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Abstract

The transition towards sustainable and intelligent manufacturing requires holistic frameworks that integrate
renewable energy, sustainable materials, and advanced digital technologies. This study develops a data-driven,
multi-objective optimization framework for smart manufacturing systems that simultaneously enhances
productivity and reduces environmental impact. A digital twin—enabled hybrid AI-NSGA-II model was designed
to optimize production cost, carbon emissions, energy efficiency, and material circularity. The model was
implemented in a precision machining facility that operates under a hybrid solar—grid energy configuration
using real-time data across energy, production, and material dimensions. Results revealed significant
sustainability gains over the baseline operation: 12.8% reduction in production cost, 24.5% reduction in carbon
emissions, 32.7% improvement in energy efficiency, and 26-point increase in the Material Circularity Index
(MCI), accompanied by a 17.6% increase in productivity. Renewable energy contribution rose from 21% to
58% of total electricity demand, and recycled or bio-based material utilization increased from 18% to 46%.
Comparative evaluation against benchmark models confirmed superior performance across all sustainability
metrics. The proposed framework demonstrates that the integration of renewable energy utilization, circular
material strategies, and digital twin—driven optimization can achieve measurable environmental and economic
benefits without compromising operational efficiency. The findings offer a scalable pathway for industries that
are transitioning towards carbon-neutral and circular manufacturing under the emerging Industry 5.0
paradigm.
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L Introduction

Global manufacturing industries are at a critical juncture as they strive to reconcile the twin imperatives
of technological advancement and environmental sustainability. The rapid evolution of Industry 4.0 which is
driven by digital technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Cyber-
Physical Systems (CPS), has led to the emergence of Smart Manufacturing Systems (SMS) which are capable of
real-time monitoring, data-driven decision-making, and autonomous optimization (Tao et al., 2019;
Ghobakhloo, 2020). While these systems have significantly improved productivity and operational flexibility,
the environmental footprint of manufacturing remains substantial. The industrial sector accounts for nearly 30%
of global final energy use and contributes approximately 20% of direct CO. emissions (International Energy
Agency [IEA], 2023). To align manufacturing with global climate goals, the integration of renewable energy
sources and sustainable materials within smart, data-driven manufacturing frameworks is imperative (Li et al.,
2021; Kamble et al., 2020).

1.1 Smart Manufacturing as a Driver of Sustainable Production

Smart manufacturing leverages digital technologies to enhance operational efficiency and
responsiveness through advanced sensing, connectivity, and analytics (Tao et al., 2019). IoT devices play a
pivotal role in these smart manufacturing supply chains by collecting and exchanging data across various stages
of the manufacturing process, from raw material sourcing to final product delivery (Nwankwo et al., 2024;
Okpala et al., 2025a).

However, the majority of optimization research in smart manufacturing has historically prioritized cost
minimization and productivity enhancement, often at the expense of energy and material sustainability (Zhang
and Jia, 2023). Recent studies have called for the next phase of Industry 4.0 - Sustainable Industry 5.0, which
integrates human-centric design and environmental intelligence into digital manufacturing ecosystems
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(Nahavandi, 2019; Okpala and Nwankwo, 2025a). This transition requires methodological frameworks that
couple operational efficiency with sustainability performance metrics such as carbon intensity, resource
circularity, and renewable energy utilization (Yadav et al., 2020).

1.2 Renewable Energy Integration in Manufacturing Systems

The integration of Renewable Energy Sources (RES) into industrial systems has emerged as a key
pathway to decarbonization. Hybrid renewable—grid energy models that utilizes solar photovoltaics, wind
power, and bioenergy have demonstrated energy cost reductions of up to 25% and emission reductions
exceeding 40% in selected manufacturing settings (Hossain et al., 2022; Li et al., 2021). However, challenges
such as intermittency, variability, and synchronization between production cycles and renewable supply profiles
hinder large-scale implementation (Shahriar et al., 2022).

Advanced energy management frameworks which employ Machine Learning (ML), Digital Twins
(DTs), and predictive analytics can mitigate these challenges by forecasting renewable availability and
dynamically adjusting production schedules (Shahriar et al., 2022; Han et al., 2023). ML which enables
computers to study and learn from data and subsequently make decisions or predictions even when it is not
clearly programmed to do so (Aguh et al., 2025; Okpala and Udu, 2025a; Chukwumuanya et al., 2025),
leverages historical and real-time data to identify complex patterns, learn from system behavior, and generate
predictive or prescriptive decisions under uncertainty (Nwamekwe et al., 2024; Okpala and Udu, 2025b;
Nwamekwe et al., 2025).

DT is defined as the virtual representation of an existing physical entity, integrating mathematical
models, real-time data, and cutting-edge analytics to monitor, predict and control the condition of the real-world
part through the virtual model (Udu et al., 2025a; Okpala et al., 2025b). Despite these advances, existing
approaches rarely integrate energy optimization with material sustainability or consider the multi-objective
trade-offs among cost, emissions, and circularity.

