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ABSTRACT:-   The present study investigates the steady, two dimensional, natural convection flow of 

micropolar fluid over a vertical plate with internal heat generation and thermal dispersion in the presence of 

viscous dissipation and convective boundary condition. Using the similarity transformations, the governing 

equations have been transformed into a system of ordinary differential equations. These differential equations 

are highly nonlinear which cannot be solved analytically. Therefore, Runge–Kutta Gill method together with 

shooting technique has been used for solving it. Numerical results are obtained for the skin-friction coefficient, 

couple wall stress and the local Nusselt number as well as the velocity, microrotation and temperature profiles 

for different values of the governing parameters, namely, material parameter, thermal dispersion parameter, 

Prandtl number, convective parameter and Eckert number.  
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I. INTRODUCTION 
 The flow of a micropolar fluid with various physical effects has been extensively studied since the last 

few decades, after the theory is developed by Eringen ([1], [2]). This theory is capable to explain the complex 

fluids behavior such as liquid crystals, polymeric suspensions, animal blood, etc. by taking into account the 

effect arising from local structure and micro-motions of the fluid elements. An extensive review of micropolar 

fluids and their applications has been done by Ariman et al. [3]. Yacob et al. [4] investigated the boundary layer 

flow of non-Newtonian micropolar fluid past a vertical plate in the presence of wall heat flux using Keller-Box 

method. Rees and Basson [5] both are investigated the similarity transformation for blasius boundary layer flow 

of micropolar fluid over a flat plate. The transverse curvature effects on axisymmetric free convection boundary 

layer flow of a micropolar fluid past vertical cylinders are investigated by Gorla and Takhar [6]. Ishak et al. [7] 

discussed the boundary layer flow of magnetohydrodynamic micropolar fluid past a wedge with constant wall 

heat flux and they concluded that micropolar fluids display drag reduction and consequently reduce the heat 

transfer rate at the surface, compare to the Newtonian fluids. Na and Pop [8] investigated the boundary layer 

flow of micropolar fluid over a continuously moving surface. Lakshmi Narayana and Gangadhar [9] 

investigated the unsteady boundary layer flow magnetohydrodynamic micropolar fluid past a stretching surface.  

 In the view of the above said possible applications, many authors have reported the importance of 

thermal and solutal dispersion effects along a vertical plate on fluid flow, heat and mass characteristics in a fluid 

medium. A detailed analysis regarding the effect of double dispersion on mixed convection heat and mass 

transfer in non-Darcy porous medium, one can refer the works of Murthy [10]. Ram Reddy [11] studied the 

double dispersion effects on convective flow over a cone. He concluded that the skin-friction, heat and mass 

transfer rates increase with the increasing the values of thermal dispersion parameter. Kumari et al. [12] 

investigated the laminar boundary layer flow on non-Newtonian fluids with thermal dispersion effect. 

Kuznetsov and Xiong [13] have been numerically investigated the effect of thermal dispersion on forced 

convection in a circular duct partly filled with a Brinkman – Forchheimer porous medium. The effects of double 

dispersion and chemical reaction on non-Darcy free convection heat and mass transfer in a semi infinite 

incompressible vertical wall in a fluid saturated porous medium is investigated by El-Amin et al [14].Lakshmi 

narayana and Sibanda [15] studied the effects of magnetic field, thermal dispersion and soret effect on double 

dissipative mixed convection along a vertical flat plate in a fluid saturated non-Darcy porous medium.  

The heat source/sink effects in thermal convection are significant where there may exist high temperature 

differences between the surface (e.g. space craft body) and the ambient fluid. Heat generation is also important 

in the context of exothermic or endothermic chemical reaction. El-Hakiem [16] investigated the similarity 
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solution of boundary layer flow of a micropolar fluid along an isothermal vertical plate with an exponentially 

decaying heat generation and thermal dispersion. Gorla and Takhar [17] numerically investigated the two 

dimensional boundary layer convective flow of an incompressible micropolar fluid on rotating adiabatic 

axisymmetric surface with a concentrated heat source located at the strip. Ranga Rao et al. [18] studied the 

