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ABSTRACT:The effective use of water resources is very important for the continuity of human life. Rapid 

population growth, unplanned urbanization and technological developments negatively affect the availability of 

water resources. In this context, it is necessary to model water resources under global climate change 

conditions and to produce forecasts for the future. Estimating and modeling river flows is of vital importance, 

especially in Turkey, where flood disasters are frequently encountered, as well as scarce water resources. 

Autoregressive Integrated Moving Average (ARIMA) model is an accepted method for its accuracy and 

efficiency in hydrological time series analysis. In this study, modeling and estimation of the annual flows used in 

the design and operation of hydraulic structures were carried out by using the stochastic structure. For this 

purpose, data from a flow observation station on Kızılırmak, the longest river in Turkey, were used. Before 

defining the model, preliminary studies such as data preparation, normality and stationarity tests were carried 

out, and parameter estimation was carried out according to model suitability criteria. It was decided that the 

ARIMA(1,1,1) model is the optimum model using the Akaike Information Criteria (AIC). At the end of the study, 

it was seen that the ARIMA(1,1,1) model, which is not used in stable synthetic hydrological series production, 

can be used in annual flow estimates. 

Keywords: Akaike information criterion, autoregressive model, ARIMA model, stochastic model, synthetic 

hydrological series 
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I. INTRODUCTION 

Time series analysis is a numerical method used in modeling and forecasting monthly or annual 

precipitation. A time series is a dataset. This series consists of sequential data points measured at successive 

times. In cases where its elements occur as intrinsically dependent, this series is called stochastic process. Time 

series analysis is used to fit the series to an appropriate model to reveal meaningful statistics of the series and 

other characteristics of the data. For this purpose, it is necessary to estimate the model parameters. Thus, it is 

possible to predict the future of the series and to determine how the observation series may continue in the 

future [1-2]. 

Flow information of the studied stream is needed in the design of water structures. Researchers produce 

synthetic stream series using simulation methods when available records are incomplete or insufficient. 

Simulation is the mathematical expression of the behavior of a water supply system over a certain period of time 

and can be used to calculate daily, monthly or seasonal flows, to determine the flow rate of a hydrograph, or to 

complete missing values in flow records [3]. 

Stochastic models, which are widely used in hydrology for the modeling of time series, were first 

created by Box and Jenkins. For this reason, the models are also included in the literature as Box-Jenkins 

Models [4]. It is one of the methods that can be used in modelling. The most important parameter of these 

models is the autocorrelation coefficient, which shows the dependence between observations [5]. ARIMA has 

become very popular for modeling flow and precipitation data due to its ease of development and 

implementation [6]. ARIMA can be a powerful model for forecasting evapotranspiration in hydrometeorology, 

irrigation water requirement and Rainfall Forecasting [7-10].  

In the literature, there are many models of stochastic processes. Kahya et al. (1998) applied ARIMA 

models for annual average flows measured at 4 flow observation stations in the Yeşilırmak basin [11]. Huang et 

al. (2004) compared artificial neural networks (ARIMA) models to estimate the flow values of the Apalachicola 

river in Florida, USA. They found that ARIMA models were more successful than others [12]. Al-Aboodi et al. 

(2017) established estimation models with ARIMA, ANN and ANFIS, the monthly average flow rates of the 

Euphrates river passing through the city of Thi-Qar in southeastern Iraq [13]. Altunkaynak and Başakın (2018) 

tried to estimate the daily flows of Colombia river in America with ANN, ARIMA and ANFIS 

[14].Kurak(2013) established ARIMA models of monthly groundwater levels recorded in 2 different wells in 

Izmir. As a result of the research, the random walk model of first order differentiated and fully standardized 
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water levels in the well found ARIMA(0,1,0) fit [15].Fashae et al. (2019) worked to compare artificial neural 

network (ANN) and ARIMA to model the Opeki River discharge [16]. According to the results, ARIMA 

outperformed ANN. Kır (2020) made the estimation of monthly and annual precipitation in Antalya with 

seasonal ARIMA models [17]. 

 

II. DATA and METHODOLOGY 

Within the scope of this study, monthly average flow data of the Yamula Flow Observation Station 

(AGI) numbered E15A001 in the Yamula Sub-basin located within the boundaries of the Kızılırmak basin 

shown in Fig 1. In this study, the annual average flow data of the station between 1980 and 2015 were used for 

modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Kızılırmak Basin and Yamula Flow Observation Station[20]. 

 

ARIMA Model 

In a stable ARIMA(p,d,q) model, p; autoregressive component, q; moving average component and d; 

Represents the number of differencing operations. The difference (d) of the annual hydrological series xt(t=1, ..., 

n) is calculated by the following equation: 

 

jt

p

1=j

q

1=j
jtjtjt ε.∑ ∑θε+u.φ=u  (1) 

The purpose of differentiation is to eliminate instabilities in the series. The ARMA(1,1) model 

applied to ut is stable with the condition 1<1. In a normalized series, if there is an instability in the level and 

the slope of the trend of the series elements, wt=ut-ut-1=(xt-xt-1)-(xt-1-xt-2)=xt-2.xt-1+xt-2. The difference is taken 

as 2 consecutive times. 

