensen 1990, [23]), the equilibrium hiring frequency, 𝑚(𝑢, 𝑣)/𝑢, is a function of the 

present value of employment per worker to the firm ,𝑞, and the employment rate , 𝑒. This can be established by 

noting that  

 (∗∗)        
𝑚(𝑢 ,𝑣)

𝑢
=

𝑢𝑘𝑚(1,𝑣/𝑢)

𝑢
= 𝑢𝑘−1𝑚(1, 𝑣/𝑢) = (1− 𝑒)𝑘−1𝑚(1, 𝑣/𝑢) = (𝑞, 𝑒). 

 The hiring function (𝑞, 𝑒) is a function of 𝑞 since the value of 𝑣/𝑢 in (∗∗) is determined in equilibrium. In 

equilibrium, the return on filling a vacancy (𝑚𝑞/𝑣) is equal to the cost of filling vacancy, 𝑐, i.e.,  

[
𝑚(𝑢, 𝑣)

𝑣
]𝑞 = 𝑐 

that is  

 (1− 𝑒)𝑘−1𝑞 =
𝑐𝑣/𝑢

𝑚(1,𝑣/𝑢)
 

so, the hiring frequency is related to both 𝑞 and 𝑒. Furthermore, we can establish from this last result that 𝑞 > 0 

and 𝑒 < 0 if 𝑘 > 1 and 𝑒 > 0 if 𝑘 < 1. Hence  

 
𝑚(𝑢 ,𝑣)

𝑢
= (𝑞, 𝑒)        𝑞 > 0,         

 

System 1   

 
𝑒 < 0  𝑖𝑓  𝑘 > 1
𝑒 > 0  𝑖𝑓  𝑘 < 1.

  

 

 

 𝑚(𝑢, 𝑣) = 𝑢(𝑞, 𝑒) = (1− 𝑒)(𝑞, 𝑒) 
which in turn leads to the following equilibrium adjustment equation  

 𝑒 = (1− 𝑒)(𝑞, 𝑒) − 𝑠𝑒 
 The profit to the firm of hiring an additional worker is related to 𝑞 and the employment rate 𝑒, e.i, 𝜋(𝑞, 𝑒), and 

it will be different for different models of the labour market. The profit arises from the difference in the marginal 

revenue product per worker, 𝑀𝑅𝑃𝐿 , less the paid wage, 𝑤. If we denote the 𝑀𝑅𝑃𝐿  by 𝑥(𝑒), then 𝜋(𝑞, 𝑒) =
𝑥(𝑒)− 𝑤. However, the future profit stream per worker to the firm is  

 𝑟𝑞 = 𝑥(𝑒) − 𝑤 − 𝑠(𝑞 − 𝑘𝑣) + 𝑞  
where 𝑟𝑞 represents the opportunity interest in having a filled vacancy and 𝑘𝑣  is the capital value of a vacant job 

,i.e., the present value of employment to the firm is the profit from hiring the worker less the loss from someone 

becoming unemployed plus any capital gain. 

Since in equilibrium no vacancies exist, then 𝑘𝑣 = 0 and so  

 

 𝑟𝑞 = 𝜋(𝑞, 𝑒)− 𝑠𝑞 + 𝑞  
 𝑞 = (𝑟 + 𝑠)𝑞 − 𝜋(𝑞, 𝑒) 
 

To summarise , we have two differential equations in 𝑒 and 𝑞 i.e., 

 

System 2   

 
𝑒 = (1− 𝑒)(𝑞, 𝑒) − 𝑠𝑒
𝑞 = (𝑟 + 𝑠)𝑞 − 𝜋(𝑞, 𝑒)

  

  

Whether there is a unique equilibrium, it rests very much on the degree of homogeneity of the match 

function i.e., the value of 𝑘 in 𝑚(𝑢, 𝑣) = 𝑢𝑘𝑚(1,
𝑣

𝑢
) and the productivity per worker 𝑥(𝑒). 
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III. Bifurcation Phenomena in Economics Literature 
Over the last three decades, the theoretical research in macroeconomics has moved from comparative 

statics to dynamics, with many such dynamical models exhibiting nonlinear dynamics. Bifurcation analysis is a 

key tool for the analysis of dynamic systems in general and nonlinear systems in particular. It has been widely 

used in mathematics and engineering and although it is a relatively new in economics, the interest for this type of 

analysis has been increasing because it provides information about the occurrence and changes in stability of fixed 

points, limit cycles and other solution paths, it helps model these changes and transitions from stable to unstable 

case or vice versa as some parameters change. Most common types of bifurcations encountered in economic 

analysis include Saddle Node, Transcritical, Pitchfork, Flip and Hopf bifurcations (William A. Barnett, 2008). 

