Superposition Model Analysis of Cr³⁺ ions Doped Cs₂CdCl₄ Single Crystal

Ram Kripal

EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India

Abstract

Superposition model is applied to find zero field splitting parameters and crystal field parameters of Cr^{3+} doped Cs₂CdCl₄ single crystal. The zero field splitting parameters determined give good agreement with the experimental values when distortion is taken into account. The optical energy band positions for Cr^{3+} in Cs_2CdCl_4 are computed using crystal field parameters obtained from superposition model and Crystal Field Analysis package. The results suggest that Cr^{3+} ions substitute Cs_2CdCl_4 crystal at Cd^{2+} sites with charge compensation.

Keywords: Superposition model; Crystal field: zero-field splitting; Optical spectroscopy; Cr^{3+} ions in Cs_2CdCl_4 .

Date of Submission: 03-01-2023

Date of acceptance: 16-01-2023

_____ Introduction

Electron paramagnetic resonance (EPR) provides information about the local site symmetry, zero field splitting (ZFS) parameters of transition ions and the defects responsible for the charge compensation in the doped crystals. In superposition model (SPM), the spin Hamiltonian parameters are found to result from contributions of nearest neighbours of the paramagnetic ion in the crystal. This model has been largely applied to find spin Hamiltonian parameters of various metal ions incorporated in crystals [1-6]

I.

The EPR study of Cr^{3+} ion doped Cs_2CdCl_4 crystals [7, 8] at room temperature has been done earlier and the spin-Hamiltonian parameters determined [9]. The present study reports the SPM analysis of the zero field splitting parameters (ZFSPs) and the crystal field parameters (CFPs) for Cr³⁺ ions in Cs₂CdCl₄ single crystal. The objective is to obtain the ZFSPs, the CFPs and the structural distortion in the crystal for Cr³⁺ ions at different sites. The optical absorption energy band positions for Cr³⁺ ion in Cs₂CdCl₄ single crystal are computed using CFPs from SPM and crystal field analysis (CFA) package. The evaluated parameters may be applicable in various future studies for technological and industrial uses of different crystals.

This section provided the introduction of the subject and objective of the study performed. The remaining paper is organized as discussed below. Section II gives the related work associated with the SPM/ZFS and SPM/CF analysis. Section III describes the methods used for calculation of ZFSPs and CFPs. Section IV presents the results and its discussion. Section V provides conclusion and future scope of the study.

Crystal structure II.

The SPM/ZFS and SPM/CF analysis have been done for several ion-host systems [10-20]. The structure of Cs_2CdC1_4 crystal is tetragonal with a = 5.26 and c = 16.88 Å, Z = 2 [7]. The space group is I4/mmm and the crystal is isostructural with K_2NiF_4 [8]. Atoms are in the following positions: 4Cs in (e), z = 0.357, 2Cd in (a), 4Cl I in (c) and 4Cl II in (e), with z = 0.149. The site symmetry at Cr^{3+} ion is taken to be approximately orthorhombic. The orientations of the (x, y, z) axes (SAAS-symmetry adopted axis system) relative to the (a, b, z)c) crystallographic axes are $(x \rightarrow a, y \rightarrow b, z \rightarrow c)$ as shown in Fig. 1.

The structural data in spherical polar coordinates for the Cr³⁺ ions in Cs₂CdC1₄ single crystal on the basis of fractional coordinates of ligands [7] are given in Table 1. These data are used for SPM/ZFS and SPM/CF calculations in this study.

III. SPM calculations of ZFSPs

The spin Hamiltonian of transition ions in crystals is given by [10, 11, 12]:

$$\mathcal{H} = \mathcal{H}_{Ze^+} \mathcal{H}_{ZFS} = \mu_B B.g.S + \sum B_k^q O_k^q = \mu_B B.g.S + \sum f_k b_k^q O_k^q, \qquad (1)$$

where g is the spectroscopic splitting factor, μ_B is the Bohr magneton, **B** is the applied magnetic field, S is the effective spin operator and $O_k^q(S_x, S_y, S_z)$ are the extended Stevens operators (ESO) [13, 14]. B_k^q and b_k^q

represent the ZFSPs, $f_k = 1/3$ and 1/60 are the scaling factors for k = 2 and 4, respectively. The ZFS terms in Eq. (1) for Cr³⁺ ion (S = 3/2) at orthorhombic symmetry sites are written as [15, 16, 17]:

$$\mathcal{H}_{\rm ZFS} = B_2^0 O_2^0 + B_2^2 O_2^2 = \frac{1}{3} b_2^0 O_2^0 + \frac{1}{3} b_2^2 O_2^2 = D(S_z^2 - \frac{1}{3} S(S+1)) + E(S_x^2 - S_y^2), \qquad (2)$$

