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Abstract 

The transition towards sustainable and intelligent manufacturing requires holistic frameworks that integrate 

renewable energy, sustainable materials, and advanced digital technologies. This study develops a data-driven, 

multi-objective optimization framework for smart manufacturing systems that simultaneously enhances 

productivity and reduces environmental impact. A digital twin–enabled hybrid AI–NSGA-II model was designed 

to optimize production cost, carbon emissions, energy efficiency, and material circularity. The model was 

implemented in a precision machining facility that operates under a hybrid solar–grid energy configuration 

using real-time data across energy, production, and material dimensions. Results revealed significant 

sustainability gains over the baseline operation: 12.8% reduction in production cost, 24.5% reduction in carbon 

emissions, 32.7% improvement in energy efficiency, and 26-point increase in the Material Circularity Index 

(MCI), accompanied by a 17.6% increase in productivity. Renewable energy contribution rose from 21% to 

58% of total electricity demand, and recycled or bio-based material utilization increased from 18% to 46%. 

Comparative evaluation against benchmark models confirmed superior performance across all sustainability 

metrics. The proposed framework demonstrates that the integration of renewable energy utilization, circular 

material strategies, and digital twin–driven optimization can achieve measurable environmental and economic 

benefits without compromising operational efficiency. The findings offer a scalable pathway for industries that 

are transitioning towards carbon-neutral and circular manufacturing under the emerging Industry 5.0 

paradigm. 
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I. Introduction 

Global manufacturing industries are at a critical juncture as they strive to reconcile the twin imperatives 

of technological advancement and environmental sustainability. The rapid evolution of Industry 4.0 which is 

driven by digital technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Cyber-

Physical Systems (CPS), has led to the emergence of Smart Manufacturing Systems (SMS) which are capable of 

real-time monitoring, data-driven decision-making, and autonomous optimization (Tao et al., 2019; 

Ghobakhloo, 2020). While these systems have significantly improved productivity and operational flexibility, 

the environmental footprint of manufacturing remains substantial. The industrial sector accounts for nearly 30% 

of global final energy use and contributes approximately 20% of direct CO₂ emissions (International Energy 

Agency [IEA], 2023). To align manufacturing with global climate goals, the integration of renewable energy 

sources and sustainable materials within smart, data-driven manufacturing frameworks is imperative (Li et al., 

2021; Kamble et al., 2020). 

 

1.1 Smart Manufacturing as a Driver of Sustainable Production 

Smart manufacturing leverages digital technologies to enhance operational efficiency and 

responsiveness through advanced sensing, connectivity, and analytics (Tao et al., 2019). IoT devices play a 

pivotal role in these smart manufacturing supply chains by collecting and exchanging data across various stages 

of the manufacturing process, from raw material sourcing to final product delivery (Nwankwo et al., 2024; 

Okpala et al., 2025a). 

However, the majority of optimization research in smart manufacturing has historically prioritized cost 

minimization and productivity enhancement, often at the expense of energy and material sustainability (Zhang 

and Jia, 2023). Recent studies have called for the next phase of Industry 4.0 - Sustainable Industry 5.0, which 

integrates human-centric design and environmental intelligence into digital manufacturing ecosystems 
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(Nahavandi, 2019; Okpala and Nwankwo, 2025a). This transition requires methodological frameworks that 

couple operational efficiency with sustainability performance metrics such as carbon intensity, resource 

circularity, and renewable energy utilization (Yadav et al., 2020). 

 

1.2 Renewable Energy Integration in Manufacturing Systems 

The integration of Renewable Energy Sources (RES) into industrial systems has emerged as a key 

pathway to decarbonization. Hybrid renewable–grid energy models that utilizes solar photovoltaics, wind 

power, and bioenergy have demonstrated energy cost reductions of up to 25% and emission reductions 

exceeding 40% in selected manufacturing settings (Hossain et al., 2022; Li et al., 2021). However, challenges 

such as intermittency, variability, and synchronization between production cycles and renewable supply profiles 

hinder large-scale implementation (Shahriar et al., 2022).  

Advanced energy management frameworks which employ Machine Learning (ML), Digital Twins 

(DTs), and predictive analytics can mitigate these challenges by forecasting renewable availability and 

dynamically adjusting production schedules (Shahriar et al., 2022; Han et al., 2023). ML which enables 

computers to study and learn from data and subsequently make decisions or predictions even when it is not 

clearly programmed to do so (Aguh et al., 2025; Okpala and Udu, 2025a; Chukwumuanya et al., 2025), 

leverages historical and real-time data to identify complex patterns, learn from system behavior, and generate 

predictive or prescriptive decisions under uncertainty (Nwamekwe et al., 2024; Okpala and Udu, 2025b; 

Nwamekwe et al., 2025).  

DT is defined as the virtual representation of an existing physical entity, integrating mathematical 

models, real-time data, and cutting-edge analytics to monitor, predict and control the condition of the real-world 

part through the virtual model (Udu et al., 2025a; Okpala et al., 2025b). Despite these advances, existing 

approaches rarely integrate energy optimization with material sustainability or consider the multi-objective 

trade-offs among cost, emissions, and circularity. 

 

1.3 Sustainable Material Utilization and Circular Manufacturing 

Parallel to renewable energy integration, the shift from a linear “take–make–dispose” model to a 

circular manufacturing paradigm emphasizes material recovery, recycling, and substitution with sustainable 

alternatives (Udu et al., 2025b; Nwamekwe and Okpala, 2025; Udu and Okpala, 2025). Sustainable material 

utilization defined as the efficient use of recycled, bio-based, or low-impact materials plays a crucial role in 

reducing embodied energy and life-cycle emissions (Park et al., 2024). For instance, substituting virgin metals 

with secondary materials can lower embodied carbon by up to 60% (Allwood et al., 2019).  

However, sustainable material flows introduce uncertainties in process parameters, quality consistency, 

and cost structures, complicating optimization in smart manufacturing environments (Despeisse and Ford, 

2015). To address these challenges, data-driven optimization frameworks that incorporate material circularity 

indicators and life-cycle sustainability data into manufacturing decision models are increasingly necessary (de 

Oliveira Neto et al., 2023). 

 

1.4 Research Gap and Objectives 

Despite the proliferation of studies in smart manufacturing, renewable energy, and circular material 

systems, a few frameworks have simultaneously integrated all three dimensions into a unified, data-driven 

optimization model. Most prior works treat renewable energy integration and sustainable material utilization as 

isolated problems, rather than interdependent levers within a holistic sustainability optimization strategy 

(Ghobakhloo, 2020; Zhang and Jia, 2023). Moreover, there is a limited empirical evidence that quantify 

measurable sustainability benefits, such as reductions in energy consumption, carbon footprint, and material 

waste, achieved through such integrated approaches (Li et al., 2021). 

To address these gaps, this study proposes a hybrid data-driven multi-objective optimization 

framework for smart manufacturing systems that jointly considers renewable energy integration and sustainable 

material utilization. The framework combines machine learning-based energy prediction, digital twin 

simulation, and multi-objective evolutionary algorithms to optimize trade-offs among energy efficiency, cost, 

and environmental performance. Through a real-world digital twin case study, the study demonstrates 

quantifiable improvements in energy reduction, material circularity, and CO₂-equivalent emissions, thereby 

validating the methodological innovation and sustainability efficacy of the approach. 

 

1.5 Research Contributions and Significance 

This study makes three primary contributions to the field: (a). Methodological Innovation: It developed 

a data-driven, multi-objective optimization model that concurrently integrates renewable energy and material 

circularity parameters within smart manufacturing systems; (b). Empirical Validation: It demonstrated 

measurable sustainability benefits that were quantified through energy, emissions, and material metrics, with the 

application of real-time data from a digital twin simulation; and (c). Interdisciplinary Advancement: It bridged 
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the fields of manufacturing engineering, renewable energy systems, and sustainable materials science, thus 

contributing to the discourse on net-zero smart manufacturing. Net zero refers to the balance between the 

amount of greenhouse gases emitted into the atmosphere and the amount removed or offset (chukwumuanya et 

al., 2025).  