1.3 Sustainable Material Utilization and Circular Manufacturing

Parallel to renewable energy integration, the shift from a linear “take—make—dispose” model to a
circular manufacturing paradigm emphasizes material recovery, recycling, and substitution with sustainable
alternatives (Udu et al., 2025b; Nwamekwe and Okpala, 2025; Udu and Okpala, 2025). Sustainable material
utilization defined as the efficient use of recycled, bio-based, or low-impact materials plays a crucial role in
reducing embodied energy and life-cycle emissions (Park et al., 2024). For instance, substituting virgin metals
with secondary materials can lower embodied carbon by up to 60% (Allwood et al., 2019).

However, sustainable material flows introduce uncertainties in process parameters, quality consistency,
and cost structures, complicating optimization in smart manufacturing environments (Despeisse and Ford,
2015). To address these challenges, data-driven optimization frameworks that incorporate material circularity
indicators and life-cycle sustainability data into manufacturing decision models are increasingly necessary (de
Oliveira Neto et al., 2023).

1.4 Research Gap and Objectives

Despite the proliferation of studies in smart manufacturing, renewable energy, and circular material
systems, a few frameworks have simultaneously integrated all three dimensions into a unified, data-driven
optimization model. Most prior works treat renewable energy integration and sustainable material utilization as
isolated problems, rather than interdependent levers within a holistic sustainability optimization strategy
(Ghobakhloo, 2020; Zhang and Jia, 2023). Moreover, there is a limited empirical evidence that quantify
measurable sustainability benefits, such as reductions in energy consumption, carbon footprint, and material
waste, achieved through such integrated approaches (Li et al., 2021).

To address these gaps, this study proposes a hybrid data-driven multi-objective optimization
framework for smart manufacturing systems that jointly considers renewable energy integration and sustainable
material utilization. The framework combines machine learning-based energy prediction, digital twin
simulation, and multi-objective evolutionary algorithms to optimize trade-offs among energy efficiency, cost,
and environmental performance. Through a real-world digital twin case study, the study demonstrates
quantifiable improvements in energy reduction, material circularity, and COz-equivalent emissions, thereby
validating the methodological innovation and sustainability efficacy of the approach.

1.5 Research Contributions and Significance

This study makes three primary contributions to the field: (a). Methodological Innovation: It developed
a data-driven, multi-objective optimization model that concurrently integrates renewable energy and material
circularity parameters within smart manufacturing systems; (b). Empirical Validation: It demonstrated
measurable sustainability benefits that were quantified through energy, emissions, and material metrics, with the
application of real-time data from a digital twin simulation; and (c). Interdisciplinary Advancement: It bridged
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the fields of manufacturing engineering, renewable energy systems, and sustainable materials science, thus
contributing to the discourse on net-zero smart manufacturing. Net zero refers to the balance between the
amount of greenhouse gases emitted into the atmosphere and the amount removed or offset (chukwumuanya et
al., 2025).

A system, organization, or nation attains net zero when it produces no net increase in atmospheric
greenhouse gases, meaning that any emissions generated are fully counteracted by actions such as carbon
capture, reforestation, or the use of renewable energy. By aligning digital optimization with sustainability goals,
the proposed framework represents a step toward Industry 5.0 paradigms, which entail intelligent, circular, and
human-centered manufacturing systems that are both economically efficient and environmentally responsible
(Nahavandi, 2019; Kamble et al., 2020).

II. Literature Review
2.1 Smart Manufacturing Systems and Data-Driven Optimization

The concept of smart manufacturing has evolved as a cornerstone of Industry 4.0, characterized by the
convergence of Cyber-Physical Systems (CPS), Internet of Things (IoT), big data analytics, and Artificial
Intelligence (Al) to enable real-time decision-making and adaptive control (Tao et al., 2019; Igbokwe et al.,
2025; Okpala et al., 2025¢). These technologies transform traditional production systems into interconnected
ecosystems that optimize processes through data-driven feedback loops (Qi et al., 2022). The widespread
adoption of sensors, cloud computing, and digital twins has facilitated predictive maintenance, adaptive
scheduling, and autonomous process control, which significantly improve production efficiency and flexibility
(Okpala, 2025; Zhang and Jia, 2023; Okpala and Nwankwo, 2025b).

However, despite technological maturity, much of the existing research has focused on operational
optimization that minimizes cycle times, costs, or defects without adequately addressing environmental
performance (Kamble et al., 2020). For instance, Al and IoT-enabled systems have been used to optimize
throughput and energy efficiency (Kusiak, 2018), yet these studies often neglect material flow circularity and
carbon emissions. The emerging paradigm of sustainable smart manufacturing calls for a shift from purely
economic optimization to multi-objective frameworks that integrate sustainability indicators such as energy
consumption, emissions, and resource efficiency (Yadav et al., 2020).

