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Abstract 

Some energy relationships and limitations for the growth rate of a disturbance in the problems of double-

diffusive convection coupled with cross – diffusions of Veronis’ and Stern’s type configurations  for Rivlin -

Ericksen viscoelastic fluids completely confined in an arbitrary region in the  three dimensional Euclidean 

space 
3R are derived in the present paper..For Veronis configuration, the total kinetic energy associated with a 

neutral or unstable disturbance is shown to be greater than its total concentration energy in the parameter 

regime  
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  , and the principal of exchange of stabilities is valid. Further, the complex growth 

rate p of an arbitrary  perturbation, neutral  or unstable, for Veronis type configuration is shown to lie inside a 
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.Similar results also shown to follow 

for the Stern’s type configuration. 
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I. Introduction 

The stability properties of binary fluids are quite different from pure fluids because of Soret and Dufour 

effects [1,2] . An externally imposed temperature gradient produces a chemical potential gradient and the 

phenomenon known as the Soret effect, arises when the mass flux contains a term that depends upon the 

temperature gradient. The analogous effect that arises from a concentration gradient dependent term in the heat 

flux is called the Dufour effect. Although it is clear that the thermosolutal and Soret-Dufour problems are quite 

closely related, their relationship has never been carefully elucidated. They are in fact, formally identical and 

identification is done by means of a linear transformation that takes the equations and boundary conditions for 

the latter problem into those for the former. The analysis of double diffusive convection becomes complicated in 

case when the diffusivity of one property is much greater than the other. Further, when two transport processes 

take place simultaneously, they interfere with each other and produce cross diffusion effect.  The Soret and 

Dufour coefficients describe the flux of mass caused by temperature gradient and the flux of heat caused by 

concentration gradient respectively. The coupling of the fluxes of the stratifying agents is  a  prevalent feature in 

multicomponent fluid systems. In general, the stability of such systems are also affected by the cross-diffusion 

terms. Generally, it is assumed that the effect of cross diffusions on the stability criteria is negligible. However, 

there are liquid mixtures for which cross diffusions are of the same order of magnitude as the diffusivities. There 

are only few studies available on the effect of cross diffusion on double diffusion convection largely because of 

the complexity in determining these coefficients. Hurle and Jakeman [3] have studied the effect of Soret 

coefficient on the double–diffusive convection problem. They have reported that the magnitude and sign of the 

Soret coefficient were changed by varying the composition of the mixture.  McDougall [4] has made an in depth 

study of double diffusive convection, where in both Soret and Dufour effects are important. 

In all the above studies, the fluid has been considered to be Newtonian. However, with the growing 

importance of non-Newtonian fluids in modern technology and industries, the investigations on such fluids are 

desirable. The Rivlin-Ericksen [5] fluid is such fluid. Many research workers have paid their attention towards 
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the study of Rivlin-Ericksen fluid. Srivastava and Singh [6] have studied the unsteady flow of a dusty elastico-

viscous Rivlin-Ericksen fluid through channel of different cross-sections in the presence of the time dependent 

pressure gradient. Sharma and Kumar [7] have studied the thermal instability of a layer of Rivlin-Ericksen 

elastico-viscous fluid acted on by a uniform rotation and found that rotation has a stabilizing effect and 

introduces oscillatory modes in the system. Sharma and Kumar [8] have studied the thermal instability in Rivlin-

Ericksen elastico-viscous fluid in hydromagnetics. 

In Banerjee et.al [9, 10], an attempt has been to establish the relationships between various energies in 

magnetothermohaline convection of Veronis [11] and Stern [12] types. The analysis made brings out that the 

total kinetic energy associated with a disturbance is greater than sum of its total magnetic and concentration 

energies in the parameter regime  ,1
222
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for Veronis’ configuration, whereas for Stern’s 

configuration the total kinetic energy associated with a disturbance is greater than sum of its total magnetic and 

thermal energies in the parameter regime ,1
22
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 where TS RandRQ  ,,,, 1 respectively 

represent the Chandrasekhar number, the thermal Prandtl number, the magnetic Prandtl number, the 

concentration Rayliegh number, the Lewis number and the thermal Rayliegh number. 

                 The aim of the present paper is to extend, and to show that these results for double-diffusive 

convection coupled with cross diffusion in viscoelastic fluids completely confined in an arbitrary region in the  

three dimensional Euclidean space
3R , 

 in the absence of magnetic field ( 0Q ) are of wider generality and applicability than the simple context of 

the horizontal layer geometry for which they have been derived without considering the non Newtonian fluid 

and cross-diffusions effects. 