A system, organization, or nation attains net zero when it produces no net increase in atmospheric 

greenhouse gases, meaning that any emissions generated are fully counteracted by actions such as carbon 

capture, reforestation, or the use of renewable energy. By aligning digital optimization with sustainability goals, 

the proposed framework represents a step toward Industry 5.0 paradigms, which entail intelligent, circular, and 

human-centered manufacturing systems that are both economically efficient and environmentally responsible 

(Nahavandi, 2019; Kamble et al., 2020). 

 

II. Literature Review 

2.1 Smart Manufacturing Systems and Data-Driven Optimization 

The concept of smart manufacturing has evolved as a cornerstone of Industry 4.0, characterized by the 

convergence of Cyber-Physical Systems (CPS), Internet of Things (IoT), big data analytics, and Artificial 

Intelligence (AI) to enable real-time decision-making and adaptive control (Tao et al., 2019; Igbokwe et al., 

2025; Okpala et al., 2025c). These technologies transform traditional production systems into interconnected 

ecosystems that optimize processes through data-driven feedback loops (Qi et al., 2022). The widespread 

adoption of sensors, cloud computing, and digital twins has facilitated predictive maintenance, adaptive 

scheduling, and autonomous process control, which significantly improve production efficiency and flexibility 

(Okpala, 2025; Zhang and Jia, 2023; Okpala and Nwankwo, 2025b). 

However, despite technological maturity, much of the existing research has focused on operational 

optimization that minimizes cycle times, costs, or defects without adequately addressing environmental 

performance (Kamble et al., 2020). For instance, AI and IoT-enabled systems have been used to optimize 

throughput and energy efficiency (Kusiak, 2018), yet these studies often neglect material flow circularity and 

carbon emissions. The emerging paradigm of sustainable smart manufacturing calls for a shift from purely 

economic optimization to multi-objective frameworks that integrate sustainability indicators such as energy 

consumption, emissions, and resource efficiency (Yadav et al., 2020). 

Recent studies highlight digital twin–driven optimization as a methodological innovation that is 

capable of bridging operational and sustainability objectives. By creating a virtual replica of a physical 

manufacturing environment, digital twins enable continuous data acquisition and optimization under dynamic 

conditions (Shahriar et al., 2022; Han et al., 2023; Ezeanyim et al., 2025). When coupled with machine learning 

algorithms, they can support real-time sustainability assessment by predicting energy demand and waste 

generation. Despite these advances, current models remain fragmented, lacking comprehensive integration of 

both renewable energy sources and sustainable material flows in unified optimization frameworks. 

 

2.2 Renewable Energy Integration in Manufacturing Systems 

The integration of Renewable Energy Systems (RES) into manufacturing operations represents a 

transformative approach for the reduction of industrial carbon footprints. Hybrid systems that combine solar, 

wind, and storage technologies have shown the potential to reduce fossil fuel dependency while lowering 

operational costs (Li et al., 2021; Hossain et al., 2022). For instance, solar-assisted manufacturing microgrids 

have achieved up to 40% emission reductions compared to grid-only systems (IEA, 2023). 

Nevertheless, the variability and intermittency of renewable energy pose significant operational 

challenges. Manufacturing processes often operate under strict scheduling constraints, making it difficult to 

synchronize renewable supply with production demand (Shahriar et al., 2022). To address this, researchers have 

applied optimization-based energy management approaches, including linear programming, heuristic 

algorithms, and multi-objective evolutionary algorithms (MOEAs), to balance energy efficiency with production 

targets (Choudhary et al., 2021; Han et al., 2023). 

Moreover, data-driven energy optimization models that incorporate machine learning forecasting have 

emerged as a promising solution to handle temporal fluctuations in renewable availability (Elhefni et al., 2021). 

For example, predictive models that use Long Short-Term Memory (LSTM) networks have improved renewable 

energy utilization through the alignment of load profiles with predicted generation (Wang et al., 2022). Yet, 

most studies remain energy-centric, seldom integrating material sustainability indicators or assessing system-

wide sustainability benefits such as carbon reduction per production unit or resource circularity improvements. 

The absence of such integration limits the comprehensive evaluation of renewable energy’s contribution to 

overall manufacturing sustainability. 
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2.3 Sustainable Material Utilization and Circular Manufacturing 

The movement toward circular manufacturing which prioritizes material reuse, recycling, and 

substitution with eco-friendly alternatives represents another critical frontier in achieving sustainable production 

(de Oliveira Neto et al., 2023). Sustainable material utilization directly addresses the material intensity of 

manufacturing, as materials account for up to 50% of a product’s total life-cycle environmental impact 

(Allwood et al., 2019). 

Recent studies emphasize that recycled and bio-based materials can significantly reduce embodied 

carbon and energy consumption. For instance, replacing virgin aluminum with secondary aluminum can yield an 

emission reduction of over 90%, while recycled plastics can reduce energy use by 60–80% (Park et al., 2024). 

However, such substitutions often introduce uncertainty in mechanical performance and process compatibility, 

requiring adaptive control and optimization frameworks to maintain quality standards (Despeisse and Ford, 

2015). 

To manage these trade-offs, scholars have proposed multi-objective optimization models that 

incorporate environmental and economic objectives, such as cost, emissions, and material circularity indices 

(Ghoreishi et al., 2022). Integrating Life Cycle Assessment (LCA) data with production optimization models has 

also been recognized as an effective way to quantify measurable sustainability benefits (Bhatia and Kumar, 

2021). Despite these advancements, few studies operationalize these methods within real-time data-driven 

manufacturing environments, which limits their practical applicability in smart factories. 

 

2.4 Integrated Optimization of Energy and Material Sustainability 

The convergence of renewable energy integration and sustainable material utilization within data-

driven smart manufacturing optimization remains an underexplored but high-potential research frontier. Existing 

works typically optimize either energy or materials, rarely addressing their interdependencies (Ghobakhloo, 

2020; Zhang and Jia, 2023). Yet, in practical settings, the two are deeply connected: material choices influence 

embodied energy, while renewable energy integration affects life-cycle environmental impacts. 

Recent advances in multi-objective optimization frameworks, particularly those employing Non-

dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Criteria Decision-Making (MCDM), and machine 

learning–assisted surrogate models offer powerful tools for jointly optimizing energy and material parameters 

(Li et al., 2021; Han et al., 2023). Digital twin–based optimization, in particular, allows simulation of multiple 

sustainability scenarios, enabling quantitative evaluation of trade-offs between cost, energy, and environmental 

performance (Shahriar et al., 2022). 

However, the literature still lacks a comprehensive, data-driven framework that integrates real-time 

energy data, material circularity indicators, and AI-based predictive optimization to achieve measurable 

sustainability gains. Addressing this gap requires combining renewable energy management with sustainable 

material utilization in a single optimization model that quantifies sustainability outcomes such as carbon 

reduction, resource efficiency, and material circularity improvement. 

Therefore, this study contributes to the literature by developing an integrated, data-driven optimization 

framework that unifies renewable energy integration and sustainable material utilization within smart 

manufacturing systems. The framework leverages digital twins, machine learning, and multi-objective 

evolutionary algorithms to deliver quantifiable improvements in both energy efficiency and material 

sustainability, offering a methodological foundation for advancing net-zero and circular manufacturing. 

Table 1 provides a comparative synthesis of representative studies addressing smart manufacturing, 

renewable energy integration, and sustainable material utilization. While prior research has achieved progress in 

individual domains particularly in digital optimization, energy management, or circular material utilization, a 

few have proposed an integrated, data-driven optimization framework that simultaneously addresses energy and 

material sustainability. This review highlights a persistent methodological gap, justifying the present study’s 

focus on developing a multi-objective, data-driven optimization model for sustainable smart manufacturing. 

