
International Journal of Engineering Inventions  

e-ISSN: 2278-7461, p-ISSN: 2319-6491  

Volume 7, Issue 7 [July 2018] PP: 16-21 

 

                                                                    www.ijeijournal.com                                                               Page | 16 

Self-Oscillatory Interactioms Of Supersonic Streams With 

Cylinders, Placed In Open Channels 
 

V. I. Pinchukov 
Siberian division of Russian Academy of Sc., In-te of Computational Technologies, Novosibirsk, Russia 

Corresponding Authur, V. I. Pinchukov 

 

ABSTRACT: Interactions of supersonic uniform streams with cylindrical bodies, placed in open channels, are 

studied. Channels of rotation with the interval of cross-sectional area decreasing are considered. 

Two-dimensional Euler equations are solved by an implicit third order Runge-Kutta scheme. Self-oscillatory 

regimes are found in CFD studies at stream Mach numbers of 3 to 4.5. 
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I. INTRODUCTION 

Resent paper is devoted to a search for new self-oscillatory flows. This search is carried out on a base of the 

hypothesis [1], that self-oscillations appear as a result of resonance interactions of “active” elements of flows, 

namely, elements, which amplify disturbances. Supposition is used about two types of “active” elements – contact 

discontinuities and intersection points of shocks with shocks or shocks with contact discontinuities. Possibility of 

the disturbances amplification by contact discontinuities is a result of the Kelvin-Gelmgoltce instability and is 

accepted. Inclusion of intersection points to a list of amplifiers is proposed in [1] as a hypothesis, which is checked 

by results of a search for new unsteady flows.  

Self-oscillatory compressible flows may be classified into some families: 1. Flows near supersonic jets, inflowing 

to forward facing cavities (see, for example, [2-4]); 2. Jet impinging on a plate [1,5-9]; 3. Flows past 

forward-facing cavities [10-12] (outer stream is uniform in this case); 4. Cavity flows (tangential flows near 

surfaces with cavities) [13-16]; 5. Flows past snaked bodies [1,17-19]; 6. Flows past bluff bodies (vortex shedding 

from bluff bodies may result unsteady wake structures) [20-22]; 7. Transonic flows near profiles (Euler equations 

may have non-unique solutions in this case, which results bifurcations and self –oscillations) [23-24]. 

Numerical investigations of flows, containing the most number of “active” elements, are used to search for new 

unsteady flows in [25-27]. Flows near blunted bodies (cylinders or cones), giving off opposite jets, are discovered 

to have intensive self-sustained oscillations [25-26]. These flows may not be included to any mentioned above 

class of unsteady flows. Sonic underexpanded jet impinging on the pair open tube – inner cylinder [27] are found 

to have self-oscillatory regimes. It seems that these flows are closed to second class (see above) of unsteady flows.  

A search for self-oscillatory flows is continued here. Supersonic flows near the pare open channel – inner cylinder 

are considered. These flows may contain shock waves, contact discontinuities, intersection points. CFD studies of 

these flows are carried out and self-oscillations are observed for stream Mach numbers 3≤M  ≤4.5.   

 

II. CFD DESIGN APPROACH 

2.1. Boundary conditions. Fig. 1 represents schematically a numerical domain and a mesh near a cylindrical body, 

placed in an open channel. All variables are prescribed at the inflow boundary (HA). Parameters of the uniform 

stream are set at this boundary, namely, Mach number M=M  , density ρ=1, pressure p=1 (in dimensionless form), 

the radial velocity v=0. The normal velocity is equal to zero and other variables are extrapolated at solid surfaces 

(CB,CD,FE,FG). The radial velocity v=0 at the symmetry axis HG, other variables are extrapolated. Extrapolation 

conditions are used at the tube exit  DE and at the AB boundary.   
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Fig. 1. Schematic Representation of a Numerical Domain and a Mesh. 