Each of these bifurcations produces a different type of qualitative change in dynamics. 

 The first paper on Hopf bifurcation belongs to 𝑃𝑜𝑖𝑛𝑐𝑎𝑟𝑒′ (1892) and the first formulation of the 

theorem to Andronov (1929). Another important theorem on the existence of Hopf bifurcation appeared in Hopf 

(1942). Its existence has been proved in many economic models. For example, Torre (1977), observed the 

existence of a limit cycle associated with a Hopf bifurcation boundary in a study on Keynesian systems. Benhabib 

and Nishimura (1979) explored a multi-sector neoclassical optimal growth model and proved that a closed 

invariant curve might be a result of optimization. Hopf bifurcations were also found in other studies such as 

Aiyagari (1989), Benhabib and Day (1982), Benhabib and Rustichini (1991), Gale (1973). Recent findings belong 

to Barnett and He (1999, 2001, 2002, 2004, 2006, 2008), who found bifurcation boundaries in a Bergstrom 

continuous-time model of the 𝑈𝐾 economy and to Leeper and Sims with their Euler-equations model of the 

United States economy. 

 Barnett and Duzhak (2008, 2010) analyzed the bifurcation phenomenon using a closed economy New 

Keynesian model and they found both Hopf and Period Doubling bifurcations. Despite the growing interest in 

bifurcation analysis of economic systems, the literature on this subject is still immature and needs an extensive 

study for a comprehensive understanding. The present paper studies the existence of Hopf bifurcation for the 

model described by Ronald Shone (2002), by considering different settings for the matching function denoted 

𝑚(𝑢, 𝑣). 
 

A Preliminary Review of Hopf Bifurcation Theory 

According to Yuri Kuznetsov ( 2004), if we consider the following system of two differential equations 

depending on one parameters.  

Theorem 1  [20] Suppose a two dimensional system  

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥,𝛼), 𝑥 ∈ 𝐑𝟐, 𝛼 ∈ 𝐑𝟏,                        (1.1) 

with smooth 𝑓 , has for all sufficiently small |𝛼| the equilibrium 𝑥 = 0 with eigenvalues  

 𝜆1,2(𝛼) = 𝜇(𝛼) + 𝑖𝜔(𝛼), 
where 𝜇(0) = 0, 𝜔(0) = 𝜔0 > 0. 

 Let the following conditions be satisfied:  

(B.1) 𝑙1(0) ≠ 0, where 𝑙1 is the first Lyapunov coefficient;   

(B.2) 𝜇′(0) ≠ 0. 
Then, there are invertible coordinate and parameter changes and a time reparameterization transforming 

(1.1) into  

 
𝑑

𝑑𝜏
 

𝑦1

𝑦2 =  
𝛽 −1
1 −𝛽  

𝑦1

𝑦2 ±  𝑦1
2 + 𝑦2

2  

𝑦1

𝑦2 + 𝑂(||𝑦||4). 

We can drop the 𝑂(||𝑦||4) terms and finally arrive at the following general result.  

 

Theorem 2  ([20] Topological normal form for the Hopf bifurcation) 

 

Any generic two-dimensional, one-parameter system  

 𝑥 = 𝑓(𝑥,𝛼), 
having at 𝛼 = 0 the equilibrium 𝑥 = 0 with eigenvalues  

 𝜆1,2(𝛼) = ±𝑖𝜔0, 𝜔0 > 0, 
is locally topologically equivalent near the origin to one of the following normal forms:  

 
𝑑

𝑑𝜏
 
𝑦 1
𝑦 2 =  

𝛽 −1
1 −𝛽  

𝑦1

𝑦2 ± (𝑦1
2 + 𝑦2

2)  

𝑦1

𝑦2 . 