Recent studies highlight digital twin—driven optimization as a methodological innovation that is
capable of bridging operational and sustainability objectives. By creating a virtual replica of a physical
manufacturing environment, digital twins enable continuous data acquisition and optimization under dynamic
conditions (Shahriar et al., 2022; Han et al., 2023; Ezeanyim et al., 2025). When coupled with machine learning
algorithms, they can support real-time sustainability assessment by predicting energy demand and waste
generation. Despite these advances, current models remain fragmented, lacking comprehensive integration of
both renewable energy sources and sustainable material flows in unified optimization frameworks.

2.2 Renewable Energy Integration in Manufacturing Systems

The integration of Renewable Energy Systems (RES) into manufacturing operations represents a
transformative approach for the reduction of industrial carbon footprints. Hybrid systems that combine solar,
wind, and storage technologies have shown the potential to reduce fossil fuel dependency while lowering
operational costs (Li et al., 2021; Hossain et al., 2022). For instance, solar-assisted manufacturing microgrids
have achieved up to 40% emission reductions compared to grid-only systems (IEA, 2023).

Nevertheless, the variability and intermittency of renewable energy pose significant operational
challenges. Manufacturing processes often operate under strict scheduling constraints, making it difficult to
synchronize renewable supply with production demand (Shahriar et al., 2022). To address this, researchers have
applied optimization-based energy management approaches, including linear programming, heuristic
algorithms, and multi-objective evolutionary algorithms (MOEAs), to balance energy efficiency with production
targets (Choudhary et al., 2021; Han et al., 2023).

Moreover, data-driven energy optimization models that incorporate machine learning forecasting have
emerged as a promising solution to handle temporal fluctuations in renewable availability (Elhefni et al., 2021).
For example, predictive models that use Long Short-Term Memory (LSTM) networks have improved renewable
energy utilization through the alignment of load profiles with predicted generation (Wang et al., 2022). Yet,
most studies remain energy-centric, seldom integrating material sustainability indicators or assessing system-
wide sustainability benefits such as carbon reduction per production unit or resource circularity improvements.
The absence of such integration limits the comprehensive evaluation of renewable energy’s contribution to
overall manufacturing sustainability.
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2.3 Sustainable Material Utilization and Circular Manufacturing

The movement toward circular manufacturing which prioritizes material reuse, recycling, and
substitution with eco-friendly alternatives represents another critical frontier in achieving sustainable production
(de Oliveira Neto et al., 2023). Sustainable material utilization directly addresses the material intensity of
manufacturing, as materials account for up to 50% of a product’s total life-cycle environmental impact
(Allwood et al., 2019).

Recent studies emphasize that recycled and bio-based materials can significantly reduce embodied
carbon and energy consumption. For instance, replacing virgin aluminum with secondary aluminum can yield an
emission reduction of over 90%, while recycled plastics can reduce energy use by 60-80% (Park et al., 2024).
However, such substitutions often introduce uncertainty in mechanical performance and process compatibility,
requiring adaptive control and optimization frameworks to maintain quality standards (Despeisse and Ford,
2015).

To manage these trade-offs, scholars have proposed multi-objective optimization models that
incorporate environmental and economic objectives, such as cost, emissions, and material circularity indices
(Ghoreishi et al., 2022). Integrating Life Cycle Assessment (LCA) data with production optimization models has
also been recognized as an effective way to quantify measurable sustainability benefits (Bhatia and Kumar,
2021). Despite these advancements, few studies operationalize these methods within real-time data-driven
manufacturing environments, which limits their practical applicability in smart factories.

2.4 Integrated Optimization of Energy and Material Sustainability

The convergence of renewable energy integration and sustainable material utilization within data-
driven smart manufacturing optimization remains an underexplored but high-potential research frontier. Existing
works typically optimize either energy or materials, rarely addressing their interdependencies (Ghobakhloo,
2020; Zhang and Jia, 2023). Yet, in practical settings, the two are deeply connected: material choices influence
embodied energy, while renewable energy integration affects life-cycle environmental impacts.

Recent advances in multi-objective optimization frameworks, particularly those employing Non-
dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Criteria Decision-Making (MCDM), and machine
learning—assisted surrogate models offer powerful tools for jointly optimizing energy and material parameters
(Li et al., 2021; Han et al., 2023). Digital twin—based optimization, in particular, allows simulation of multiple
sustainability scenarios, enabling quantitative evaluation of trade-offs between cost, energy, and environmental
performance (Shahriar et al., 2022).