 

The channel form at the [a,b] interval of cross-sectional area decreasing is defined by the formulae 

Y(x)=R tub -16h(x-a) 
2

 (x-2b+a)
2

/(b-a)
4

 . 

2.2. Numerical method. An implicit conservative Runge-Kutta scheme [28] is modified and employed here. 

Namely, a special version of the code is developed for the case when functions x=x(a,b), y=y(a,b) perform 

mapping of the unit square with excisions {0≤a≤a 0 , 0≤b≤b 0 }, {a 1 ≤ a ≤1, 0≤b≤b 1 } to a curvilinear quadrangle 

with curvilinear quadrangular excisions (see fig. 1). This version allows carrying out calculations, described below, 

without dividing complicated domains into subdomains. Both recent method and method [28] are third order 

(viscous terms are approximated with second order).  The 515 586 mesh is used in written below calculations. 

    Naturally, numerical calculations deal with dimensionless variables. These variables are defined as relations of 

initial variables and next parameters of the outer stream or the body size: p   - for pressure, ρ   - for a density, 

 p  - for a velocity, r tub =y(C)-y(H) (the maximum inner channel radius) – for space variables, 

r tub /
 p  - for time.  

 

III. RESULT AND DISCUSSION 

A search for self-oscillatory flows is carried out for each stream Mach number, considered below, by trial 

calculations of some variants. It is observed, that self-oscillations may appear, if the relation of channel and 

cylinder lengths provides position of shock waves intersection points closed to the channel edges. All flows 

considered below contain separation zones, starting at cylinder edges (signed by F in fig.1). A search is stopping, 

if 1-3 unsteady flows are found. Examples of unsteady flows for different Mach numbers are represented below.  

3.1. Stream Mach number M  =3. Figs. 2a and 2b shows density distributions at different instants in the flow, 

calculated for the geometry parameters L cy l =1.4 (the cylinder length), R cy l =.3 (the cylinder radius), L tub =0.9 (the 

channel length), R m in = R tub -h=1-h=.91 (the least channel radius), h =0.09, a=x(F)+ 0.25 L tub , b=a+0.1 (see fig. 

1).  Solid walls (cylinder and channel walls) are shown by bold lines. 

 

 

Fig. 2. Density Distributions, M  =3, a - t=34.1, b - t=34.1+T/2. 
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    Density magnitudes at the cylinder edge (point C in fig. 1), are plotted in fig. 3.  

   

 

Fig. 3. The Density History, M  =3. 

 

The density history, represented in fig. 3, shows that this flow is nearly periodic with the T=2.47 period. 

Fig. 2a corresponds to the final time instant t=34.1 (see fig. 3). To illustrate the flow dynamic through one period 

T the density distribution for the instant t=34.1+T/2 is shown in fig. 2b. If to compare figs. 2a and 2b, different 

position of the shock waves intersection point may be seen. The most intensive flow oscillations are observed in 

the region between this intersection point and the channel edge (signed by C in fig.1).  

3.2. Stream Mach number M  =3.5. Fig. 4 shows the density history for the self-oscillatory flow, defined by 

geometry parameters L cy l =1.4 (the cylinder length), R cy l =.3 (the cylinder radius), L tub =0.9 (the channel length), 

R m in = R tub -h=1-h=.92 (the least channel radius), h =.08, a=x(C)+ 0.25L tub , b=a+0.1 (see fig. 1). Density 

magnitudes at the point C are plotted in this fig.  

 

Fig. 4. The Density History, M  =3.5. 

 

             The density history, presented in fig. 4, illustrates that this flow is nearly periodic with the T=2.19 period. 

If to compare periods for Mach numbers 3.0 and 3.5, decreasing of the self-oscillation period is seen when Mach 

number is increasing. This tendency is true for next considered flows. To show the flow dynamic through one 

period T density distributions for instants t=27.4+T/8 and t=27.4+T5/8 are represented in figs. 5a and 5b.  