MHD boundary layer flow of heat and mass transfer over a nonlinear stretching sheet and they considered the 

heat source or sink effect. Gangadhar [19] investigated the similarity solution for natural convective boundary 

layer flow through a moving vertical plate with internal heat generation and viscous dissipation. He concluded 

that both velocity and thermal boundary layer thickness increases with an increasing the values of internal heat 

generation parameter. In another study Gangadhar [20] studied the heat generation effect on MHD boundary 

layer flow of Blasius and Sakiadis flows with convective surface boundary condition. Variable suction and heat 

generation effects on MHD boundary layer flow of a moving vertical plate are studied by Rushi Kumar and 

Gangadhar [21]. Pal and Mandal [22] investigated the combined convection on a boundary layer flow over a 

vertical flat plate embedded in a porous medium of variable viscosity with radiation and heat source or sink 

effect. They were concluded that momentum and thermal boundary layer thickness increases with radiation and 

decrease with increase in the Prandtl number. Soid and Ishak [23] investigated the flow and heat transfer 

analysis on boundary layer flow of a nanofluid past a moving surface with internal heat generation. Pillai et al. 

[24] investigated the boundary layer flow of viscoelasic fluid and heat transfer analysis in a saturated porous 

medium past an impermeable stretching surface with fractional heating and internal heat generation or 

absorption. Basiri Prasad et al. [25] investigated the laminar boundary layer flow past stretching surface with 

MHD and internal heat generation or absorption effects. Makinde and Sibanda [26] studied the internal heat 

generation and ehemical reaction effects on boundary layer flow past a vertical stretching surface. They 

concluded that both the velocity and temperature profiles are increase significantly with the heat generation 

parameter increases.  

 The present study investigates the steady, two dimensional, natural convection flow of a micropolar 

fluid over a vertical plate with thermal dispersion and internal heat generation in the presence of viscous 

dissipation and convective boundary condition. Using the similarity transformations, the governing equations 

have been transformed into a set of ordinary differential equations, which are nonlinear and cannot be solved 

analytically, therefore, Runge–Kutta Gill method together with shooting technique has been used for solving it. 

The results for velocity and temperature functions are carried out for the wide range of important parameters 

namely; namely, material parameter, thermal dispersion parameter, Prandtl number, convective parameter and 

Eckert number. The skin friction, the couple wall stress and the rate of heat transfer have also been computed. 

 

II. MATHEMATICAL FORMULATION 
 Consider a natural convection flow of an incompressible micropolar fluid over a vertical plate. By 

taking x to be along the plate in the vertical direction and y perpendicular to the plate. 

 Under the above assumptions, the partial differential equations and the corresponding boundary 

conditions govern the problem are given by: 

Continuity equation 
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Angular momentum equation 
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Energy equation 
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The boundary conditions are   
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where u and v are the velocity components along the x- and y-axes, respectively, hf is the convective heat 

transfer coefficient, N is the angular velocity, *g  is the acceleration due to gravity,   is the coefficient of 

thermal expansion,  is the vertex viscosity,  is the spin gradient viscosity, j is the microinertia per unit mass, 

 is the density of the fluid,   is the kinematic coefficient of viscosity, T is the temperature of the fluid, Tf is 

the surface temperature, T∞ is the ambient temperature,  
y

  is the effective thermal diffusivity and defined as 

du
ddy 1

,  
       

(2.6) 

The thermal dispersion is introduced by assuming the effective thermal diffusivity 
y

  to have two components: 

 the molecular diffusivity and 
d

  is the diffusivity due to thermal dispersion. Where 
1

  is the dispersion 

coefficient and d is the polar diameter.  

 The governing Eqs. (2.2) - (2.4) subject to the boundary conditions (2.5) can be expressed in a simpler 

form by introducing the following transformation: 











































TT

TT
g

Gr

x
yxN

Gr

x

yGr
fyx

f

xxx
)(),(

4

4
),(,

4
,

4
)(4),(

4/3

2

4/14/1




        (2.7)     

where η is the similarity variable and ψ is the stream function defined as     u
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which identically satisfies Eq. (2.1).  