The conventional orthorhombic ZFSPs (*D* and *E*) and (B_k^q and b_k^q) have the relation:

$$b_2^0 = D = 3 B_2^0, \ b_2^2 = 3E = 3 B_2^2$$
 (3)

From SPM [15-17], the ZFSPs for an ML_n complex are obtained (in ESO notation) as:

$$b_k^q = \sum_i \overline{b}_k \left(R_0 \right) \left(\frac{R_0}{R_i} \right)^{l_k} K_k^q \left(\theta_i, \varphi_i \right), \tag{4}$$

where $(R_i, \theta_i, \varphi_i)$ are the spherical polar coordinates of the *i*-th ligand. The intrinsic parameters \overline{b}_k (R₀) provide the strength of the *k*-th rank ZFS contribution from a ligand situated at the distance R_i , and the coordination factors K_k^q give the geometrical information [18]. K_k^q with k = 1 to 6 are given in Appendix A1 of [19]. t_k gives the power law exponent and R₀ is reference distance between metal and ligand. Eq. (4) yields conventional ZFSPs, D and E as [19, 20-23]:

$$b_{2}^{0} = D = \frac{\overline{b}_{2}(R_{0})}{2} \left[\left(\frac{R_{0}}{R_{i}} \right)^{t_{2}} \sum_{i} (3\cos^{2}\theta_{i} - 1) \right]$$

$$b_{2}^{2} = 3E = \frac{b_{2}^{2}}{3} = \frac{\overline{b}_{2}(R_{0})}{2} \left[\left(\frac{R_{0}}{R_{i}} \right)^{t_{2}} \sum_{i} \sin^{2}\theta_{i} \cos 2\varphi_{i} \right]$$
(5)

 Cr^{3+} ion in Cs_2CdC1_4 may be assumed to substitute at the Cd^{2+} ion site, and the interstitial site with similar ligand arrangement. The local symmetry at Cr^{3+} ion site is taken to be approximately orthorhombic. In octahedral coordination of Cr^{3+} ion for LiNbO₃ having $Cr^{3+}-O^{2-}$ bond, $\bar{b}_2(R_0) = 2.34$ cm⁻¹ and $t_2 = -0.12$ have been used to find b_2^0 and b_2^2 [24]. Since Cr^{3+} ion in Cs_2CdC1_4 has distorted octahedral coordination (Fig.1) with chlorine as ligands, the b_K^q in the present analysis are found using the parameters $\bar{b}_2(R_0) = 2.34$ cm⁻¹ and $t_2 = -0.24$.

The position of metal ion and spherical coordinates of ligands shown in Table 1 are used for calculation. The ZFSPs, D and E of Cr^{3+} ion in Cs_2CdC1_4 crystal are determined using Eq. (5). The reference distance of 0.200 nm was taken for the calculation [25], and the obtained values of ZFSPs are |D| = 0.0542 cm⁻¹ and |E| = 6.38E-07 cm⁻¹. The ratio b_2^2 / b_2^0 should be within the range (0, 1) for orthorhombic symmetry [26]. In the present study, the ratio $|b_2^2| / |b_2^0| = 3.53E-09$ and |E| / |D| = 1.18E-09, which agrees with above. However, the values of |D| and |E| do not match with the experimental values. Hence, with above values of t_2 and reference distance, the ZFSPs |D| and |E| are obtained for Cr^{3+} at the Cd^{2+} site with distortion having position- Center I: $Cd^{2+}(0.4, 0.305, 0.299)$, Center II: $Cd^{2+}(0.6, 0.725, 0.3)$, Center III: $Cd^{2+}(0.7, 0.784, 0.3)$. The ZFSPs found now are |D| = 0.0758 cm⁻¹, |E| = 0.0033 cm⁻¹ for center I, |D| = 0.0367 cm⁻¹, |E| = 0.0076 cm⁻¹ for center II and |D| = 0.0268 cm⁻¹, |E| = 0.0054 cm⁻¹ for center II, $|D_2^2| / |D_2^0| = 0.131$ and |E| / |D| = 0.201 for center II, $|D_2^2| / |D_2^0| = 0.604$ and |E| / |D| = 0.201 for center III, which agree with [26]. Further, with above values of t_2 and reference distance, the ZFSPs |D| and |E| / |D| = 0.201 for center III, which agree with [26]. Further, with above values of t_2 and reference distance, the ZFSPs |D| and |E| are determined for Cr^{3+} at the interstitial site but the values found are very different from the experimental values and so these data are not provided here.