 

 
Fig. 5. Density Distributions, a - t=27.4+T/8, b - t=27.4+5T/8. 

 

If to compare figs. 5a and 5b, different position of the shock waves intersection point may be seen. 

3.3. Stream Mach number M  =4. Figs. 6a and 6b show density distributions for two instants. The flow is 
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calculated for geometry parameters L cy l =1.4, R cy l =.3, L tub =0.8, R m in = R tub -h= 1-h=.96, h =.04, a=x(C)+ 

0.25L tub , b=a+0.1 (see fig. 1).   

 

 
Fig. 6. Density Distributions, a - t=31.1, b - t=31.1+T/2 

 

Density magnitudes at the cylinder edge (point C in fig. 1) are plotted in fig. 7.  

 

Fig. 7. The Density History, M  =4. 

 

             So, this flow is nearly periodic with the T=1.88 period. Flow fields dynamics during one period after the 

final instant t=31.1 (see fig. 7) is calculated. Density distributions are shown for instants t=31.1 (fig. 6a) and 

t=31.1+T/2 (fig. 6b), correspondingly. Comparison of figs. 6a and 6b allows to conclude, that these figs. differ one 

from another by position of the shock waves intersection point. 

         3.4. Stream Mach number M  =4.5. Fig. 8 shows the history of density magnitudes at point C  for the 

self-oscillatory flow at M  =4.5. Calculations are carried out for geometry parameters L cy l =1.4, R cy l =.3, 

L tub =0.8, R m in = R tub -h=1-h=.94, h=.06, a=x(C)+0.25L tub , b=a+0.1 (see fig. 1).    

 

Fig. 8.  The Density History, M  =4.5. 

According to the density history, presented in fig. 8, this flow is nearly periodic with the T=1.65 period. 

Flow fields dynamics during one period after the final instant t=27.6 (see fig. 8) is calculated. Density 

distributions are shown in fig. 9 for time instants t=27.6+T/8 (fig. 9a) and t=27.6+T5/8 (fig. 9b), correspondingly. 

It can be seen again that these figs. differ one from another by position of the shock waves intersection point.  
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Fig. 9. Density Distributions, a - t=27.6+T/8. b - t=27.6+T5/8 

              The most intensive flow oscillations are observed in the region between the intersection point and the 

channel edge (signed by C in fig.1).  

 

IV. CONCLUSIONS 

Recent paper is devoted to CFD search for new self-oscillatory compressible flows. Flows with the most 

number of “active” elements are investigated numerically. Interactions of supersonic uniform streams with 

cylindrical bodies, placed in open channels, are studied. These flows contain several “active” elements, so 

unsteady regimes are possible according to the written above hypothetical mechanism of self-oscillations. 

Unsteady flows are observed at stream Mach numbers 3≤M  ≤4.5. The relation of inner cylinder and channel 

lengths should provide position of the shock waves intersection point closed to channel edge (signed by C in fig. 

1). Channels with the interval of cross-sectional area decreasing are considered. This decreasing is conducive to 

possibilities of the self-oscillatory regimes appearance. If the interval of decreasing is absent, self-sustained 

oscillations are not observed in recent investigations.    

At first glance these flows may be included to a class of unsteady supersonic flows past forward-facing 

cavities (the class 3, see introduction). But recent flow physics is seemed to be more similar to the flow physics of 

the 5th type, namely, to flows physics near snaked bodies. Last flows contain shock waves, produced by snakes. 

These waves move to main blunted bodies, where intensive oscillations are observed. Similarly, recent 

investigations show, that inner cylinders produce shock waves, which move to channel buff-ends, where the most 

intensive oscillations take place.  

______________________________________________ 

NOMECLATURES 

P
    

-  pressure,   

ρ    - density, 

M   - stream Mach number,     

L cy l - cylinder length,  

L tub  - tube length,  

r tub  - tube radius at initial cross section,  

r cy l  - cylinder radius,  

L tub  - tube length, 

____________________________________________  
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