However, the literature still lacks a comprehensive, data-driven framework that integrates real-time
energy data, material circularity indicators, and Al-based predictive optimization to achieve measurable
sustainability gains. Addressing this gap requires combining renewable energy management with sustainable
material utilization in a single optimization model that quantifies sustainability outcomes such as carbon
reduction, resource efficiency, and material circularity improvement.

Therefore, this study contributes to the literature by developing an integrated, data-driven optimization
framework that unifies renewable energy integration and sustainable material utilization within smart
manufacturing systems. The framework leverages digital twins, machine learning, and multi-objective
evolutionary algorithms to deliver quantifiable improvements in both energy efficiency and material
sustainability, offering a methodological foundation for advancing net-zero and circular manufacturing.

Table 1 provides a comparative synthesis of representative studies addressing smart manufacturing,
renewable energy integration, and sustainable material utilization. While prior research has achieved progress in
individual domains particularly in digital optimization, energy management, or circular material utilization, a
few have proposed an integrated, data-driven optimization framework that simultaneously addresses energy and
material sustainability. This review highlights a persistent methodological gap, justifying the present study’s
focus on developing a multi-objective, data-driven optimization model for sustainable smart manufacturing.

Table 1: Summary of key studies on smart manufacturing, renewable energy integration, and sustainable
material utilization

Author(s) and | Focus Area Methodological Approach Key Findings Identified Research Gap

Year

Tao et al. (2019) Data-driven Cyber-physical systems and IoT- | Enhanced  operational | Limited inclusion of
smart based data integration efficiency through real- | sustainability indicators in

manufacturing

time analytics

optimization frameworks

systems
Ghobakhloo Industry 4.0 and | Conceptual synthesis and digital | Highlighted Lack of empirical models
(2020) sustainable transformation analysis opportunities for | linking digital tools with
manufacturing sustainability ~ through | measurable sustainability
digitalization benefits
Li et al. (2021) Renewable Hybrid  optimization  using | Improved energy cost | Excluded material circularity
energy mixed-integer linear | efficiency with | and LCA-based sustainability
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Choudhary et al.

(2021)

Han et al. (2023)

de Oliveira Neto

et al. (2023)

Park et al. (2024)

Zhang and

(2023)

Jia

integration in | programming

manufacturing

Multi-objective Genetic algorithm and Pareto
energy optimization

management

Energy-aware Machine learning—based
production forecasting and adaptive
scheduling scheduling

Data-driven Life cycle-based sustainability
circular analysis

manufacturing

Sustainable Data-driven modeling of
material material flow

utilization in

smart factories
Multi-objective
optimization of
smart systems

NSGA-II and simulation-based
optimization

renewable sources

Balanced renewable
utilization and
operational goals
Enhanced energy
utilization and
scheduling efficiency
Improved resource
efficiency through
digital  tracking  of
materials

Demonstrated

reductions in embodied
energy and emissions

Improved trade-offs
among cost, energy, and
quality

assessment

Did not account for sustainable
material selection in
optimization

No integration of renewable
energy variability with material
sustainability metrics

Absence of integrated
optimization combining energy
and material sustainability

Did not consider renewable
energy sources in optimization
models

Missing link between renewable
integration and  sustainable
material flows

Table 2 presents a synthesis of optimization methodologies and sustainability metrics employed in
recent smart manufacturing research. The review indicates a strong reliance on Multi-Objective Evolutionary
Algorithms (MOEAs), machine learning—assisted optimization, and LCA-based metrics to enhance both
operational and environmental performance. However, existing models typically address either energy
optimization or material sustainability in isolation. Few frameworks quantitatively integrate renewable energy
management and sustainable material utilization within a unified, data-driven optimization scheme. This
methodological gap underscores the novelty and contribution of the present study, which develops an integrated
multi-objective optimization framework capable of delivering measurable sustainability benefits across both

dimensions.

Table 2: Summary of optimization methods and sustainability metrics used in smart manufacturing research

Study Optimization Technique Sustainability = Metrics | Application Domain | Key Contribution
Considered
Kusiak (2018) Big-data  analytics and | Energy efficiency, | Smart factory | Introduced data-driven
heuristic optimization production throughput automation optimization for real-time
production control
Yadav et al, = Multi-objective decision- | Resource efficiency, | Sustainable Proposed a conceptual framework
(2020) making (MCDM) emissions reduction manufacturing linking  smart  systems to
sustainability goals
Lietal, (2021) | Mixed-integer linear | Energy cost, renewable | Hybrid energy— | Optimized energy utilization
programming (MILP) share, CO: emissions manufacturing under renewable uncertainty
systems

Ghoreishi et al.,
(2022)

Han et al,
(2023)
de Oliveira
Neto et al,
(2023)
Park et al,
(2024)

Zhang and Jia
(2023)

NSGA-II  (non-dominated
sorting genetic algorithm)

Machine learning—assisted
optimization

Life Cycle Assessment
(LCA) coupled with data
analytics
Multi-objective simulation
and LCA