 

           Consider the following system of two differential equations depending on one parameter: 
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System 3   

 
𝑥 1 = 𝛼𝑥1 − 𝑥2 + 𝑠 ⋅ 𝑥1(𝑥1

2 + 𝑥2
2)

𝑥 2 = 𝑥1 + 𝛼𝑥2 + 𝑠 ⋅ 𝑥2(𝑥1
2 + 𝑥2

2).
  

  

           This system has three equilibriums 𝑥1 = 𝑥2 = 0 for all 𝛼 with the Jacobian matrix  

 

 𝐴 =  
𝛼 −1
1 𝛼   

having eigenvalues 𝜆1,2 = 𝛼 ± 𝑖. 
 

 Figure 1 .Supercritical Hopf bifurcation 

 

 
Source: authors' estimations 

  

 For 𝑠 = −1, System 3 always has an equilibrium point at the origin. This equilibrium is a stable focus 

for 𝛼 < 0 and an unstable focus for 𝛼 > 0. At the critical parameter value 𝛼 = 0 the equilibrium is nonlinearly 

stable and topologically equivalent to the focus. Some times it is called a weakly attracting focus. This equilibrium 

is surrounded for 𝛼 > 0 by an isolated closed orbit (limit cycle) that is unique and stable. 

 The cycle is a circle of radius 𝜌0(𝛼) =  𝛼. All orbits starting outside or inside the cycle except for the 

origin tend to the cycle as 𝑡 → +∞. This is an Supercritical Andronov-Hopf bifurcation, this being represented in 

Figure 1. 

 

Figure 2 . Subcritical Hopf bifurcation 

 
Source: authors' estimations 

  

 For 𝑠 = 1 in system 3 we have a Subcritical Hopf Bifurcation ( presented in Figure 2). 

 The system undergoes the Andronov-Hopf bifurcation at 𝛼 = 0. Contrary to System 3 for 𝑠 = −1, 
there is an unstable limit cycle in 3, which disappears when 𝛼 crosses zero from negative to positive values. The 

equilibrium at the origin has the same stability for 𝛼 ≠ 0 as in System 3 for 𝑠 = −1: It is stable for 𝛼 < 0 and 

unstable for 𝛼 > 0. Its stability at the critical parameter value is opposite to that in 3: It is (nonlinearly) unstable 

at 𝛼 = 0. 
 

Remark 1  We have seen that there are two types of Andronov-Hopf bifurcation. The bifurcation in System 3, for 

s = −1,  is often called supercritical because the cycle exists for positive value of parameter α ("after" the 

bifurcation). 

 The bifurcation in System 3, for 𝑠 = 1 is called subcritical since the cycle is present "before" the 

bifurcation. It is clear that this terminology is somehow misleading since "after" and "before" depend on the 

chosen direction of parameter variation.  
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IV. Examples of Dynamical Systems and their Stability Analysis 
        This section develops and analyses two dynamical systems resulting from using, in System 2, the 

following expressions for the matching rate.  

 
𝑚1(𝑢, 𝑣) = 𝛼 ⋅ 𝜍𝑚𝑢

𝜍𝑣𝜍(𝑢𝜍 + 𝑣𝜍)

𝑚2 𝑢, 𝑣 = 𝜍𝑚𝑢
𝜍𝑣1−𝜍                     

  

 
where 𝜍 is the elasticity of the matches with respect to unemployment but also the elasticity of the vacancy filling 

rate with respect to the labor market tightness , 𝜍𝑚  represents the efficiency of the matching process and 𝛼 is a 

scale parameter. The first setting for the matching rate when 𝑚1(𝑢, 𝑣) = 𝑢𝑣(𝑢 + 𝑣) was proposed and analysed 

by L. C. Holdon (2011). We extend that function 𝑚1(𝑢, 𝑣) to a more general one, where 𝛼 ∈ (0,1] is a scale 

parameter which can be used to particularize every economy, and we keep the linear function 𝜋(𝑞, 𝑒): = 𝑞 ⋅ 𝑒. 
The second setting is widely used in economics to help model the inefficiencies that are seen in many 

markets where two agents seek out each other in order to come to an agreement (search frictions). Though, its 

main application is within the labour market. 