The calculated and experimental ZFSPs for Cr^{3+} ion doped Cs_2CdC1_4 are given in Table 2. It is observed from Table 2 that the ZFSPs |D| and |E| agree well with the experimental ones [9] when the distortion is taken into consideration.

SPM calculations of CFPs IV

Employing Wybourne operators [10, 31], the CF energy levels of transition ions doped crystals [27-30] in terms of CF Hamiltonian $\mathcal{H}_{CF}[31, 32]$ are obtained as:

$$\mathcal{H}_{\rm CF} = \sum_{kq} B_{kq} C_q^{(k)} \tag{6}$$

From SPM [15-17], the CFPs, B_{kq} in Eq. (6) for an ML_n complex are given by:

$$B_{kq} = \sum_{i} \overline{A}_{k} \left(\frac{R_{0}}{R_{i}} \right)^{l_{k}} K_{kq} \left(\theta_{i}, \varphi_{i} \right).$$
⁽⁷⁾

where R_0 is the reference distance; R_i , θ_i , φ_i are the spherical polar coordinates of the ith ligand and K_{ka} represent

the coordination factors [27]. To obtain B_{kq} (k = 2, 4; q = 0, 2, 4); $\bar{A}_2 = 40,400 \text{ cm}^{-1}, t_2 = 1.3, \bar{A}_4 = 11,700 \text{ cm}^{-1}$ and $t_4 = 3.4$ are taken here [27]. The calculated B_{kq} parameters are shown in Table 3. The ratio $B_{22}/B_{20} = 0.062$ for center I, $B_{22}/B_{20} = -0.339$ for center II and $B_{22}/B_{20} = -0.492$ for center III, show that B_{kq} parameters are standardized [26]. Taking B_{kq} parameters from Table 3 and CFA package [28, 29], the CF energy levels of Cr^{3+} ion in Cs_2CdCl_4 single crystals are determined. The energy levels of Cr^{3+} ion are calculated by diagonalizing the complete Hamiltonian. The calculated energy values are given in Table 4. As optical absorption data on Cr³⁺: Cs₂CdC1₄ could not be found in literature, the experimental energy values for similar ligand crystal Cr³⁺: MgF₂ [33] are taken for comparison here. It is observed from Table 4 that there is reasonable agreement between theoretical and experimental energy values. Therefore the theoretical study of Cr³⁺ ions entering Cs₂CdCl₄ single crystal at Cd^{2+} sites supports the experimental results [9].

Conclusions V.

The ZFSPs and the CFPs are evaluated using SPM for Cr^{3+} ions in Cs₂CdCl₄single crystals. Cr³⁺ ions enter the Cs_2CdC1_4 single crystal at Cd^{2+} sites with charge compensation. The computed conventional ZFSPs for Cr^{3+} ion at Cd^{2+} sites in Cs_2CdC1_4 crystal agree well with the experimental values when distortion is taken into consideration. The CF energy values for Cr³⁺ ions at Cd²⁺ sites determined using CFA package and CFPs are in reasonable agreement with the experimental values. Therefore the theoretical results support the experimental observation. Modeling techniques applied here may be useful in future studies to correlate EPR and optical absorption data for other ion-host systems.

Acknowledgement

The author is thankful to the Head, Department of Physics for providing the departmental facilities and to Prof. C. Rudowicz, Faculty of Chemistry, A. Mickiewicz, University, Poznan, Poland for CFA program.