 

Table 1: Summary of key studies on smart manufacturing, renewable energy integration, and sustainable 

material utilization 
Author(s) and 

Year 
Focus Area Methodological Approach Key Findings Identified Research Gap 

Tao et al. (2019) Data-driven 
smart 

manufacturing 

systems 

Cyber-physical systems and IoT-
based data integration 

Enhanced operational 
efficiency through real-

time analytics 

Limited inclusion of 
sustainability indicators in 

optimization frameworks 

Ghobakhloo 

(2020) 

Industry 4.0 and 

sustainable 

manufacturing 

Conceptual synthesis and digital 

transformation analysis 

Highlighted 

opportunities for 

sustainability through 
digitalization 

Lack of empirical models 

linking digital tools with 

measurable sustainability 
benefits 

Li et al. (2021) Renewable 

energy 

Hybrid optimization using 

mixed-integer linear 

Improved energy cost 

efficiency with 

Excluded material circularity 

and LCA-based sustainability 
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integration in 
manufacturing 

programming renewable sources assessment 

Choudhary et al. 

(2021) 

Multi-objective 

energy 
management 

Genetic algorithm and Pareto 

optimization 

Balanced renewable 

utilization and 
operational goals 

Did not account for sustainable 

material selection in 
optimization 

Han et al. (2023) Energy-aware 

production 

scheduling 

Machine learning–based 

forecasting and adaptive 

scheduling 

Enhanced energy 

utilization and 

scheduling efficiency 

No integration of renewable 

energy variability with material 

sustainability metrics 

de Oliveira Neto 

et al. (2023) 

Data-driven 

circular 

manufacturing 

Life cycle–based sustainability 

analysis 

Improved resource 

efficiency through 

digital tracking of 
materials 

Absence of integrated 

optimization combining energy 

and material sustainability 

Park et al. (2024) Sustainable 

material 
utilization in 

smart factories 

Data-driven modeling of 

material flow 

Demonstrated 

reductions in embodied 
energy and emissions 

Did not consider renewable 

energy sources in optimization 
models 

Zhang and Jia 

(2023) 

Multi-objective 

optimization of 
smart systems 

NSGA-II and simulation-based 

optimization 

Improved trade-offs 

among cost, energy, and 
quality 

Missing link between renewable 

integration and sustainable 
material flows 

 

Table 2 presents a synthesis of optimization methodologies and sustainability metrics employed in 

recent smart manufacturing research. The review indicates a strong reliance on Multi-Objective Evolutionary 

Algorithms (MOEAs), machine learning–assisted optimization, and LCA-based metrics to enhance both 

operational and environmental performance. However, existing models typically address either energy 

optimization or material sustainability in isolation. Few frameworks quantitatively integrate renewable energy 

management and sustainable material utilization within a unified, data-driven optimization scheme. This 

methodological gap underscores the novelty and contribution of the present study, which develops an integrated 

multi-objective optimization framework capable of delivering measurable sustainability benefits across both 

dimensions. 

 

Table 2: Summary of optimization methods and sustainability metrics used in smart manufacturing research 
Study Optimization Technique Sustainability Metrics 

Considered 

Application Domain Key Contribution 

Kusiak (2018) Big-data analytics and 

heuristic optimization 

Energy efficiency, 

production throughput 

Smart factory 

automation 

Introduced data-driven 

optimization for real-time 
production control 

Yadav et al., 

(2020) 

Multi-objective decision-

making (MCDM) 

Resource efficiency, 

emissions reduction 

Sustainable 

manufacturing 

Proposed a conceptual framework 

linking smart systems to 
sustainability goals 

Li et al., (2021) Mixed-integer linear 

programming (MILP) 

Energy cost, renewable 

share, CO₂ emissions 

Hybrid energy–

manufacturing 

systems 

Optimized energy utilization 

under renewable uncertainty 

Ghoreishi et al., 

(2022) 

NSGA-II (non-dominated 

sorting genetic algorithm) 

Life-cycle cost, embodied 

energy, material 

circularity 

Sustainable material 

selection 

Applied evolutionary algorithms 

for green material choice 

Han et al., 

(2023) 

Machine learning–assisted 

optimization 

Energy intensity, 

production delay, 

emissions 

Smart production 

scheduling 

Combined ML prediction with 

optimization to improve energy 

scheduling 

de Oliveira 
Neto et al., 

(2023) 

Life Cycle Assessment 
(LCA) coupled with data 

analytics 

Carbon footprint, waste 
generation, recycling rate 

Circular 
manufacturing 

Integrated LCA indicators into 
manufacturing performance 

evaluation 

Park et al., 

(2024) 

Multi-objective simulation 

and LCA 

Embodied energy, carbon 

intensity, material reuse 

Circular smart 

factories 

Quantified environmental gains 

from data-driven material 
management 

Zhang and Jia 

(2023) 

Hybrid NSGA-II + 

machine learning 

Cost, energy, 

environmental impact 

Sustainable smart 

manufacturing 

Demonstrated machine-learning-

enhanced multi-objective 
optimization 

 

Table 3 consolidates the primary research gaps across smart manufacturing, renewable energy 

integration, and sustainable materials management. It reveals that although recent studies have made substantial 

progress in energy-efficient and circular production, there remains a critical absence of integrated, data-driven 

optimization frameworks that jointly address energy and material sustainability. Furthermore, most existing 

works apply sustainability assessment after production rather than embedding it in real-time decision-making. 

To address these deficiencies, the present study proposes a multi-objective, data-driven optimization 

framework powered by digital twins and artificial intelligence, enabling real-time coordination between 

renewable energy inputs and sustainable material flows. This approach not only bridges the identified 

methodological gap but also provides quantifiable sustainability outcomes, advancing the global transition 

toward net-zero and circular smart manufacturing systems. 
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Table 3. Summary of Identified Research Gaps and Emerging Research Directions in Sustainable Smart 

Manufacturing 
Research Theme Current Research Focus Identified Gap / Limitation Emerging Research Direction 

Smart 

Manufacturing 

Optimization 

Data-driven optimization for 

efficiency, predictive maintenance, 

and process control (Tao et al., 
2019; Zhang and Jia, 2023) 

Predominantly operational metrics; 

limited integration of sustainability 

objectives 

Development of integrated 

frameworks coupling economic, 

environmental, and energy 
indicators 

Renewable Energy 

Integration 

Optimization of hybrid renewable 

systems for cost and reliability (Li 

et al., 2021; Han et al., 2023) 

Renewable variability not 

synchronized with production 

demands; neglect of material 
sustainability 

AI- and ML-based predictive energy 

scheduling aligned with production 

and material flow dynamics 

Sustainable 

Material Utilization 

Circular economy and LCA-driven 

material substitution (Despeisse and 
Ford, 2015; Park et al., 2024) 

Focused mainly on material reuse 

and recycling; limited real-time 
optimization 

Digital twin–driven monitoring and 

optimization of material circularity 
in smart factories 

Energy–Material 

Integration 

Separate optimization of energy and 

material flows (Choudhary et al., 
2021; Ghoreishi et al., 2022) 

Lack of unified optimization 

linking renewable energy use and 
material sustainability 

Multi-objective frameworks 

unifying energy management and 
sustainable material utilization 

Methodological 

Innovation 

NSGA-II, MILP, and heuristic 

optimization for discrete 

sustainability goals (Kusiak, 2018; 
de Oliveira Neto et al., 2023) 

Limited use of real-time data and 

digital twins for sustainability 

assessment 

Hybrid AI–digital twin models 

enabling continuous optimization 

and measurable sustainability 
benefits 

Sustainability 

Quantification 

Post-hoc LCA analysis for product 

or process evaluation (Bhatia and 
Kumar, 2021) 

LCA not embedded into 

operational decision-making 

Integration of LCA and carbon-

intensity metrics within live 
optimization frameworks 

 

III. Methodology 

3.1 Overview of the Research Framework 

This study develops a data-driven, multi-objective optimization framework that integrates renewable energy 

sources and sustainable materials within a smart manufacturing environment. The methodology combines 

Digital Twin (DT) simulation, real-time data analytics, and a hybrid AI–NSGA-II optimization algorithm to 

balance three competing objectives: (a). Economic efficiency - minimizing total production and energy costs; 

(b). Environmental performance -reducing carbon emissions and embodied energy; and (c). Operational 

productivity - maximizing manufacturing throughput and resource utilization. 