The matching function theory has helped to improve models related to business cycles and has become 

the most significant and important tool in analyzing the labour market, particulary with regards to macroeconomy. 

It is used by a variety of governments when trying to decide upon unemployment policy, and macroeconomic 

policy as a whole , its simplified implication being that the lower the level of search friction, the more efficient the 

relevant market is, and as such the lower the cost that is associated with the relevant markets pairings. 

The greatest succes and research in this sense belongs to Diamond, Mortensen and Pissarides, whose model is the 

most prominent macroeconomic tool which shows the relationship between the rate at which the unemployed are 

hired with the number of people looking for jobs, and the volume of vacancies available. 

Further on, the study will explore the ode systems from a mathematical view point. 

 

From introduction we know that 𝑢 = 1− 𝑒 and denote 𝑞: =
𝑣

𝑢
.  

Namely,                           
𝑒: = 𝑥 ∈ (0,1)
𝑞: = 𝑦 ∈ 𝐑     

  

  

and by equation (∗∗) we have  

                             
𝑚1(𝑢, 𝑣) = 𝛼 ⋅ 𝜍𝑚(1 − 𝑥)3𝜍𝑦𝜍(1 + 𝑦𝜍)

𝑚2 𝑢, 𝑣 = 𝜍𝑚 1− 𝑥 ⋅ 𝑦
1−𝜍 .                 

  

  

Following System 2, we obtain the o.d.e systems of: 

 

System 4   

                                 
𝑥 = 𝛼 ⋅ 𝜍𝑚(1− 𝑥)3𝜍𝑦𝜍(1 + 𝑦𝜍)) − 𝑠 ⋅ 𝑥   ∶= 𝑓1(𝑥, 𝑦)

𝑦 =  𝑟 + 𝑠 ⋅ 𝑦 − 𝑥 ⋅ 𝑦   ∶= 𝑓2 𝑥,𝑦                                 
  

 

 

System 5   

          
𝑥 = 𝜍𝑚 (1− 𝑥) ⋅ 𝑦1−𝜍 − 𝑠 ⋅ 𝑥   ∶= 𝑔1(𝑥,𝑦)

𝑦 =  𝑟 + 𝑠 ⋅ 𝑦 − 𝑥 ⋅ 𝑦   ∶= 𝑔2 𝑥,𝑦             
  

  
where (𝑟, 𝑠) are parameters, with 𝑠 ∈ (0,1) and 𝑟 ∈ ℝ; 
𝑥 is the  employment rate and 𝑦 represents the  labour market tightness. 

 

The Study of System 4  

 

Applying the continuous transformation (𝑥,𝑦𝜍) ⟶ (𝑥,𝑦 ) we obtain for the first equation of System 4:  

𝑥 = 𝛼 ⋅ 𝜍𝑚(1− 𝑥)3𝜍𝑦 (1 + 𝑦 ) − 𝑠 ⋅ 𝑥, 
and for the second equation we obtain:  

 𝑦  = 𝜍 ⋅ 𝑦𝜍−1 ⋅ 𝑦 = 𝜍 ⋅ 𝑦𝜍−1 ⋅ [(𝑟 + 𝑠) ⋅ 𝑦 − 𝑥 ⋅ 𝑦] = 𝜍 ⋅ [(𝑟 + 𝑠) ⋅ 𝑦𝜍 − 𝑥 ⋅ 𝑦𝜍] =
𝜍[(𝑟 + 𝑠) ⋅ 𝑦 − 𝑥 ⋅ 𝑦 ]. 
Therefore, the equivalent ode system with System 4 is:  
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System 6   

                       
𝑥 = 𝛼 ⋅ 𝜍𝑚(1− 𝑥)3𝜍𝑦 (1 + 𝑦 ) − 𝑠 ⋅ 𝑥   ∶= 𝑓1(𝑥,𝑦 )