References

- [1]. H. S. Murrieta, J. O. Rubio, G. S. Aguilar, Phys. Rev. B 19(1979)5516.
- [2]. D. J. Newman, E. Siegel, J. Phys. C: Solid State Phys. 9(1976)4285.
- A. Leble, J. J. Raousseau, J. C. Fayet, C. Jacoboni, Solid State Commun. 43(1982)773. [3].
- [4]. M. G. Brik, N. M. Avram (Eds.), Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, Chapter 3, Springer, Heidelberg, Germany, 2013, pp. 95-121.
- [5].
- Z. Y. Yang, C. Rudowicz, Y. Y. Yeung, J. Phys. Chem. Solids 64(2003)887. S. Pandey, R. Kripal, A. K.Yadav, M. Açıkgöz, P. Gnutek, C. Rudowicz, J. Lumin. 230(2020)117548. [6].
- [7]. S. Siegel, E. Gebert, Acta Cryst. 17(1964)790.
- [8]. D. Balz, Naturwissenschaften. 40(1953)241.
- [9]. D. Kay, G. L. McPherson, J. Phys. C: Solid State Phys. 14(1981)3247.
- [10]. C. Rudowicz, M. Karbowiak, Coord. Chem. Rev. 287(2015)28.
- C. Rudowicz, Magn. Reson. Rev. 13(1987)1; Erratum, C. Rudowicz, Magn. Reson. Rev. 13(1988)335. [11].
- C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36(2001)11. [12].
- C. Rudowicz, J. Phys. C Solid State Phys. 18(1985)1415; Erratum: C. Rudowicz, J. Phys. C Solid State Phys. 18(1985)3837. [13].
- C. Rudowicz, C. Y. Chung, J. Phys. Condens. Matter 16(2004)5825. [14].
- [15]. D.J. Newman, B. Ng, Superposition model, Ch. 5 in: D.J. Newman, B. Ng (Eds.), Crystal Field Handbook, Cambridge University Press, UK, , 2000, pp. 83-119.
- [16]. D.J. Newman, B. Ng, Rep. Prog. Phys.52(1989)699.
- [17]. D.J. Newman, W. Urban, Adv. Phys. 24(1975)793.
- C. Rudowicz, J. Phys. C: Solid State Phys. 20(1987)6033. [18].
- C. Rudowicz, P. Gnutek, M. Açıkgöz, Appl. Spectroscopy Rev. 54(2019)673. [19].
- [20]. M. Açıkgöz, Spectrochim. Acta A 86(2012)417
- K.A. Müller, W. Berlinger, J. Albers, Phys. Rev. B 32(1985)5837. [21].
- K.A. Müller, W. Berlinger, J. Phys. C: Solid State Phys. 16(1983)6861. [22].
- [23]. M. Heming, G. Lehmann, Chem. Phys. Lett. 80(1981)235.
- T. H. Yeom, Y. M. Chang, C. Rudowicz, Solid State Commun. 87(1993)245. [24].
- [25]. E. Siegel, K. A. Muller, Phys. Rev. B 19(1979)109.
- C. Rudowicz, R. Bramley, J. Chem. Phys. 83(1985)5192. [26].

- [27]. Y. Y. Yeung, D. J. Newman, Phys. Rev. B 34(1986)2258.
- [28]. Y. Y. Yeung, C. Rudowicz, Comp. Chem. 16(1992)207.
- [29]. Y. Y. Yeung, C. Rudowicz, J. Comput. Phys. 109(12993)150.
- [30]. Y. M. Chang, C. Rudowicz, Y.Y. Yeung, Computers in Physics 8(1994)583.
- [31]. B. G. Wybourne, Spectroscopic Properties of Rare Earth, Wiley, New York, USA, 1965.
- [32]. B.N. Figgis, A. Hitchman, Ligand Field Theory and its Applications, Wiley-VCH, New York, USA, 2000.
- [33]. R. Nistoraa, L. Andreici, N.M. Avram, Acta Phys. Polon. A, 116(2009)538.

Table and Figure captions:

Table 1. Fractional coordinates of Cr^{3+} ion and spherical co-ordinates (R, θ , ϕ) of ligands in Cs₂CdCl₄ single crystal.

Table 2. Calculated and experimental ZFSPs of Cr^{3+} doped Cs_2CdCl_4 single crystal along with reference distance.

Table 3. B_{kq} parameters of Cr^{3+} doped Cs_2CdCl_4 single crystal.

Table 4. Experimental and calculated energy band positions of Cr^{3+} doped Cs_2CdCl_4 single crystal.

Fig1. The structure of Cs₂CdCl₄ crystal with SAAS.