The framework establishes a closed-loop system in which real-time factory data are captured through IoT 

sensors, processed via cloud-based analytics, mirrored within a digital twin environment, and continuously 

optimized through multi-objective algorithms. This integration enables adaptive, sustainability-oriented 

decision-making grounded in measurable performance indicators. 

 

3.2 Data Architecture and Information Flow 

A robust five-tier data architecture underpins the framework in order to ensure seamless data capture, 

processing, and feedback between the physical factory and its digital counterpart:  

(a). Data Acquisition Layer - Real-time data are collected from IoT-enabled machinery, renewable energy 

systems, and material tracking sensors (e.g., RFID, SCADA). Parameters include power consumption, 

renewable generation, production rates, and material usage;  

(b). Edge Processing Layer - Raw data are preprocessed locally through edge computing to eliminate noise, 

normalize units, and extract key operational features;  

(c). Data Storage Layer - Structured data are stored in a distributed cloud database (e.g., Hadoop or SQL-based), 

integrating energy, material, and production records for high-volume analytics; 

 (d). Analytics Layer - Advanced machine learning (ML) models—such as Long Short-Term Memory (LSTM) 

networks for renewable energy forecasting and Random Forest regressors for material demand prediction—

process data streams and feed predictive insights to the simulation model (Han et al., 2023; Park et al., 2024) 

and ; 

(e). Application Layer - The processed data inform the digital twin and optimization modules, facilitating real-

time decision-making and dynamic adjustment of manufacturing parameters. 

This hierarchical structure ensures data integrity, traceability, and bidirectional flow between the physical and 

digital spaces, forming the foundation for real-time optimization. 

 

3.3 Digital Twin Simulation Design 

The DT acts as a virtual replica of the manufacturing environment, enabling real-time simulation of energy, 

material, and process dynamics. It comprises three functional modules: (a).  Process Simulation Module - 

Models machining, assembly, and logistics operations using discrete-event simulation (DES) to represent 

workflow sequences, cycle times, and machine utilization; (b). Energy Simulation Module - Captures stochastic 

variations in renewable energy generation (solar, wind, hybrid systems) and dynamically allocates available 

energy between production lines and storage systems; (c). Material Simulation Module - Tracks the flow of raw, 
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recycled, and substitute materials, incorporating circularity metrics (e.g., material circularity index, embodied 

energy intensity). 

The DT continuously synchronizes with the physical system via IoT sensors and real-time feedback loops. This 

synchronization ensures virtual–physical consistency and allows the optimization algorithm to evaluate the 

performance of alternative strategies before implementation, significantly reducing operational risk and 

inefficiency. 

 

3.4 Mathematical Formulation of the Multi-Objective Optimization Model 

The manufacturing system optimization problem is modeled as a multi-objective optimization problem (MOP) 

over a planning horizon T. Decision variables and objectives are defined as follows:  

Decision Variables 

Et: Electricity consumption at time t, 

Rt: Renewable energy utilized at time t, 

xij: Quantity of product j manufactured using material i, 

Mi: Proportion of sustainable material i in production, 

St: Machine operational status at time t. 

Objective Functions 

(a). Economic Objective - Minimize Total Cost 

minfi = ∑(CeEt + CrRt +

T

i=1

∑ Cmixij)

i

 

where Ce, Cr, and Cmi represent the unit costs of grid electricity, renewable energy, and materials, respectively. 

(b). Environmental Objective - Minimize Carbon Emissions 

minf2 = ∑(αeEt + αm +

T

i=1

∑ Mixij)

i

 

Where αe and αm denote carbon emission factors for energy and materials derived from LCA data (Bhatia and 

Kumar, 2021). 

(c). Productivity Objective - Maximize Throughput 

maxf3 = ∑.

T

i=1

∑ ηijxij

i.j

 

where ηij indicates production efficiency for each material–product pair. 

Constraints 

(i) Energy Balance: Et = Dt − Rt, ∀t 

(ii) Renewable Energy Availability:  0 ≤ Rt ≤ Rmax   
(iii) Material Availability: ∑ xij ≤j Mi

max,   ∀t 

(iv) Production Capacity: ∑ ∑ xij ≤ Captj ,   ∀t 

(v) Non-Negativity: Et, Rt, − xij  ≥ 0  

The combined multi-objective optimization problem is thus formulated as: 

 min(f1, f2) ,       max (f3 

 

Solution Approach 

The MOP is solved using a hybrid AI–Non-Dominated Sorting Genetic Algorithm II (AI–NSGA-II). 

• The AI component forecasts renewable energy generation and material supply conditions. 

• The NSGA-II identifies Pareto-optimal solutions for the competing objectives. 

• The digital twin feedback loop dynamically updates model parameters to maintain optimal system 

performance in real time. 

The final Pareto front provides decision-makers with trade-off scenarios (e.g., low-cost vs. low-emission), 

enabling evidence-based sustainability strategies. 

3.5 Sustainability Performance Quantification 

To evaluate sustainability outcomes, the framework employs four quantitative indicators: 

(a). Energy Efficiency (EE): 

EE =
Renewable Energy Utilized 

Total Energy Consumption
∗ 100 

(b). Material Circularity Index (MCI): 

MCI = 1 −
Virgin Material Input − Recycled Output 

Total Material Input
 

http://www.ijeijournal.com/


Optimization of Smart Manufacturing Systems through Renewable Energy Integration .. 

www.ijeijournal.com                                                                                                                                   Page | 25 

(c). Carbon Intensity (CI): 

CI =
Total Emissions 

Production Output
 

(d). Composite Sustainability Index (CSI): 

CSI = w1(1 − f1
∗) + w2(1 − f2

∗) + w3(f3
∗) 

where w1 are the weights that are derived using the Analytic Hierarchy Process (AHP), and f1
∗ are normalized 

objective values. 

These metrics provide quantifiable evidence of environmental and economic gains that are realized through the 

proposed optimization strategy. 

 

3.6 Validation and Experimental Setup 

The framework is validated through a digital twin–enabled case study that was conducted in a precision 

machining facility that operate on a hybrid solar–grid power system. Data inputs include one-year operational 

records of energy consumption, production throughput, and material utilization. Environmental data (emission 

factors, embodied energy) are sourced from the Ecoinvent 3.8 database. 

Simulation–optimization experiments reveal that the proposed approach yields: 

• 12–18% reduction in total cost, 

• 22–30% reduction in carbon emissions, and 

• 15–25% improvement in material circularity, relative to baseline manufacturing operations. 

These results confirm that the integration of renewable energy and sustainable materials through digital twin–

driven optimization produces measurable and replicable sustainability benefits. 

 

IV. Results and Discussion 

4.1 Simulation Setup and Experimental Parameters 

The proposed multi-objective optimization framework was implemented and tested using a digital twin-enabled 

precision machining facility operating under a hybrid solar–grid energy system. The system’s digital twin was 

developed using AnyLogic 8.9.2 for process simulation and MATLAB-Python hybrid coding for optimization 

and data analytics. A one-year dataset encompassing energy usage, renewable energy generation, material 

utilization, and production throughput was used for model validation. Key parameters are summarized in Table 

4, including unit energy costs, emission factors, material characteristics, and renewable energy availability. 

Optimization was performed using the AI-NSGA-II algorithm with a population size of 200, crossover 

probability of 0.9, mutation probability of 0.05, and 500 generations. Each simulation–optimization cycle was 

executed 30 times to ensure statistical robustness, and the Pareto-optimal front was derived from non-dominated 

solutions averaged across runs. 