 

II. Mathematical Formulation and Analysis 

The relevant governing non-dimensional linearized perturbation equations in the present case with time 

dependence of the form exp (pt) ( ir ippp  ) are given by: 

                       ˆ ˆ1 T S
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length, the equations have been cast into dimensionless forms by using the scale factors 
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 for velocity, time, temperature, pressure, concentration respectively. 

  We seek solutions of Eqs. (1)- (4) in the simply connected subset V of R3 subject to the following boundary 

conditions: 

Sonq   0


  (Rigid bounding surface with fixed temperature and mass                                     

 concentration)                                                                                              (5) 
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We now prove the following theorems: 

Theorem 1. If   ,,,qp


, ir ippp  , 0rp , 0 < F <1, is a solution of Eqs.(1)-(5)                          with 
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where l  is the smallest distance between two parallel planes that just contains V and 0 (>2) is a constant. 

Proof.  We introduce the transformations 
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and A is a positive root of the equation 

        0)1(2  TT DSAA  . 

The systems of Eqs. (1)- (5), upon using the transformations (6) assume the following forms: 
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p
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are respectively the modified thermal Rayleigh number and the modified concentration Rayleigh number. 

The sign tilde has been omitted for simplicity. 

Using Gauss divergence theorem, boundary condition (11) and the solenoidal character of velocity field, it 

follows that 

             


 0* dvPq


,                                                                     (12) 

  dvqcurldvqcurlcurlq
2*
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,                                                           (13) 

  
 

 dvdvdv **22*  ,                                                                             (14) 

and    


 dvdvdv **22*  ,                                                                                (15) 

where * indicates complex conjugation. 
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Further, multiplying Eq. (9) by its complex conjugate, integrating over V and using integral relation (15), we 

have  

dvkqdvpdvkpdvk
V VV V

r
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Now since 0 on S, it therefore follows by Joseph [13] that, 
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                                                                                                                                (Schwartz’ inequality) 

which upon utilizing (17) gives 
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Eq. (16) together with inequality (18) implies that 
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Forming dot product of Eq. (7) with *q


, integrating over the domainV, and making use of Eqs. (8) and (9) 

appropriately, we get  
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and Re denotes the real parts. 

Equating imaginary parts of both sides of Eq. (20) and taking 0ip , we have 
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Eq. (23) obviously cannot hold in view if inequality (19).Hence we must have 

.0ip                                                                                                                                               (24) 

This completes the proof of the theorem. 
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Theorem 1, from the physical point of view implies that for the problem of double-diffusive convection coupled 

with cross- diffusion in viscoelastic fluids completely confined in an arbitrary region in the  three dimensional 

Euclidean space
3R  for the Veronis type, the total kinetic energy associated with a neutral or unstable 

disturbance is greater than its total concentration energy in the parameter regime  
4
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principal of exchange of stabilities is valid. 

Theorem 2. If   ,,,qp


, ir ippp  , 0rp , 0<F<1 is a solution of Eqs. (7) - (11)                          with  
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Proof.  It follows from Eqs. (16)  and  (23), upon using inequalities (17) and (18) that 
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which can be written as 
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This completes the proof of the theorem. 

Theorem 2 implies that the complex growth rate  ir ppp  of an arbitrary  0ip  perturbation 

neutral  0rp  or unstable  0rp , for the double-diffusive convection coupled with cross-diffusion 

in completely confined viscoelastic fluids for Veronis configuration must lie inside a semi-circle whose centre is 
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Theorem 3. If   ,,,qp
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, ir ippp  , 0rp  is a solution of Eqs. (7) - (11) with 0TR , 0SR  

                     and if  
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Proof.  Follows similarly as in Theorem 1. 

The essential contents of Theorem 3 are similar to those of Theorem 1. 

Theorem 4. If   ,,,qp


, ir ippp  , 0rp  is a solution of Eqs. (7)-(11)                           

with 0TR , 0SR , then 

                        
 

2

20 1

2 1

T

r i

Rk
p p

l F

   
    

  
.                                                                               (27) 

Proof.  Follows similarly as in Theorem 2. 

The essential contents of Theorem 4 are similar to those of Theorem 2. 
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