𝑦  = 𝜍  𝑟 + 𝑠 ⋅ 𝑦 − 𝑥 ⋅ 𝑦    ∶= 𝑓2 𝑥,𝑦                        
  

 
For System 6, we have three equilibrium points:  

 𝐸0 = (0,0), 𝐸1 = (𝑟 + 𝑠,−
1

2
−

1

2
⋅  1 +

4𝑠(𝑟+𝑠)

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍) 

and  

    𝐸2 = (𝑟 + 𝑠,−
1

2
+

1

2
⋅  1 +

4𝑠(𝑟 + 𝑠)

𝛼 ⋅ 𝜍𝑚(1− 𝑟 − 𝑠)3𝜍
). 

 The Jacobian matrix associated to system 4 is:  

 𝐽: =  
−3 ⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑥)(3𝜍−1) ⋅ 𝑦 (1 + 𝑦 )− 𝑠 𝛼 ⋅ 𝜍𝑚 ⋅ (1− 𝑥)3𝜍(1 + 2𝑦 )

−𝜍𝑦 𝜍[−𝑥 + (𝑟 + 𝑠)]   

where 𝐸 = (𝑥,𝑦 ) is an equilibrium point. 

 

Since 𝑠 ∈ (0,1), we have:  

 

Proposition 1  The equilibrium point 𝐸0 is: 

(𝑖) an unstable saddle point for 𝑟 + 𝑠 > 0. 
(𝑖𝑖) an attractive stable node for 𝑟 + 𝑠 < 0. 
(𝑖𝑖𝑖) a nonlinearly attractive equilibrium by type saddle-node for 𝑟 + 𝑠 = 0.  

 

The Characteristic Equation associated to point 𝐸0 is:  

𝜆2 − (−𝑠 + 𝜍 ⋅ (𝑟 + 𝑠))𝜆 + (−𝑠) ⋅ 𝜍 ⋅ (𝑟 + 𝑠) = 0, 
with  

    Δ𝜆 = (𝑠 + 𝜍(𝑟 + 𝑠))2 ⇒ 𝜆1 = 𝜍 ⋅ (𝑟 + 𝑠)  𝑎𝑛𝑑  𝜆2 = −𝑠, 
because 0 < 𝑠 < 1 ⇒ 𝜆2 < 0 for all 𝑠. 
For the equilibrium 𝐸1 we obtain the following:  

 𝑇𝑟𝐽1 = −3 ⋅ 𝜍 ⋅
𝑠(𝑟+𝑠)

1−𝑟−𝑠
− 𝑠 

and  

 𝐷𝑒𝑡𝐽1 =
1

2
⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑟 − 𝑠)3𝜍 1 +

4𝑠(𝑟+𝑠)

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍
(1 +  1 +

4𝑠(𝑟+𝑠)

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍
). 

 

with its characteristic equation:  

 𝜆2 − (−3 ⋅ 𝜍 ⋅
𝑠(𝑟+𝑠)

1−𝑟−𝑠
− 𝑠)𝜆 + (

1

2
⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑟 − 𝑠)3𝜍 1 +

4𝑠(𝑟+𝑠)

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍 (1 +

 1 +
4𝑠(𝑟+𝑠)

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍)) = 0. 

 

Denoting:  

𝛽: =  1 +
4𝑠(𝑟 + 𝑠)

𝛼 ⋅ 𝜍𝑚(1− 𝑟 − 𝑠)3𝜍
⇒ 𝐷𝑒𝑡𝐽1 =

1

2
⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑟 − 𝑠)3𝜍 ⋅ 𝛽 ⋅ (1 + 𝛽). 

 

 

 

 

 

 



Exploring the dynamics of labour market through bifurcation theory 

www.ijeijournal.com                           Page | 16 

Figure 3. Parameter portrait for System 6 for the equilibrium points 𝑬𝟏 

 
 

Source: authors' figure 

Proposition 2 The equilibrium point 1E
 
(see Figure3) is: 

(i) For zone I, it is a stable attractive node when ,1,2 R  and stable attractive focus when ,1,2 R  with 

0.<1,2Re  

(ii) For zone II, it is a nonlinearly point of Hopf type. 