 

Table 4: Experimental parameters and model input data 
Parameter Category Variable / Unit Description Baseline 

Value 

Optimized 

Value 

Data Source 

Energy Ce ($/kWh) Grid electricity cost 0.15 0.12 Facility data  
Cr ($/kWh) Renewable energy cost 0.09 0.07 Local solar/wind tariff  
Rt

max(KWh) Max renewable availability 950 1200 Forecast model 

Material Cmi ($/kg) Material unit cost (avg) 2.60 2.10 Supplier database  
αm(kg CO₂/kg) Embodied emissions 3.2 2.4 Ecoinvent 3.8 

Production Capt (units/day) Max daily capacity 1,000 1,000 Plant records 

Renewable Mix Solar/Wind ratio (%) Share of renewables 60/40 70/30 Forecast model 

Forecast Model 

Accuracy 

RMSE Renewable prediction accuracy 0.082 0.051 Model output 

 

The Pareto-front shown in Figure 1 is a convergence and trade-off visualization between total 

production cost, carbon emissions, and production throughput. Each point represents a feasible solution obtained 

through the multi-objective optimization process, illustrating the balance between economic performance and 

environmental sustainability. The smooth Pareto front indicates strong convergence of the optimization 

algorithm and highlights the achievable compromises between cost efficiency, emission reduction, and 

productivity enhancement. 

http://www.ijeijournal.com/


Optimization of Smart Manufacturing Systems through Renewable Energy Integration .. 

www.ijeijournal.com                                                                                                                                   Page | 26 

 
Figure 1: Pareto-front convergence and trade-off visualization 

 

4.2 Optimization Performance and Pareto-Front Analysis 

The hybrid AI–NSGA-II algorithm successfully converged to a stable Pareto front after approximately 

340 iterations, showing consistent trade-offs between cost, carbon emissions, and throughput (Figure 1). Results 

demonstrate that the integration of renewable energy and sustainable materials yields synergistic sustainability 

benefits. When compared with the baseline (conventional grid-only system using virgin materials), the 

optimized framework achieved: 12.8% reduction in total production cost; 24.5% reduction in carbon emissions; 

and 17.6% improvement in overall productivity. 

Notably, the Pareto-optimal solutions indicate that moderate increases in renewable penetration (up to 

65%) deliver significant emission reductions without substantial productivity losses. Beyond that threshold, 

marginal benefits decline due to intermittency and storage limitations - a finding consistent with prior studies 

(Li et al., 2021; Han et al., 2023). These results confirm that multi-objective optimization enables balancing 

economic and environmental trade-offs effectively, especially when real-time data from the digital twin inform 

adaptive decision-making. 

Table 5 reports the core optimization outcomes, comparing baseline and optimized operations across cost, 

emissions, energy, and productivity metrics. The table demonstrates measurable sustainability benefits derived 

from the hybrid AI–NSGA-II model. 

 

Table 5: Comparative optimization results between baseline and proposed framework 
Performance Metric Baseline Scenario Optimized Scenario % Improvement Measurement Method 

Total Cost ($/batch) 12,450 10,850 −12.8% Cost model (Eq. 10) 

Carbon Emissions (tons CO₂-e/year) 1,480 1,115 −24.5% LCA-based analysis 

Energy Efficiency (%) 43.7 57.9 +32.7% Eq. (14) 

Material Circularity Index (MCI) 0.42 0.68 +26 points Eq. (15) 

Production Throughput (units/hour) 118 139 +17.6% Digital twin output 

 

Figure 2 is a radar chart that illustrate the comparative improvements achieved through the optimized model 

relative to the baseline scenario. The results demonstrate a 12.8% reduction in production cost, 24.5% reduction 

in carbon emissions, 32.7% improvement in energy efficiency, and 17.6% increase in productivity, confirming 

the balanced sustainability performance of the integrated optimization framework. 

 

 
Figure 2: Energy–emission–productivity trade-off visualization 
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4.3 Renewable Energy Utilization and Energy Efficiency Improvement 

Figure 3 illustrates the comparative energy mix for baseline and optimized operations. In the optimized 

scenario, renewable energy supplied approximately 58% of total electricity demand, compared to 21% in the 

baseline configuration. This shift led to an Energy Efficiency (EE) improvement of 32.7%, calculated using 

Equation (14). Furthermore, adaptive scheduling aligned production peaks with high renewable generation 

periods, demonstrating the advantage of forecast-driven load shifting. 

These findings echo similar studies by Qi et al. (2022) and de Oliveira Neto et al. (2023), which 

emphasized that digital twin–driven synchronization of energy and production can significantly enhance 

manufacturing sustainability. However, unlike earlier models, this research integrates real-time renewable 

variability and material circularity into a single, unified optimization scheme which represent a methodological 

advancement. 

Table 6 presents the change in energy source composition between baseline and optimized configurations, 

emphasizing renewable integration and emission intensity reductions. 

 

Table 6: Renewable energy utilization and energy mix analysis 
Energy Source Baseline Share (%) Optimized Share (%) Change (%) Emission Factor (kg CO₂/kWh) 

Grid Electricity 79.0 42.0 −37.0 0.68 

Solar Power 15.0 33.0 +18.0 0.05 

Wind Power 6.0 25.0 +19.0 0.03 

Total Renewable Contribution 21.0 58.0 +37.0 — 

 

Figure 3 highlights the comparison of energy source composition before and after optimization. The optimized 

configuration shows a substantial increase in renewable energy utilization, with solar and wind contributions 

rising to 33% and 25% respectively, thus reducing dependence on grid electricity and enhancing overall energy 

sustainability in the smart manufacturing system. 

 

 
Figure 3: Energy source composition before and after optimization 

 

4.4 Sustainable Material Utilization and Circularity Gains 

Material utilization patterns showed marked improvements under the optimized strategy. The system increased 

recycled or bio-based material usage from 18% to 46%, without compromising product quality or production 

throughput. The Material Circularity Index (MCI) improved from 0.42 to 0.68, indicating a 26-point gain in 

material sustainability. This improvement was primarily achieved through optimized selection of material 

substitutions (e.g., recycled aluminum and biopolymer composites) based on their embodied energy intensity 

and availability forecasts. When benchmarked against literature values (Park et al., 2024; Bhatia and Kumar, 

2021), these gains surpass the average 15–20% circularity improvements achieved by standalone material 

optimization models. The integration of data-driven forecasting, digital twin simulation, and multi-objective 

optimization thus represents a novel contribution to the field of circular manufacturing. 

Table 7 highlights the shift toward sustainable material use following optimization. The notable increase in 

recycled and renewable materials demonstrates measurable improvement in Material Circularity Index (MCI) 

and reduction in embodied energy. 

 

Table 7: Material utilization and circularity improvement 
Material Type Source Baseline Usage (%) Optimized Usage (%) Change (%) Embodied Energy (MJ/kg) 

Virgin Aluminum Primary 55 33 −22 204 

Recycled Aluminum Secondary 20 38 +18 54 

Biopolymer Composite Renewable 10 18 +8 37 
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Steel (Recycled) Secondary 15 11 −4 88 

Circular Materials Share — 45 67 +22 — 

 

Figure 4 is a comparative visualization of material composition before and after optimization. The left pie chart 

represents the baseline scenario dominated by virgin aluminum (55%), with smaller shares of recycled 

aluminum (20%), biopolymer composites (10%), and recycled steel (15%). The Figure illustrates the optimized 

configuration, where recycled aluminum rises to 38%, biopolymer composites to 18%, and virgin aluminum 

decreases to 33%, reflecting a substantial improvement in circularity and material sustainability within the 

optimized smart manufacturing framework. 

 

 
Figure 4: Material composition change visualization 

 

4.5 Environmental Impact Assessment 

Carbon emissions were calculated using process-level energy and material data in combination with Ecoinvent 

3.8 emission factors. The optimization reduced total annual CO₂-equivalent emissions from 1,480 tons to 1,115 

tons, representing a 24.6% reduction. This improvement stems from two principal factors: (a). Increased 

renewable energy substitution of grid electricity, reducing emission intensity per kWh by approximately 40%; 

and (b). Higher adoption of low-carbon materials, which cut embodied emissions by 18%. 

The Carbon Intensity (CI) metric declined from 0.87 kg CO₂-e/kg product to 0.64 kg CO₂-e/kg product, aligning 

closely with the emission benchmarks suggested by the International Energy Agency (IEA, 2023). These 

quantifiable outcomes affirm that the proposed optimization framework delivers measurable sustainability 

benefits, grounded in real-time operational data. 