The volumetric heat generation must be of the form: 
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Employing the similarity variables (2.7) and (2.8), Eqs. (2.2) and (2.4) reduce to the following ordinary 

differential equations: 
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The boundary conditions become, 
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 Here primes denote differentiation with respect to η. 

 Prandtl number Pr, material parameters λ, B, K and thermal dispersion parameter S, Eckert number Ec 

and convective parameter Bi defined respectively as 
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Where (C = 1with heat generation, C = 0 without heat generation) 

 The exponential decaying heat generation model can be used in mixtures where a radioactive material 

is surrounded by inert alloys and has been used to model electromagnetic heating of materials (Sahin [27]). 

The average Nusselt number along a plate of length L can be determined by: 
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III. SOLUTION OF THE PROBLEM 
 For solving Eqs. (2.9) – (2.11), a step by step integration method i.e. Runge–Kutta method has been 

applied. For carrying in the numerical integration, the equations are reduced to a set of first order differential 

equation. For performing this we make the following substitutions: 
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 In order to carry out the step by step integration of Eqs. Refspseqn 2.7-2.9, Gills procedures as given in 

Ralston and Wilf [28] have been used. To start the integration it is necessary to provide all the values of 

1 2 3 4
, , ,y y y y at 0  from which point, the forward integration has been carried out but from the boundary 

conditions it is seen that the values of 
3 5
,y y are not known. So we are to provide such values of 

3 5
,y y along 

with the known values of the other function at 0  as would satisfy the boundary conditions as 

 1 0    to a prescribed accuracy after step by step integrations are performed. Since the values of 

3 5
,y y which are supplied are merely rough values, some corrections have to be made in these values in order 

that the boundary conditions to     are satisfied. These corrections in the values of 
3 5
,y y are taken care 

of by a self-iterative procedure which can for convenience be called ‘‘Corrective procedure’’. This procedure 

has been taken care of by the software which has been used to implement R–K method with shooting technique. 

 As regards the error, local error for the 4th order R–K method is  
5

O h ; the global error would be 

 
4

O h . The method is computationally more efficient than the other methods. In our work, the step size 

0 .0 1h  . Therefore, the accuracy of computation and the convergence criteria are evident. By reducing the 

step size better result is not expected due to more computational steps vis-a` -vis accumulation of error. 

  

IV. RESULTS AND DISCUSSION 
 The governing equations (2.9) - (2.11) subject to the boundary conditions (2.12) are integrated as 

described in section 3. In order to get a clear insight of the physical problem, the velocity, micro-rotation and 

temperature have been discussed by assigning numerical values to the parameters encountered in the problem.  

 Figures 1-6, shows that the behaviour of velocity, microrotation and temperature distributions for 

various values of Prandtl number Pr, thermal dispersion parameter S and material parameter K for fixed Ec = 

0.1, Bi = 0.2, B = 0.5 and λ = 0.5. Figures 1-3 are for fluid without the exponentially decaying heat generation 

them, while figures 4-6 include the heat generation. The effect of the internal heat generation and thermal 

dispersion are especially pronounced in the low Prandtl number case. The similarity velocity is grater when 

thermal dispersion and internal heat generation exists. In figure (1, 4) the location of the maximum velocity 

occurs at roughly the same value of 𝜼 for Pr < 1. For Pr > 1 the location of the maximum velocity occurs at a 

later distance from the plate, indicating the influence of the increased velocity. The temperature within the 

boundary layer exceeds the wall temperature in the presence of thermal dispersion and internal heat generation.  

We observed that the microrotation changes sign from negative to positive value within the boundary layer. The 

velocity and magnitude of mocrorotation and temperature profiles increases with an increase of thermal 

dispersion and internal heat generation.  

 Figures 7-12 depicts the effects of Eckert number and convective parameter on velocity, microrotation 

and temperature distributions for fixed 7.0Pr,1.0,1.0,5.0,5.0  SKB . Figures 7-9 are for a 

fluid without the exponentially decaying heat generation them, while figures 10-12 include the heat generation. 