(iii) For zone III, it is an unstable repulsive node when ,1,2 R  and an unstable repulsive focus when 

,1,2 R  with 0.>1,2Re  

(iv) For zone IV, it is a nonlinearly equilibrium by type saddle-node. 

(v) For zone V, it is an unstable saddle.  

 

From mathematical view point, the next result is the most important, it describes the existence of Hopf 

bifurcation in System 6, with serious repercussions for a country’s economy.  

Theorem 3  If 𝑟 + 𝑠 +
1

3⋅𝜍−1
= 0  and 𝐷𝑒𝑡𝐽1 > 0, corresponds to zone II. Then the equilibrium point 

1E  is a nonlinearly equilibrium point of Hopf type.  

 

Proof. We must verify the two conditions from Theorem 1. 

First, we must calculate 𝑙1  𝑟 + 𝑠 +
1

3⋅𝜍−1
= 0 , which is the first Lyapunov coefficient, when 𝑟 + 𝑠 +

1

3⋅𝜍−1
= 0. For obtaining 𝑙1(𝑟 + 𝑠 +

1

3⋅𝜍−1
= 0), we will use the formula from [18]:  

],)()([
16

11
][

16

1
:=),( 2121222111

0

2211

0)=
13

1
(
|1 yyyyxxxxyyxxxyyyxxxyyyyxxyxyyxxx

sr

ffffffffffffffyxl 


 



where 

 

System 7  

 
𝑥 = 𝛼 ⋅ 𝜍𝑚(1− 𝑥)3𝜍𝑦 (1 + 𝑦 )− 𝑠 ⋅ 𝑥   ∶= 𝑓1(𝑥,𝑦 )

𝑦  = 𝜍  𝑟 + 𝑠 ⋅ 𝑦 − 𝑥 ⋅ 𝑦    ∶= 𝑓2 𝑥, 𝑦                       
  

 

and  𝑓𝑥𝑥𝑥
1 : =

∂3𝑓1(𝑥 ,𝑦)

∂𝑥3 . 

Since 𝜍𝑚 ,𝜍, 𝑠 > 0 and 𝑟 + 𝑠 +
1

3⋅𝜍−1
= 0 ⇒ 𝑟 + 𝑠 ≠ 1 ⇒ 𝛽 > 0  ⇒  

 𝜔0 = 2 ⋅  
1

2
⋅ 𝛼 ⋅ 𝜍𝑚 ⋅ 𝜍 ⋅ (1− 𝑟 − 𝑠)3𝜍 ⋅ 𝛽 ⋅ (1 + 𝛽) > 0 

Since 𝑓𝑥𝑥
2 = 𝑓𝑦𝑦

2 = 0 we have  

𝑙1(𝑥,𝑦)|
(𝑟+𝑠+

1
3⋅𝜍−1

=0)
=

1

16
[𝑓𝑥𝑥𝑥

1 + 𝑓𝑥𝑦𝑦
1 ] +

1

𝜔0

1

16
𝑓𝑥𝑦

1 (𝑓𝑥𝑥
1 + 𝑓𝑦𝑦

1 ), 

 

hence 
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𝑙1(𝑥,𝑦)|
(𝑟+𝑠+

1
3⋅𝜍−1

=0)
= (−1) ⋅ {

1

16
⋅ 𝛼 ⋅ [3 ⋅ 𝜍𝑚 ⋅ 𝜍 ⋅ (3𝜍 − 1) ⋅ (3𝜍 − 2)(1−

𝑥)3(𝜍−1)𝑦 (1 + 𝑦 ) +  6 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑥)(3𝜍−1)] +  
1

𝜔0

1

16
3 ⋅ 𝛼2 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1 − 𝑥)(3𝜍−1)(1 +

2𝑦 ) ⋅ [3𝜍 ⋅ 𝜍𝑚 ⋅ (3𝜍 − 1)(1− 𝑥)(3𝜍−2)𝑦 (1 + 𝑦 ) + 2 ⋅ 𝜍𝑚 ⋅ (1− 𝑥)3𝜍]}.  
 