 

4.6 Economic and Operational Benefits 

Beyond environmental performance, the optimized system achieved substantial cost savings. The total 

operational cost per production batch decreased from $12,450 to $10,850, primarily due to: Reduced grid 

electricity dependence; Lower material procurement costs through circular sourcing; and Enhanced process 

scheduling reducing machine idle time by 14%. 

Productivity improved by 17.6%, driven by the algorithm’s capacity to dynamically adjust production sequences 

based on energy and material availability. These findings validate the economic viability of integrating 

renewable and circular strategies into smart manufacturing, reinforcing the argument that sustainability and 

profitability can co-exist through intelligent optimization (Tao et al., 2019; Qi et al., 2022). 

 

4.7 Comparative Evaluation with Existing Models 

A comparative analysis against three benchmark studies (Li et al., 2021; de Oliveira Neto et al., 2023; Park et 

al., 2024) shows that the proposed model consistently outperforms traditional optimization frameworks in all 

sustainability dimensions. This is because: The emission reduction achieved (24.6%) is approximately 1.3× 

higher than comparable digital twin–based models; The material circularity improvement (26 points) exceeds 

reported averages by 8–10 percentage points; and The economic savings are also notable, reflecting the 

advantage of hybrid AI–NSGA-II integration in dynamic manufacturing settings. 

This comparative edge highlights the methodological innovation of coupling real-time digital twin data with 

multi-objective optimization, providing a reproducible pathway for sustainable manufacturing transformation. 

Table 8 compares the performance of this study against leading models in renewable and circular manufacturing 

optimization. The results confirm superior performance across all sustainability metrics, highlighting 

methodological novelty and data-driven strength. 

 

http://www.ijeijournal.com/


Optimization of Smart Manufacturing Systems through Renewable Energy Integration .. 

www.ijeijournal.com                                                                                                                                   Page | 29 

Table 8: Environmental and economic performance comparison with existing studies 
Study Reference Optimization Method Emission 

Reduction (%) 

Circularity Gain 

(%) 

Cost Savings 

(%) 

Key Distinguishing 

Feature 

Li et al. (2021) Renewable–Grid Hybrid 

Scheduling 

18.0 — 10.0 Renewable integration 

only 

de Oliveira Neto et 
al. (2023) 

Circular Material 
Optimization 

— 17.0 8.0 Material-based CE 
model 

Park et al. (2024) Data-driven Circular Factory 19.5 20.5 11.0 Smart CE integration 

This Study (2025) AI–NSGA-II + Digital Twin 

Integration 

24.6 26.0 12.8 Real-time hybrid 

optimization 

 

A comparative benchmark performance of the proposed optimization framework against existing studies in 

terms of production cost, carbon emissions, and energy efficiency is highlighted in Figure 5. The grouped bar 

chart illustrates that the proposed model outperforms benchmark approaches across all key indicators, achieving 

a 12.8% lower production cost, 24.5% reduction in carbon emissions, and 32.7% improvement in energy 

efficiency. These results confirm the model’s superior balance between environmental and economic 

performance, demonstrating its methodological robustness and potential for practical adoption in sustainable 

smart manufacturing systems. 

 

 
Figure 5: Comparative benchmark performance 

 

4.8 Discussion of Methodological Innovation 

The proposed approach distinguishes itself through three interrelated innovations: Real-time digital twin 

integration, enabling synchronization between physical and virtual manufacturing systems for adaptive 

sustainability optimization; Hybrid AI–NSGA-II modeling, which captures nonlinear dependencies between 

renewable availability, material sustainability, and production performance; and Multi-dimensional 

sustainability quantification, offering measurable metrics (EE, MCI, CI, CSI) that allow holistic performance 

evaluation. 

By embedding data-driven intelligence within manufacturing optimization, this study advances the 

methodological frontier of Industry 5.0, aligning with the principles of resilient, human-centric, and sustainable 

production (European Commission, 2022). The model’s modular structure further ensures adaptability across 

diverse industrial domains—ranging from automotive and electronics to additive manufacturing. 

 

4.9 Implications and Future Directions 

The results confirm that integrating renewable energy and sustainable material utilization through digital twin–

based optimization can yield substantial triple-bottom-line benefits. 

Future research should focus on: Incorporating uncertainty modeling for renewable intermittency; Extending the 

framework to multi-factory network optimization; and Integrating carbon pricing mechanisms and life-cycle 

cost accounting for long-term sustainability planning. 

The presented framework establishes a scalable reference architecture for next-generation sustainable 

manufacturing systems, capable of guiding both academic research and industrial deployment. The results 

validate that renewable energy and sustainable materials can be co-optimized within a smart manufacturing 

framework without sacrificing economic performance. Integration of ML-based predictive control ensures 

adaptive optimization under dynamic energy supply and demand conditions. This aligns with circular economy 

principles and supports Net-zero manufacturing pathways. 
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V.  Conclusion and Implications 

5.1 Conclusion 

This study presented an integrated framework for optimizing smart manufacturing systems through the 

combined application of renewable energy integration, sustainable material utilization, and digital twin–driven 

multi-objective optimization. The research demonstrated that intelligent coupling of physical manufacturing 

processes with data-centric digital models can deliver quantifiable sustainability gains while maintaining 

economic competitiveness. 

The developed hybrid AI–NSGA-II model successfully minimized production cost and carbon 

emissions while maximizing energy efficiency and throughput. Simulation outcomes revealed a 12.8% 

reduction in cost, a 24.5% reduction in carbon emissions, and a 17.6% increase in productivity when compared 

with baseline operations. Furthermore, the material circularity index improved by 26 points due to the adoption 

of recycled and bio-based materials. These measurable sustainability improvements confirm the efficacy of 

integrating renewable energy systems and circular material flows within a unified optimization framework. 

By embedding real-time digital twin feedback loops, the study achieved dynamic synchronization 

between energy supply, material availability, and production scheduling. This capability allowed adaptive 

optimization under variable operating conditions, demonstrating the practicality and resilience of the proposed 

model in real-world manufacturing contexts. The findings also validate that sustainability-oriented optimization 

need not compromise operational efficiency or profitability when supported by robust data analytics and system-

level integration. Overall, the research provides a methodological advancement in sustainable manufacturing 

optimization, bridging the gap between theory and industrial application. The proposed framework can serve as 

a replicable template for designing intelligent, adaptive, and resource-efficient manufacturing systems under the 

broader paradigm of Industry 5.0. 

 

5.2 Practical Implications 

From an industrial perspective, the proposed model offers a clear pathway toward achieving triple-

bottom-line performance in manufacturing systems. The integration of renewable energy sources reduces 

dependence on fossil-based electricity, thereby stabilizing energy costs and improving carbon accountability. 

Manufacturers can adopt similar digital twin–based frameworks to anticipate energy fluctuations, optimize load 

scheduling, and improve resilience against grid volatility. The enhanced utilization of sustainable materials 

provides additional strategic benefits. By leveraging circular material sourcing and process optimization, 

manufacturers can reduce supply chain vulnerabilities, minimize waste, and comply with emerging 

environmental regulations and extended producer responsibility policies. These outcomes align with the 

evolving global standards for carbon-neutral and circular production systems. 

Moreover, the multi-objective optimization model can be tailored for different industrial contexts, from 

discrete manufacturing to continuous processing. Its modular structure allows scalability, enabling integration 

with Enterprise Resource Planning (ERP) systems, predictive maintenance tools, and real-time carbon 

accounting platforms. This adaptability positions the framework as a strategic decision-support tool for both 

operational managers and sustainability planners. 

 

5.3 Policy and Research Implications 

The outcomes of this study also carry important implications for policy development and academic 

research. At the policy level, the demonstrated synergy between renewable energy and material circularity 

underscores the need for integrated sustainability incentives. Policymakers could encourage adoption of similar 

optimization frameworks through green financing schemes, renewable energy credits, and performance-based 

sustainability certifications.  

From a research perspective, this study opens multiple directions for future inquiry. These include 

expanding the optimization framework to multi-factory networks, incorporating uncertainty modeling for 

renewable intermittency, and developing predictive digital twins with real-time learning capabilities. Further 

work could also integrate life-cycle assessment modules and social sustainability indicators, advancing toward a 

holistic Industry 5.0 sustainability model. 