Hybrid NSGA-IT +
machine learning

Life-cycle cost, embodied

energy, material
circularity
Energy intensity,
production delay,
emissions

Carbon footprint, waste
generation, recycling rate

Embodied energy, carbon
intensity, material reuse

Cost, energy,
environmental impact

Sustainable material
selection

Smart
scheduling

production

Circular
manufacturing

Circular smart
factories
Sustainable smart

manufacturing

Applied evolutionary algorithms
for green material choice

Combined ML prediction with
optimization to improve energy
scheduling

Integrated LCA indicators into
manufacturing performance
evaluation

Quantified environmental gains
from data-driven material
management

Demonstrated machine-learning-
enhanced multi-objective
optimization

Table 3 consolidates the primary research gaps across smart manufacturing, renewable energy
integration, and sustainable materials management. It reveals that although recent studies have made substantial
progress in energy-efficient and circular production, there remains a critical absence of integrated, data-driven
optimization frameworks that jointly address energy and material sustainability. Furthermore, most existing
works apply sustainability assessment after production rather than embedding it in real-time decision-making.

To address these deficiencies, the present study proposes a multi-objective, data-driven optimization
framework powered by digital twins and artificial intelligence, enabling real-time coordination between
renewable energy inputs and sustainable material flows. This approach not only bridges the identified
methodological gap but also provides quantifiable sustainability outcomes, advancing the global transition
toward net-zero and circular smart manufacturing systems.
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Table 3. Summary of Identified Research Gaps and Emerging Research Directions in Sustainable Smart
Manufacturing

Research Theme

Current Research Focus

Identified Gap / Limitation

Emerging Research Direction

Smart
Manufacturing
Optimization

Renewable Energy
Integration
Sustainable

Material Utilization

Energy—Material
Integration

Methodological

Innovation

Sustainability
Quantification

Data-driven optimization for
efficiency, predictive maintenance,
and process control (Tao et al,
2019; Zhang and Jia, 2023)
Optimization of hybrid renewable
systems for cost and reliability (Li
et al., 2021; Han et al., 2023)

Circular economy and LCA-driven
material substitution (Despeisse and
Ford, 2015; Park et al., 2024)
Separate optimization of energy and
material flows (Choudhary et al.,
2021; Ghoreishi et al., 2022)
NSGA-II, MILP, and heuristic
optimization for discrete
sustainability goals (Kusiak, 2018;
de Oliveira Neto et al., 2023)
Post-hoc LCA analysis for product
or process evaluation (Bhatia and
Kumar, 2021)

Predominantly operational metrics;
limited integration of sustainability
objectives

Renewable variability not
synchronized with  production
demands; neglect of material

sustainability

Focused mainly on material reuse
and recycling; limited real-time
optimization

Lack of wunified optimization
linking renewable energy use and
material sustainability

Limited use of real-time data and

digital twins for sustainability
assessment
LCA not embedded into

operational decision-making

Development of integrated
frameworks coupling economic,
environmental, and energy
indicators

Al- and ML-based predictive energy
scheduling aligned with production
and material flow dynamics

Digital twin—driven monitoring and
optimization of material circularity
in smart factories

Multi-objective frameworks
unifying energy management and
sustainable material utilization
Hybrid Al-digital twin models
enabling continuous optimization

and  measurable  sustainability
benefits

Integration of LCA and carbon-
intensity  metrics ~ within  live

optimization frameworks

1I1.
3.1 Overview of the Research Framework
This study develops a data-driven, multi-objective optimization framework that integrates renewable energy
sources and sustainable materials within a smart manufacturing environment. The methodology combines
Digital Twin (DT) simulation, real-time data analytics, and a hybrid AI-NSGA-II optimization algorithm to
balance three competing objectives: (a). Economic efficiency - minimizing total production and energy costs;
(b). Environmental performance -reducing carbon emissions and embodied energy; and (c). Operational
productivity - maximizing manufacturing throughput and resource utilization.
The framework establishes a closed-loop system in which real-time factory data are captured through IoT
sensors, processed via cloud-based analytics, mirrored within a digital twin environment, and continuously
optimized through multi-objective algorithms. This integration enables adaptive, sustainability-oriented
decision-making grounded in measurable performance indicators.

Methodology

3.2 Data Architecture and Information Flow

A robust five-tier data architecture underpins the framework in order to ensure seamless data capture,
processing, and feedback between the physical factory and its digital counterpart:

(a). Data Acquisition Layer - Real-time data are collected from IoT-enabled machinery, renewable energy
systems, and material tracking sensors (e.g., RFID, SCADA). Parameters include power consumption,
renewable generation, production rates, and material usage;

(b). Edge Processing Layer - Raw data are preprocessed locally through edge computing to eliminate noise,
normalize units, and extract key operational features;

(c). Data Storage Layer - Structured data are stored in a distributed cloud database (e.g., Hadoop or SQL-based),
integrating energy, material, and production records for high-volume analytics;

(d). Analytics Layer - Advanced machine learning (ML) models—such as Long Short-Term Memory (LSTM)
networks for renewable energy forecasting and Random Forest regressors for material demand prediction—
process data streams and feed predictive insights to the simulation model (Han et al., 2023; Park et al., 2024)
and ;

(e). Application Layer - The processed data inform the digital twin and optimization modules, facilitating real-
time decision-making and dynamic adjustment of manufacturing parameters.