We recall that 𝑥 = 𝑟 + 𝑠 =
1

1−3⋅𝜍
≠ 1 and 𝜍𝑚 ,𝜍 > 0, so, we deduce that 

𝑙1(𝑟 + 𝑠 +
1

3 ⋅ 𝜍 − 1
= 0) ≠ 0  , 𝑓𝑜𝑟  0 < 𝑠 < 1. 

And the second condition from Theorem 1, since 𝑟 + 𝑠 +
1

3⋅𝜍−1
= 0 and 𝑠 ∈ (0,1)::  

                
∂(𝑟+𝑠+

1

3⋅𝜍−1
)

∂𝑠
= 1 ≠ 0;  

∂(𝑟+𝑠+
1

3⋅𝜍−1
)

∂𝑟
= 1 ≠ 0. 

 

Following Theorem 1 we deduce the existence of Hopf bifurcation.  

If inside of Theorem 3 we consider 𝛼 = 𝜍 = 𝜍𝑚 = 1  then we obtain the next result, presented in 

Holdon(2011) (see [22]), with a clear picture which illustrates the Hopf bifurcation for 𝑟 + 𝑠 +
1

2
= 0, 

associated to the system: 

 

System 8  

 
𝑥 = (1 − 𝑥)3 ⋅ 𝑦 ⋅ (1 + 𝑦) − 𝑠 ⋅ 𝑥   ∶= 𝑓1(𝑥,𝑦)

𝑦 =  𝑟 + 𝑠 ⋅ 𝑦 − 𝑥 ⋅ 𝑦   ∶= 𝑓2 𝑥, 𝑦                     
  

 

Corollary 1 If 𝑟 + 𝑠 +
1

2
= 0 and 𝐷𝑒𝑡𝐽1 > 0, (in System 8), corresponds to zone II. Then the equilibrium 

point 1E  is a nonlinearly equilibrium point of Hopf type, see Figure 4, and the Hopf bifurcation is subcritical.  

Figure 4: 𝐫+ 𝐬 +
𝟏

𝟐
= 𝟎, see [22] 

 
Source: authors' figure   

  

For the equilibriums 2E  we obtain the following:  

𝑇𝑟𝐽2 = −3 ⋅ 𝜍 ⋅
𝑠(𝑟 + 𝑠)

1 − 𝑟 − 𝑠
− 𝑠 

and 

𝐷𝑒𝑡𝐽2 = −
1

2
⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑟 − 𝑠)3𝜍 1 +

4𝑠 𝑟+𝑠 

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍
(1− 1 +

4𝑠 𝑟+𝑠 

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍
).           

with its characteristic equation: 𝜆2 − (−3 ⋅ 𝜍 ⋅
𝑠 𝑟+𝑠 

1−𝑟−𝑠
− 𝑠)𝜆 + (−

1

2
⋅ 𝛼 ⋅ 𝜍 ⋅ 𝜍𝑚 ⋅ (1− 𝑟 −
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𝑠)3𝜍 1 +
4𝑠 𝑟+𝑠 

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍 (1− 1 +
4𝑠 𝑟+𝑠 

𝛼⋅𝜍𝑚 (1−𝑟−𝑠)3𝜍)) = 0.       

 
Figure 5. Parameter portrait of system 6 for the equilibrium point 𝑬𝟐 

 
Source: authors' figure   

 

Proposition 3 The equilibrium point 2E (see Figure 5) is: 

(i) For zone I, it is an unstable saddle. 

(ii) For zone II, it has the eigenvalues  

,)
)(1

)(4
1(1

)(1

)(4
1)(1

2

1
= 2

33

3

1,2 R

















sr

srs

sr

srs
sr

mm

m  

because 0=
13

1





sr  and it is an unstable saddle. 

(iii) For zone III, it is an unstable saddle. 

(iv) For zone IV, it is a nonlinearly equilibrium by type saddle-node. 

(v) For zone V, it is is an unstable repulsive node when ,1,2 R  and an unstable repulsive focus when 

,1,2 R  with 0.>1,2Re   

 

The Study of System 5  

 

For System 5, we have two equilibrium points: 

 𝐸2,0 =  0,0 , 𝑎𝑛𝑑    𝐸2,1 = (𝑟 + 𝑠,
𝑠(𝑟+𝑠)

𝜍𝑚 (1−𝑟−𝑠)

1

1−𝜍
). 