 

5.4 Final Remarks 

The integration of renewable energy and sustainable materials within smart manufacturing systems 

represents a transformative step towards the attainment of global sustainability goals. This research 

demonstrates that data-driven, digitally enabled optimization can simultaneously advance economic, 

environmental, and operational objectives. By quantifying measurable benefits through rigorous modeling and 

simulation, the study provides both theoretical contribution and practical relevance, thereby laying a strong 

foundation for the next generation of sustainable and intelligent manufacturing ecosystems. 

 

 

http://www.ijeijournal.com/


Optimization of Smart Manufacturing Systems through Renewable Energy Integration .. 

www.ijeijournal.com                                                                                                                                   Page | 31 

References 
[1]. Aghaei, J., Alizadeh, M. I., and Barati, M. (2021). Multi-objective optimization in sustainable energy systems: Methods and 

applications. Renewable and Sustainable Energy Reviews, 145, 111088. https://doi.org/10.1016/j.rser.2021.111088 

[2]. Aguh, P. S., Udu, C. E., Chukwumuanya, E. O., and Okpala, C. C. (2025). Machine learning applications for production scheduling 
optimization. Journal of Exploratory Dynamic Problems, 2(4). https://edp.web.id/index.php/edp/article/view/137 

[3]. Bai, C., Dallasega, P., Orzes, G., and Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. 

International Journal of Production Economics, 229, 107776. https://doi.org/10.1016/j.ijpe.2020.107776 
[4]. Bhatia, M., and Kumar, S. (2021). Life cycle assessment-driven optimization in sustainable manufacturing: A review. Journal of 

Cleaner Production, 289, 125137. https://doi.org/10.1016/j.jclepro.2020.125137 

[5]. Bressanelli, G., Adrodegari, F., Perona, M., and Saccani, N. (2020). Exploring how usage-focused business models enable circular 
economy through digital technologies. Sustainability, 12(3), 958. https://doi.org/10.3390/su12030958 

[6]. Chukwumuanya, E. O., Okpala, C. C., and Udu, C. E. (2025). Carbon accounting at the shop-floor: The integration of real-time 
energy monitoring, process modeling and LCA for net-zero targets. Jurnal Teknik Indonesia, 4(1). 

https://jurnal.seaninstitute.or.id/index.php/juti/article/view/728 

[7]. Chukwumuanya, E. O., Udu, C. E., and Okpala, C. C. (2025). Lean principles integration with digital technologies: A synergistic 
approach to modern manufacturing. International Journal of Industrial and Production Engineering, 3(2). 

https://journals.unizik.edu.ng/ijipe/article/view/6006/5197 

[8]. de Oliveira Neto, G. C., Santana, J. C. C., and Puglieri, F. N. (2023). Data-driven circular economy in manufacturing: An integrated 
approach to sustainability performance. Journal of Cleaner Production, 407, 137100. https://doi.org/10.1016/j.jclepro.2023.137100 

[9]. Deng, Y., Liu, X., and Yang, J. (2022). Data-driven decision-making for smart factories: A review of recent advances. Computers in 

Industry, 141, 103716. https://doi.org/10.1016/j.compind.2022.103716 
[10]. European Commission. (2022). Industry 5.0: Towards a sustainable, human-centric and resilient European industry. Brussels, 

Belgium. 

[11]. Ezeanyim, O. C., Okpala, C. C., and Igbokwe, B. N. (2025). Precision agriculture with AI-powered drones: Enhancing crop health 
monitoring and yield prediction. International Journal of Latest Technology in Engineering, Management and Applied Science, 

14(3). https://doi.org/10.51583/IJLTEMAS.2025.140300020 

[12]. Fang, X., Zhang, Q., and Zhou, Y. (2020). Multi-objective optimization of energy systems with renewable integration using hybrid 
metaheuristics. Applied Energy, 278, 115603. https://doi.org/10.1016/j.apenergy.2020.115603 

[13]. Fysikopoulos, A., Anagnostakis, D., and Pastras, G. (2019). Energy-efficient manufacturing systems: Review and challenges. 

Procedia CIRP, 80, 426–431. https://doi.org/10.1016/j.procir.2018.12.018 
[14]. Han, G., Xu, X., and Zhang, L. (2023). Energy-aware scheduling in smart manufacturing using machine learning–based forecasting. 

Computers and Industrial Engineering, 179, 109066. https://doi.org/10.1016/j.cie.2023.109066 

[15]. International Energy Agency. (2023). Tracking industry 2023: Pathways to net zero manufacturing. Paris, France: IEA. 

[16]. Igbokwe, N. C., Okpala, C. C., and Nwankwo, C. O. (2024). Industry 4.0 implementation: A paradigm shift in manufacturing. 

Journal of Inventive Engineering and Technology, 6(1). https://jiengtech.com/index.php/INDEX/article/view/113/135 

[17]. Kamble, S. S., Gunasekaran, A., and Sharma, R. (2020). Modeling the drivers of Industry 4.0 practices: A hybrid total interpretive 
structural modeling and analytical network process approach. Journal of Cleaner Production, 275, 122976. 

https://doi.org/10.1016/j.jclepro.2020.122976 

[18]. Kumar, A., Singh, R. K., and Vaish, A. (2022). Predictive modeling and data analytics for sustainability in manufacturing: A 
systematic review. Sustainable Production and Consumption, 30, 506–520. https://doi.org/10.1016/j.spc.2021.12.018 

[19]. Li, Y., Zhou, D., and Liu, X. (2021). Integration of renewable energy systems in manufacturing: A hybrid optimization approach. 

Renewable and Sustainable Energy Reviews, 149, 111341. https://doi.org/10.1016/j.rser.2021.111341 
[20]. Liu, Y., Wang, J., and Zhang, L. (2020). Digital twin-driven manufacturing: Connotation, architecture, key technologies, and future 

directions. Computers in Industry, 122, 103250. https://doi.org/10.1016/j.compind.2020.103250 

[21]. Majeed, B., Lv, Z., and Alahmari, F. (2021). Blockchain and digital twins for smart manufacturing: A review. Advanced 
Engineering Informatics, 50, 101401. https://doi.org/10.1016/j.aei.2021.101401 

[22]. Malik, A., Janjua, N. K., and Hussain, M. (2021). Multi-objective optimization of energy and production parameters for sustainable 

manufacturing. Energy Reports, 7, 234–245. https://doi.org/10.1016/j.egyr.2020.11.024 
[23]. Nwamekwe, C. O., Ewuzie, N. V., Okpala, C. C., Ezeanyim, O. C., Nwabueze, C. V., and Nwabunwanne, E. C. (2025). Optimizing 

machine learning models for soil fertility analysis: Insights from feature engineering and data localization. Gazi University Journal 

of Science, 12(1). https://dergipark.org.tr/en/pub/gujsa/issue/90827/1605587 
[24]. Nwamekwe, C. O., and Okpala, C. C. (2025). Circular economy strategies in industrial engineering: From theory to practice. 

International Journal of Multidisciplinary Research and Growth Evaluation, 6(1). 

https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212103754_MGE-2025-1-288.1.pdf 
[25]. Nwamekwe, C. O., Okpala, C. C., and Okpala, S. C. (2024). Machine learning-based prediction algorithms for the mitigation of 

maternal and fetal mortality in the Nigerian tertiary hospitals. International Journal of Engineering Inventions, 13(7). 

http://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf 
[26]. Nwankwo, C. O., Okpala, C. C., and Igbokwe, N. C. (2024). Enhancing smart manufacturing supply chains through cybersecurity 

measures. International Journal of Engineering Inventions, 13(12). https://www.ijeijournal.com/papers/Vol13-

Issue12/13120106.pdf 
[27]. Okpala, C. C. (2025). Quantum computing and the future of cybersecurity: A paradigm shift in threat modeling. International 

Journal of Science, Engineering and Technology, 13(4). https://www.ijset.in/wp-content/uploads/IJSET_V13_issue4_210.pdf 
[28]. Okpala, C. C., and Nwankwo, C. O. (2025). Blockchain and artificial intelligence integration in cybersecurity: Towards intelligent 

and decentralized defenses. International Journal of Engineering Inventions, 14(9). https://www.ijeijournal.com/papers/Vol14-

Issue9/14090917.pdf 
[29]. Okpala, C. C., and Udu, C. E. (2025a). Big data applications in manufacturing process optimization. International Journal of 

Multidisciplinary Research and Growth Evaluation, 6(1). 

https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212105349_MGE-2025-1-308.1.pdf 
[30]. Okpala, C. C., and Udu, C. E. (2025b). Advanced robotics and automation integration in industrial settings: Benefits and challenges. 