   The undifferentiated xt series can be written as follows, considering xt=ut+xt-1 and ut-1=xt-1-xt-2 

for d=1. 

 

xt=xt-1+1.(xt-1-xt-2)+.....+p.(xt-p-xt-p-1)+t-1.t-1-.....-q.t-q                (2) 

 

It consists of the integration of the xt series and the ut series. This stochastic process, consisting of an 

infinite sum of ut's, is therefore referred to as the ARIMA model. 

 

Annual ARIMA Modeling Process Steps 

 Preliminary Analysis 

Step (1).The conformity of the original (historical) xt time series to the normal distribution should be checked 

with the Skewness Test. 

The skewness coefficient () is calculated with the following equation. 
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wherext is the serial elements, the sample mean and N is the total number of elements. The fact that the 

skewness coefficient remains within the following limits indicates that the series is normally distributed. 
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is the chosen significance level, and an evaluation is made for  at confidence limits (1-). “u1-/2” is the 

standard normal variable with a probability value of “1-/2”. Formula 5 is generally accurate enough for 

samples with N>150. For smaller samples, the “”is compared with the N>150 values in the Table given by 

Snedecor and Cohran [18]. If <(N), the series is considered normally distributed. 

If it is concluded in the tests that the historical series is normally distributed, the steps are continued 

with Step (1c), if it does not comply with the normal distribution, the steps are continued with Step (1b). The 

time series of the two-parameter lognormal probability distribution function represents the frequency 

distribution very well. Accordingly, if it is assumed that the time series conforms to the lognormal-2 

distribution, the probability density function of the series can be written as follows. 
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The mean of the values obtained with the y=log(x) function is y and the standard deviation is y. 

Thus, by applying the y=log(x) transformation to the non-normally distributed series, the standard normal 

series with the mean "0" and the standard deviation "1" is obtained with the (7). 

y

y)xlog(
y




 (7) 

The conformity of the values found with the y=log(x) transformation to the normal distribution is 

checked. If the distribution is normal, the next step is taken, if not, other transformations are used. 

Step (1c). For the elimination of low-frequency components, the series “d.” difference is taken. In case of 

indecision in level and trend, the difference is taken twice in succession. 

Step (1d). In this step, the series is plotted and only the low order models get an idea.  

Step (1e). The rkautocorrelation coefficients of the series are calculated with the following formula. 
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The “rk” values found are checked with Anderson limit values. The fact that “rk” is outside the 95% confidence 

limits indicates that the consecutive values in the series are interdependent. After the “rk” values of the series, 

the partial autocorrelation coefficients (1, 2, ...,L) for the L0.3N element can be found with the help of the 

Durbin Formulas given below. 
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Here, partial autocorrelation coefficients are values with k+1(k+1) notation. When the subscript and the number 

in parentheses are the same, values to be used as partial autocorrelation coefficients are obtained. 

Step (1f). A preliminary evaluation is made for the model to be selected as a result of the calculations. If all 

autocorrelation values after any “k” delay degree in the correlogram remain within the confidence limits, this 

indicates a moving average process from the “q” degree and usually q=1 is taken [19]. Thus, a preselection is 

made for the "p" and "q" degrees of the ARMA(p,q) model. 

 

Parameter estimation 

Step (2a). The mean “ y ” and variance “
2
” of the series are calculated with the following equations. 
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Step (2b). The zt series is obtained with the following equation. 

zt = yt- y ,  ,     t = 1, 2, ....., N(11) 

Step (2c). For the calculation of the  “” and “” parameters of the selected model, both values that make the 

sum of the squares of the series minimum must be found. 
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The  [,] pair, which gives the minimum value from the calculated “S” values of the  [,]  parameters in 

various combinations, is considered as the exact parameters. 

    Here, t residual series is calculated as follows for ARMA(p,q) models and the first t value is taken as zero 

until the largest “p” or “q” value. 
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The stability conditions of the first and second order model parameters can be checked practically by the 

following expressions. 

 

Goodness of Fit test of Model 

Step (3a). The internal dependence of the residual series t is checked with the Port Monteau Test using the 

“Q” statistic calculated by the equation below. 
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Step (3b). The suitability of the grade of the selected model is decided by comparing the model with models 

with an upper and a lower order using the Akaike Information Criteria (AIC). The AIC value is calculated as 

follows. 