Table 1					
Position of Cr ³⁺	Ligands	Spherical co-ordinates of ligands			
	-	R ^Å	θ^{0}	${oldsymbol{\phi}}^{0}$	
ND: Substitutional	Cl I (1)	8.8385	162.6	0	
Cd (0.5, 0.5, 0.5)	Cl I (2)	8.8385	162.6	-89.9	
	Cl I (3)	2.6294	89.9	-89.9	
	Cl I (4)	2.6294	89.9	0	
	Cl II (1)	6.9951	147.8	45.0	
	Cl II (2)	11.5690	161.2	45.0	
WD: Substitutional	Cl I (1)	5.5617	155.1	-25.9	
Cd (0.5, 0.5, 0.5)	Cl I (2)	5.3203	161.4	-71.8	
Center I	Cl I (3)	3.7910	26.4	-71.8	
	Cl I (4)	4.1232	34.5	-26.0	
	Cl II (1)	3.6616	133.7	37.3	
	Cl II (2)	8.0115	160.7	37.3	
WD: Substitutional	Cl I (1)	6.0815	146.3	20.5	
Cd (0.5, 0.5, 0.5)	Cl I (2)	6.3593	142.7	82.1	
Center II	Cl I (3)	5.1209	48.7	82.1	
	Cl I (4)	4.7712	44.9	20.5	
	Cl II (1)	5.5670	117.2	50.4	
	Cl II (2)	9.0520	146.8	50.4	
WD: Substitutional	Cl I (1)	6.4352	141.8	22.0	
Cd (0.5, 0.5, 0.5)	Cl I (2)	6.6131	139.9	75.7	
Center III	Cl I (3)	5.4328	51.5	75.7	
	Cl I (4)	52145	49.6	22.0	
	Cl II (1)	6.0870	114. 7	48.2	
	Cl II (2)	9.3807	143.8	48.2	

Center I: $Cr^{3+}-Cs^{+}(1)$, Center II: $Cr^{3+}-Li^{+}$, Center III: $Cr^{3+}-Na^{+}$, ND = No distortion, WD = With distortion.

Table 2						
	Calculated ZFS parameters (cm ⁻¹)		Conv parame	Conventional ZFS parameters (cm ⁻¹)		
$R_{o}^{\text{ Å}}$	$ b_{2}^{0} $	$ b_{2}^{2} $	$ b_2^2 / b_2^0 $	D	E	$ E \neq D $
ND 2.0	0.0542	1.91E-10	3.53E-09	0.0542	6.38E-07	7 1.18E-09
WD 2.0	0.0758	0.0100	0.131	0.1527° 0.0758	0.0305° 0.0033	0.199 0.043
Center I WD 2.0	0.0367	0.0228	0.621	0.0758	0.0036° 0.0076	0.047 0.207
Center II WD 2.0	0.0268	0.0162	0.604	0.0367^{e} 0.0268	0.0069 ^e 0.0054	0.188 0.201
Center III				0.0268^{e}	0.0019 ^e	0.070

ND = No distortion, WD = With distortion, Center I: Cd²⁺ (0.4, 0.305, 0.299), Center II: Cd²⁺ (0.6, 0.725, 0.3), Center III: Cd²⁺ (0.7, 0.784, 0.3). e = experimental.

Table 3

		Calculated B_{kq} (cm ⁻¹) Parameters used for CFA package					
	$R_0^{\text{ Å}}$	B_{20}	<i>B</i> ₂₂	B_{40}	B_{42}	B_{44}	B22/B20
WD	2.0	60145.14	3740.283	-3505.6	703.709	-1128.33	0.062
Center	·I						
WD	2.0	12497.97	-4242.37	-3574.31	30.59677	-2358.89	-0.339
Center	· II						
WD	2.0	5451.863	-2684.33	-2678.33	-17.5957	-1932.64	-0.492
Center	· III						

WD = With distortion.

Table 4					
Transition from ${}^{4}A_{2g}(F)$	Experimentally obs band (cm ⁻¹) [33]]	erved Calculated ener Center I	gy band from CFA (cm Center II Co	⁻¹) enter III	
${}^{4}T_{2}g(F)$	14948		12541, 13535, 13928	8, 11970, 12013, 13858,	
$^{2}Eg(G)$	15267	16229,16479	15380,15634	15399,15582	
${}^{4}T_{l}g(F)$	20284	19308, 19451, 19689, 22588, 22769, 23771	19004, 19447, 19823, 20590, 21011, 21297	19360, 19783, 19906, 20111, 20213, 20389	

(Racah parameters in *A*, *B* and *C*, spin-orbit coupling constant and Trees correction are 0, 516, 3797, 276 and 70 cm^{-1} , respectively)

Fig.1