This hierarchical structure ensures data integrity, traceability, and bidirectional flow between the physical and
digital spaces, forming the foundation for real-time optimization.

3.3 Digital Twin Simulation Design

The DT acts as a virtual replica of the manufacturing environment, enabling real-time simulation of energy,
material, and process dynamics. It comprises three functional modules: (a). Process Simulation Module -
Models machining, assembly, and logistics operations using discrete-event simulation (DES) to represent
workflow sequences, cycle times, and machine utilization; (b). Energy Simulation Module - Captures stochastic
variations in renewable energy generation (solar, wind, hybrid systems) and dynamically allocates available
energy between production lines and storage systems; (c). Material Simulation Module - Tracks the flow of raw,
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recycled, and substitute materials, incorporating circularity metrics (e.g., material circularity index, embodied
energy intensity).

The DT continuously synchronizes with the physical system via IoT sensors and real-time feedback loops. This
synchronization ensures virtual-physical consistency and allows the optimization algorithm to evaluate the
performance of alternative strategies before implementation, significantly reducing operational risk and
inefficiency.

3.4 Mathematical Formulation of the Multi-Objective Optimization Model

The manufacturing system optimization problem is modeled as a multi-objective optimization problem (MOP)
over a planning horizon T. Decision variables and objectives are defined as follows:

Decision Variables

E.: Electricity consumption at time t,

R;: Renewable energy utilized at time t,

X;j: Quantity of product j manufactured using material i,

M;: Proportion of sustainable material i in production,

S¢: Machine operational status at time t.

Objective Functions

(a). Economic Objective - Minimize Total Cost
T

minfi = Z(CeEt + CrRt + z CmiXij)
i

i=1
where C,, C;, and C,; represent the unit costs of grid electricity, renewable energy, and materials, respectively.

(b). Environmental Objective - Minimize Carbon Emissions
T

minf, = Z(%Et +an +Z M;x;;)

i=1
Where a, and ay, denote carbon emission factors for energy and materlals derived from LCA data (Bhatia and
Kumar, 2021).
(¢). Productivity Objective - Maximize Throughput

T
maxf; = Z z NijXij
i=1 1]

where 7;; indicates production efficiency for each material-product pair.
Constraints

6)] Energy Balance: E; = Dy — Ry, V;

(i1) Renewable Energy Availability: 0 < R; < Ryyax

(iii) Material Availability: ¥ x;; < M{"®, V,

(iv) Production Capacity: ¥, Y x;; < Cap,, VY

) Non-Negativity: E;, Ry —x;; =0
The combined multi-objective optimization problem is thus formulated as:
min(f;,f,), max (f3

Solution Approach
The MOP is solved using a hybrid AI-Non-Dominated Sorting Genetic Algorithm II (AI-NSGA-II).

e The Al component forecasts renewable energy generation and material supply conditions.

o  The NSGA-II identifies Pareto-optimal solutions for the competing objectives.

e The digital twin feedback loop dynamically updates model parameters to maintain optimal system

performance in real time.

The final Pareto front provides decision-makers with trade-off scenarios (e.g., low-cost vs. low-emission),
enabling evidence-based sustainability strategies.
3.5 Sustainability Performance Quantification
To evaluate sustainability outcomes, the framework employs four quantitative indicators:

(a). Energy Efficiency (EE):

_ Renewable Energy Utlllzed

" Total Energy Consumptlon
(b). Material Circularity Index (MCI):

Virgin Material Input — Recycled Output
MCI = 1 — g p y p

Total Material Input
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(c). Carbon Intensity (CI):
Total Emissions

" Production Output
(d). Composite Sustainability Index (CSI):
CSI =w, (1 —f£]) +w,(1 —£5) + ws(f)
where w; are the weights that are derived using the Analytic Hierarchy Process (AHP), and f; are normalized
objective values.
These metrics provide quantifiable evidence of environmental and economic gains that are realized through the
proposed optimization strategy.