 The Jacobian matrix associated to System 5 is:  

 𝐽: =  
−𝜍𝑚𝑦

1−𝜍 − 𝑠 𝜍𝑚(1− 𝑥)(1− 𝜍)𝑦−𝜍

−𝑦 𝑟 + 𝑠 − 𝑥   

where ),(= yxE  is an equilibrium point. 

The study of the equilibrium point :2,0E  

Since 𝑠 ∈ (0,1) we have:  

Proposition 4  The equilibrium point 2,0E  is: 

)(i  an unstable saddle point for 0.>sr   

)(ii  an attractive stable node for 0.<sr   

)(iii  a nonlinearly attractive equilibrium by type saddle-node for 0=sr    

The Characteristic Equation associated to point 2,0E  is:  

 𝜆2 − 𝑟𝜆 + (−𝑠)(𝑟 + 𝑠) = 0, 
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with  

 Δ𝜆 = (𝑟 + 2𝑠)2 ⇒ 𝜆1 = 𝑟 + 𝑠  𝑎𝑛𝑑  𝜆2 = −𝑠, 
because 0 < 𝑠 < 1 ⇒ 𝜆2 < 0  for all 𝑠. 

For the equilibrium 2,1E  we obtain the following:  

𝑇𝑟𝐽2,1 = −
𝑠

(1− 𝑟 − 𝑠)
 

 

and  

𝐷𝑒𝑡𝐽2,1 = (1− 𝜍)𝑠(𝑟 + 𝑠). 
 

with its characteristic equation:  

𝜆2 +
𝑠

(1− 𝑟 − 𝑠)
𝜆 + (1− 𝜍)𝑠(𝑟 + 𝑠) = 0. 

 

Corollary 2 There isn’t Hopf bifurcation for System 5, since 𝑇𝑟𝐽2,1 ≠ 0  for any 𝑠 ∈ (0,1).   

 

Figure 6. Parameter portrait for the system 5 for the equilibrium point 𝑬𝟐,𝟏 

 
Source: authors' figure 
 

Proposition 5  The equilibrium point 2,1E  (see Figure 6) is: 

(i) For zone I, it is an unstable repulsive node when ,1,2 R  and an unstable repulsive focus when ,1,2 R  

with 0.>1,2Re  

(ii) The second zone doesn’t exists, since 02,1 TrJ  for any (0,1).s  

(iii) For zone III, it is a stable attractive node when ,1,2 R  and a stable attractive focus when ,1,2 R  

with 0.<1,2Re  

(iv) For zone IV, it has the eigenvalues 0=1  and 0<2  and it is a nonlinearly attractive equilibrium by 

type saddle-node. 

(v) For zone V, it is an unstable saddle. 

 

V. Conclusions  
The purpose of this study is to develop dynamic models in order to point out a set of facts regarding job 

flows and unemployment. The main results of this research are the theorems on the existence of Hopf bifurcation. 

The proposed models extend Ronald Shone’s approach to the dynamics of unemployment by providing two 

different settings for the matching rate m(u,v). One of the settings is the matching function proposed by the 

distinguished Nobel Laureates Diamond, Mortensen and Pissarides, the other one being a personal attempt to find 

another function that could provide stability to a dynamic system regarding unemployment. The stability of the 

resulting systems is analyzed by using the software package of xpp.exe. 

The most important findings are: the ode system resulting from the function that we have proposed has 
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three equilibrium points among which the second zone of the equilibrium point 1E  is a nonlinearly point of Hopf 

type describing the existence of a Hopf bifurcation; the ode system resulting from using the matching function 

proposed by Diamond, Mortensen and Pissarides has two equilibrium points among which a nonlinearly attractive 

equilibrium of saddle-node type. The system resulting from using the setting proposed by Diamond, Mortensen 

and Pissarides is more appropriate to the economic reality, this study being another proof that their function is the 

most significant and important tool in analyzing the labour market dynamics. But from mathematical point of 

view, the system that we proposed is much more interesting because it allows the existence of Hopf bifurcation. 
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