 

AIC(p,q) = N.ln(
2
) + 2.(p+q)     (15) 

 

Here 
2
=S/N is found by the equation. The model that gives the minimum AIC value is selected as the best 

model. If the AIC value of the predicted model is significantly greater than the AIC value of the compared 

models, the modeling process is done from the beginning by changing the model degree. 

 

III. RESULTS AND DISCUSSION 

Step (1a). Since =-0.217 found by equation (4) was-0.128<0.755 at =0.02 significance level, the series was 

considered normally distributed and proceeds to Step (1c). 

Step (1c). Once the difference was sufficient to eliminate the low-frequency components in the series. 

Step (1d). Annual flow rates and graphs of differential values are given in Fig. 2 and Fig. 3. Since a value above 

(below) the mean was followed by a value above (below) the mean, there wasa positive time dependence in the 

series (Fig. 2). 
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Fig.2 Time series of annual average flow rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Time series of values taken with one-time subtraction 

 

Step (1e). The rk (k=1,2,...,18) values and 95% confidence limits were determined by the equations (8) and (9), 

and the correlogram was drawn (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Correlogram of subtracted values and 95% confidence limits 

 

thek(k) coefficients and 95% confidence limits of the series were calculated with (10) and (11). The partial 

correlogram exceeds the lower confidence limit at k=9 lag (Fig. 5). At the chosen significance level =0.05, this 

wasacceptable  (0.05x181). 
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Fig.5 Partial correlogram of subtracted values and 95% confidence limits 

 

Step (1f). Since the correlograms were significant at the k=1 lag value with 95% confidence, the ARMA(1,1) 

model was applied as a preselection to the series whose difference was taken. 

 

Parameter estimation 

 

Step (2a). The mean and variance of the series whose difference was taken were calculated y  =-0.273 and 


2
=79.481 with (12). 

Step (2b). The zt series was found by equation (13) as follows. 

z1 = (1.089) - (-0.273) = 1.363,  z2 = (-2.049) - (-0.273) = -1.776, …, z54 = (6.037) - (-0.273) = 6.310 

Step (2c). The parameters of the ARMA(1,1) model were 1=0.3228 and 1=0.9028, which make the equation 

(12) minimum, and the conditions in (13) were met (–1<0.3228<1 ve –1<0.9028<1). Accordingly, the sum of 

the squares of the residual series was S=2924.14 and its variance was 
2=57.88. 

 

Goodness of Fit test 

 

Step (3a). In order to control the internal dependence of the t residual series, the autocorrelation coefficients of 

the t values (with the largest lag value L=0.15N) were found by the equation (8) and the "Q" statistic in (16) 

was calculated with the Port Monteau test. 
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0.95so, the series are now independent. 

Since =0.399 found by equation (4) was 0.482<0.761 at =0.02 significance level, so the series were normally 

distributed. 

 

Step (3b). Since the partial correlogram was significant at k=1 (Fig. 5), it was not considered appropriate to 

establish and compare the ARMA(0,1) model without considering the autoregressive component. The 

parameters of the ARMA(2,1) model compared with ARMA(1,1) were found to be 1=0.3228, 2=0.2228, 
1=0.9028, S=2924.14 and

2=58.86. 

ARMA(1,1),     AIC(1,1) = 54.ln(57.88) + 2.(1+1) = 218.3257                                                         

ARMA(2,1),     AIC(2,1) = 54.ln(58.86) + 2.(1+1) = 220.0283 

 

Accordingly, the ARMA(1,1) model (with the minimum AIC value) selected by preliminary evaluation from the 

correlograms was the most appropriate model. Thus, the ARMA(1,1) model of the ut values obtained by taking 

the difference of the annual average flows once was given below. 

 

ut= (0.3228).ut-1 + t – (0.9028). 

The ARIMA(1,1,1) model of the station could be written as follows with the necessary transformations. 

xt= (1.3228).xt-1 - (0.3228).xt-2 + t – (0.9028).t-1 
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IV. CONCLUSION 

The ARIMA Model is widely used in time series analysis due to its simple applicability and 

considering the internal dependence of the data series. 

In this study, the ARIMA(p,d,q) model of annual average flows measured at Yamula station on the 

Kızılırmak River was established. Since the skewness coefficients of the data were found and normally 

distributed, no transformation was performed. In the calculations, no significant level of instability was 

observed in the level and slope. Therefore, only one difference was taken to dispose of the low-frequency 

components in the series. The ARMA(1,1) model was established by making a preliminary evaluation from the 

correlogram of the ut values. 

Akaike Information Criteria (AIC) values were used between the selected model and models with an 

upper and lower autoregressive degree. The optimum model with the minimum AIC value was determined as 

the ARMA(1,1) model selected in the preliminary evaluation. 

The ARIMA(1,1,1) model has not used in the production of stable synthetic hydrological series due to 

the xt series being unstable. However, it has shown that it was sufficient and reliable for the annual flow 

estimates of the station used in the study. 
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