3.6 Validation and Experimental Setup
The framework is validated through a digital twin—enabled case study that was conducted in a precision
machining facility that operate on a hybrid solar—grid power system. Data inputs include one-year operational
records of energy consumption, production throughput, and material utilization. Environmental data (emission
factors, embodied energy) are sourced from the Ecoinvent 3.8 database.
Simulation—optimization experiments reveal that the proposed approach yields:

e  12-18% reduction in total cost,

e 22-30% reduction in carbon emissions, and

e 15-25% improvement in material circularity, relative to baseline manufacturing operations.
These results confirm that the integration of renewable energy and sustainable materials through digital twin—
driven optimization produces measurable and replicable sustainability benefits.

Iv. Results and Discussion
4.1 Simulation Setup and Experimental Parameters
The proposed multi-objective optimization framework was implemented and tested using a digital twin-enabled
precision machining facility operating under a hybrid solar—grid energy system. The system’s digital twin was
developed using AnyLogic 8.9.2 for process simulation and MATLAB-Python hybrid coding for optimization
and data analytics. A one-year dataset encompassing energy usage, renewable energy generation, material
utilization, and production throughput was used for model validation. Key parameters are summarized in Table
4, including unit energy costs, emission factors, material characteristics, and renewable energy availability.
Optimization was performed using the AI-NSGA-II algorithm with a population size of 200, crossover
probability of 0.9, mutation probability of 0.05, and 500 generations. Each simulation—optimization cycle was
executed 30 times to ensure statistical robustness, and the Pareto-optimal front was derived from non-dominated
solutions averaged across runs.

Table 4: Experimental parameters and model input data

Parameter Category Variable / Unit Description Baseline Optimized Data Source
Value Value
Energy Ce ($/kWh) Grid electricity cost 0.15 0.12 Facility data
Cr ($/kWh) Renewable energy cost 0.09 0.07 Local solar/wind tariff
R (KWh) Max renewable availability 950 1200 Forecast model
Material Cpi ($/kg) Material unit cost (avg) 2.60 2.10 Supplier database
ap (kg CO2/kg) Embodied emissions 32 2.4 Ecoinvent 3.8
Production Cap, (units/day) Max daily capacity 1,000 1,000 Plant records
Renewable Mix Solar/Wind ratio (%) | Share of renewables 60/40 70/30 Forecast model
Forecast Model | RMSE Renewable prediction accuracy | 0.082 0.051 Model output
Accuracy

The Pareto-front shown in Figure 1 is a convergence and trade-off visualization between total
production cost, carbon emissions, and production throughput. Each point represents a feasible solution obtained
through the multi-objective optimization process, illustrating the balance between economic performance and
environmental sustainability. The smooth Pareto front indicates strong convergence of the optimization
algorithm and highlights the achievable compromises between cost efficiency, emission reduction, and
productivity enhancement.
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Figure 1: Pareto-front convergence and trade-off visualization

4.2 Optimization Performance and Pareto-Front Analysis

The hybrid AI-NSGA-II algorithm successfully converged to a stable Pareto front after approximately
340 iterations, showing consistent trade-offs between cost, carbon emissions, and throughput (Figure 1). Results
demonstrate that the integration of renewable energy and sustainable materials yields synergistic sustainability
benefits. When compared with the baseline (conventional grid-only system using virgin materials), the
optimized framework achieved: 12.8% reduction in total production cost; 24.5% reduction in carbon emissions;
and 17.6% improvement in overall productivity.

Notably, the Pareto-optimal solutions indicate that moderate increases in renewable penetration (up to
65%) deliver significant emission reductions without substantial productivity losses. Beyond that threshold,
marginal benefits decline due to intermittency and storage limitations - a finding consistent with prior studies
(Li et al., 2021; Han et al., 2023). These results confirm that multi-objective optimization enables balancing
economic and environmental trade-offs effectively, especially when real-time data from the digital twin inform
adaptive decision-making.
Table 5 reports the core optimization outcomes, comparing baseline and optimized operations across cost,
emissions, energy, and productivity metrics. The table demonstrates measurable sustainability benefits derived
from the hybrid AI-NSGA-II model.

Table 5: Comparative optimization results between baseline and proposed framework

Performance Metric Baseline Scenario | Optimized Scenario | % Improvement | Measurement Method
Total Cost ($/batch) 12,450 10,850 -12.8% Cost model (Eq. 10)
Carbon Emissions (tons CO:-e/year) | 1,480 1,115 —24.5% LCA-based analysis
Energy Efficiency (%) 43.7 57.9 +32.7% Eq. (14)

Material Circularity Index (MCI) 0.42 0.68 +26 points Eq. (15)

Production Throughput (units/hour) | 118 139 +17.6% Digital twin output

Figure 2 is a radar chart that illustrate the comparative improvements achieved through the optimized model
relative to the baseline scenario. The results demonstrate a 12.8% reduction in production cost, 24.5% reduction
in carbon emissions, 32.7% improvement in energy efficiency, and 17.6% increase in productivity, confirming
the balanced sustainability performance of the integrated optimization framework.