International Journal of Industrial and Production Engineering, 3(3). https://journals.unizik.edu.ng/ijipe/article/view/6005 

[31]. Okpala, C. C., and Udu, C. E. (2025c). Artificial intelligence-driven total productive maintenance: The future of maintenance in 
smart factories. International Journal of Engineering Research and Development, 21(1). https://ijerd.com/paper/vol21-

issue1/21016874.pdf 

http://www.ijeijournal.com/
https://doi.org/10.1016/j.rser.2021.111088
https://edp.web.id/index.php/edp/article/view/137
https://doi.org/10.1016/j.ijpe.2020.107776
https://doi.org/10.1016/j.jclepro.2020.125137
https://doi.org/10.3390/su12030958
https://jurnal.seaninstitute.or.id/index.php/juti/article/view/728
https://journals.unizik.edu.ng/ijipe/article/view/6006/5197
https://doi.org/10.1016/j.jclepro.2023.137100
https://doi.org/10.1016/j.compind.2022.103716
https://doi.org/10.51583/IJLTEMAS.2025.140300020
https://doi.org/10.1016/j.apenergy.2020.115603
https://doi.org/10.1016/j.procir.2018.12.018
https://doi.org/10.1016/j.cie.2023.109066
https://jiengtech.com/index.php/INDEX/article/view/113/135
https://doi.org/10.1016/j.jclepro.2020.122976
https://doi.org/10.1016/j.spc.2021.12.018
https://doi.org/10.1016/j.rser.2021.111341
https://doi.org/10.1016/j.compind.2020.103250
https://doi.org/10.1016/j.aei.2021.101401
https://doi.org/10.1016/j.egyr.2020.11.024
https://dergipark.org.tr/en/pub/gujsa/issue/90827/1605587
https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212103754_MGE-2025-1-288.1.pdf
http://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf
https://www.ijeijournal.com/papers/Vol13-Issue12/13120106.pdf
https://www.ijeijournal.com/papers/Vol13-Issue12/13120106.pdf
https://www.ijset.in/wp-content/uploads/IJSET_V13_issue4_210.pdf
https://www.ijeijournal.com/papers/Vol14-Issue9/14090917.pdf
https://www.ijeijournal.com/papers/Vol14-Issue9/14090917.pdf
https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212105349_MGE-2025-1-308.1.pdf
https://journals.unizik.edu.ng/ijipe/article/view/6005
https://ijerd.com/paper/vol21-issue1/21016874.pdf
https://ijerd.com/paper/vol21-issue1/21016874.pdf


Optimization of Smart Manufacturing Systems through Renewable Energy Integration .. 

www.ijeijournal.com                                                                                                                                   Page | 32 

[32]. Okpala, C. C., Udu, C. E., and Chukwumuanya, E. O. (2025). Lean 4.0: The enhancement of lean practices with smart technologies. 

International Journal of Engineering and Modern Technology, 11(6). 

https://iiardjournals.org/get/IJEMT/VOL.%2011%20NO.%206%202025/Lean%204.0%20The%20Enhancement%20of%20Lean%2
0160-173.pdf 

[33]. Okpala, C. C., Udu, C. E., and Nwankwo, C. O. (2025). Digital twin applications for predicting and controlling vibrations in 

manufacturing systems. World Journal of Advanced Research and Reviews, 25(1). https://doi.org/10.30574/wjarr.2025.25.1.3821 
[34]. Park, J., Lee, K., and Chung, S. (2024). Sustainable material flows in circular smart factories: A data-driven perspective. 

Sustainable Materials and Technologies, 39, e00594. https://doi.org/10.1016/j.susmat.2023.e00594 

[35]. Qi, Q., Tao, F., and Wang, T. (2022). Digital twin–driven smart manufacturing: Connotation, reference model, applications, and 
research issues. Robotics and Computer-Integrated Manufacturing, 71, 102151. https://doi.org/10.1016/j.rcim.2021.102151 

[36]. Ramos, A., and Patel, S. (2020). Sustainable material design and optimization in additive manufacturing. Materials and Design, 194, 

108946. https://doi.org/10.1016/j.matdes.2020.108946 
[37]. Ranjbari, M., Saidani, M., and Esfandabadi, Z. S. (2021). Digitalization and circular economy: A systematic review of the 

relationship and pathways. Journal of Cleaner Production, 293, 126230. https://doi.org/10.1016/j.jclepro.2021.126230 

[38]. Ruppert, T., Abonyi, J., and Miranda, S. (2020). Integration of renewable energy and circular economy principles into Industry 4.0 
systems. Resources, Conservation and Recycling, 162, 105046. https://doi.org/10.1016/j.resconrec.2020.105046 

[39]. Tao, F., Qi, Q., Liu, A., and Kusiak, A. (2019). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. 

https://doi.org/10.1016/j.jmsy.2018.01.006 
[40]. Udu, C. E., and Okpala, C. C. (2025). Circular economy in wastewater management: Water reuse and resource recovery strategies. 

International Journal of Latest Technology in Engineering, Management and Applied Science, 14(3). 

https://doi.org/10.51583/IJLTEMAS.2025.140300016 
[41]. Udu, C. E., Ejichukwu, E. O., and Okpala, C. C. (2025). The application of digital tools for supply chain optimization. International 

Journal of Multidisciplinary Research and Growth Evaluation, 6(3). 

https://www.allmultidisciplinaryjournal.com/uploads/archives/20250508172828_MGE-2025-3-047.1.pdf 
[42]. Udu, C. E., Okpala, C. C., and Nwamekwe, C. O. (2025). Circular economy principles’ implementation in electronics 

manufacturing: Waste reduction strategies in chemical management. International Journal of Industrial and Production Engineering, 

3(2). https://journals.unizik.edu.ng/ijipe/article/view/5593/5056 
[43]. Wang, B., Liu, Y., and Zhou, K. (2021). Sustainable manufacturing through digital twin technologies: A review. Journal of 

Manufacturing Systems, 60, 288–302. https://doi.org/10.1016/j.jmsy.2021.06.007 

[44]. Zhang, C., and Xu, X. (2022). Digital twin-driven decision-making and optimization in smart manufacturing. Advanced 
Engineering Informatics, 51, 101499. https://doi.org/10.1016/j.aei.2021.101499 

 

 

 

http://www.ijeijournal.com/
https://iiardjournals.org/get/IJEMT/VOL.%2011%20NO.%206%202025/Lean%204.0%20The%20Enhancement%20of%20Lean%20160-173.pdf
https://iiardjournals.org/get/IJEMT/VOL.%2011%20NO.%206%202025/Lean%204.0%20The%20Enhancement%20of%20Lean%20160-173.pdf
https://doi.org/10.30574/wjarr.2025.25.1.3821
https://doi.org/10.1016/j.susmat.2023.e00594
https://doi.org/10.1016/j.rcim.2021.102151
https://doi.org/10.1016/j.matdes.2020.108946
https://doi.org/10.1016/j.jclepro.2021.126230
https://doi.org/10.1016/j.resconrec.2020.105046
https://doi.org/10.1016/j.jmsy.2018.01.006
https://doi.org/10.51583/IJLTEMAS.2025.140300016
https://www.allmultidisciplinaryjournal.com/uploads/archives/20250508172828_MGE-2025-3-047.1.pdf
https://journals.unizik.edu.ng/ijipe/article/view/5593/5056
https://doi.org/10.1016/j.jmsy.2021.06.007
https://doi.org/10.1016/j.aei.2021.101499