It is observed that from figures 7-9, the velocity, magnitude of microrotation and temperature profiles are 

increases with the increasing the values of convective parameter Bi and Eckert number Ec. But figures 10-12, 

i.e. in the presence of internal heat generation, the velocity, magnitude of microrotation, temperature 

distributions are significantly increases for increase in Eckert number Ec where as the velocity, magnitude of 

microrotation, temperature distributions are significantly decreases for increase in convective parameter Bi. The 

velocity, magnitude of microrotation, temperature distributions are significantly increases in the presence of 

internal heat generation. 
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 Table1 shows that the present results perfect agreement to the previously published data. From tables 2 

and 3, calculated for the values of magnitude of skin-friction coefficient, wall couple stress and local Nusselt 

number for different values of material parameters K, Prandtl number Pr, thermal dispersion parameter S, Eckert 

number Ec and convective parameter Bi. From table 2 for a fluid without exponentially decaying internal heat 

generation and from table 3 including with internal heat generation. From the data in table 2 and 3, it is observed 

that the magnitude of skin friction coefficient increases with an increase in Eckert number Ec and convective 

parameter Bi. But the skin friction coefficient decreases for increase the values in material parameter K, Prandtl 

number Pr and thermal dispersion parameter S. From the values in tables 2 and 3, it is noticed that the wall 

couple stress increases with an increase in material parameter K, thermal dispersion parameter S, Eckert number 

Ec and convective parameter Bi where as the wall couple stress decreases for increase in Prandtl number Pr. 

From the data in tables 2 and 3, it is noticed that the local nusselt number increases with an increase in Prandtl 

number Pr, thermal dispersion parameter S, convective parameter Bi, whereas the local nusselt number 

decreases for increase in material parameter K and Eckert number Ec. From the data in tables 2 and 3, it is 

noticed that the magnitude of skin-friction coefficient, wall couple stress and local Nusselt number are increased 

in the presence of internal heat generation.   

 

V. CONCLUSIONS 
 In the present paper, steady, two dimensional, natural convection flow of a micropolar fluid over a 

vertical plate with thermal dispersion and internal heat generation in the presence of viscous dissipation and 

convective boundary condition is studied. The governing equations are approximated to a system of non-linear 

ordinary differential equations by similarity transformation. Numerical calculations are carried out for various 

values of the dimensionless parameters of the problem. It has been found that the presence of thermal dispersion 

and internal heat generation lead to increase the flow, and in some cases, especially for fluid with Pr < 1. We 

note that material parameter K increases the velocity and temperature profiles in the presence of heat generation. 

The microrotation profiles changes the sign from negative to positive values within the boundary layer. The 

magnitude of microrotation profiles increases with an increase in material parameter in the presence of internal 

heat generation. The velocity, magnitude of microrotation and temperature profiles are increased in Bi in the 

absence of internal heat generation. The magnitude of skin-friction coefficient and wall couple stress are 

increased for Ec and the local Nusselt number decreased in Ec. 

 

 
Fig.1 Velocity for various values of Pr, K and S for C=0 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 

 

 
Fig.2 Microrotation for various values of Pr, K and S for C=0 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 
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Fig.3 Temperature for various values of Pr, K and S for C=0 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 

 
                                       

Fig.4 Velocity for various values of Pr, K and S for C=1 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 

 
 

Fig.5 Microrotation for various values of Pr, K and S for C=1 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 
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Fig.6 Temperature for various values of Pr, K and S for C=1 when Ec = 0.1, Bi=0.2, B =0.5, λ=0.5. 

 
 

Fig.7 Velocity for different values of Bi and Ec for C=0 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 

 
 

Fig.8 Microrotation for various values of Bi and Ec for C=0 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 

 

 

Fig.9 Temperature for different values of Bi and Ec for C=0 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 
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Fig.10 Velocity for different values of Bi and Ec for C=1 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 

 

 
 

Fig.11 Microrotation for various values of Bi and Ec for C=1 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 

 
 

Fig.12 Temperature for different values of Bi and Ec for C=1 when Pr = 0.7, S=0.1, K =0.1, B =0.5, λ=0.5. 

Table 1. Comparison for the values of ''( 0 )f  for the values of K, S when Pr = 0.01, B = 0.1, 𝜆 = 0.5, Bi = Ec 

= 0.0. 
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