Emission Reduction

Energy Eff Cost eduction

~—~—__ -

Productivity Increase

Figure 2: Energy—emission—productivity trade-off visualization

www.ijeijournal.com Page | 26


http://www.ijeijournal.com/

Optimization of Smart Manufacturing Systems through Renewable Energy Integration ..

4.3 Renewable Energy Utilization and Energy Efficiency Improvement

Figure 3 illustrates the comparative energy mix for baseline and optimized operations. In the optimized
scenario, renewable energy supplied approximately 58% of total electricity demand, compared to 21% in the
baseline configuration. This shift led to an Energy Efficiency (EE) improvement of 32.7%, calculated using
Equation (14). Furthermore, adaptive scheduling aligned production peaks with high renewable generation
periods, demonstrating the advantage of forecast-driven load shifting.

These findings echo similar studies by Qi et al. (2022) and de Oliveira Neto et al. (2023), which
emphasized that digital twin—driven synchronization of energy and production can significantly enhance
manufacturing sustainability. However, unlike earlier models, this research integrates real-time renewable
variability and material circularity into a single, unified optimization scheme which represent a methodological
advancement.

Table 6 presents the change in energy source composition between baseline and optimized configurations,
emphasizing renewable integration and emission intensity reductions.

Table 6: Renewable energy utilization and energy mix analysis

Energy Source Baseline Share (%) | Optimized Share (%) | Change (%) | Emission Factor (kg CO/kWh)
Grid Electricity 79.0 42.0 -37.0 0.68

Solar Power 15.0 33.0 +18.0 0.05

Wind Power 6.0 25.0 +19.0 0.03

Total Renewable Contribution | 21.0 58.0 +37.0 —

Figure 3 highlights the comparison of energy source composition before and after optimization. The optimized
configuration shows a substantial increase in renewable energy utilization, with solar and wind contributions
rising to 33% and 25% respectively, thus reducing dependence on grid electricity and enhancing overall energy
sustainability in the smart manufacturing system.

80 - Baseline
Optimized

70 |

Energy Share (%)
Iy
5!

s L 1
Grid Electricity Solar Power wWind Power

Figure 3: Energy source composition before and after optimization

4.4 Sustainable Material Utilization and Circularity Gains

Material utilization patterns showed marked improvements under the optimized strategy. The system increased
recycled or bio-based material usage from 18% to 46%, without compromising product quality or production
throughput. The Material Circularity Index (MCI) improved from 0.42 to 0.68, indicating a 26-point gain in
material sustainability. This improvement was primarily achieved through optimized selection of material
substitutions (e.g., recycled aluminum and biopolymer composites) based on their embodied energy intensity
and availability forecasts. When benchmarked against literature values (Park et al., 2024; Bhatia and Kumar,
2021), these gains surpass the average 15-20% circularity improvements achieved by standalone material
optimization models. The integration of data-driven forecasting, digital twin simulation, and multi-objective
optimization thus represents a novel contribution to the field of circular manufacturing.

Table 7 highlights the shift toward sustainable material use following optimization. The notable increase in
recycled and renewable materials demonstrates measurable improvement in Material Circularity Index (MCI)
and reduction in embodied energy.

Table 7: Material utilization and circularity improvement

Material Type Source Baseline Usage (%) | Optimized Usage (%) | Change (%) | Embodied Energy (MJ/kg)
Virgin Aluminum Primary 55 33 -22 204

Recycled Aluminum Secondary | 20 38 +18 54

Biopolymer Composite Renewable | 10 18 +8 37
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Steel (Recycled) Secondary | 15 11 -4 88
Circular Materials Share | — 45 67 +22 —

Figure 4 is a comparative visualization of material composition before and after optimization. The left pie chart
represents the baseline scenario dominated by virgin aluminum (55%), with smaller shares of recycled
aluminum (20%), biopolymer composites (10%), and recycled steel (15%). The Figure illustrates the optimized
configuration, where recycled aluminum rises to 38%, biopolymer composites to 18%, and virgin aluminum
decreases to 33%, reflecting a substantial improvement in circularity and material sustainability within the
optimized smart manufacturing framework.

20

70 e7

[s18] 55

50 45
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40 ]
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20
20 18 15
10 11
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Virgin Aluminum Recycled Biopolymer Steel (Recycled) Circular Materials
Aluminum Composite Share

Baseline Usage (26) Optimized Usage (%46)

Figure 4: Material composition change visualization

4.5 Environmental Impact Assessment

Carbon emissions were calculated using process-level energy and material data in combination with Ecoinvent
3.8 emission factors. The optimization reduced total annual CO:-equivalent emissions from 1,480 tons to 1,115
tons, representing a 24.6% reduction. This improvement stems from two principal factors: (a). Increased
renewable energy substitution of grid electricity, reducing emission intensity per kWh by approximately 40%;
and (b). Higher adoption of low-carbon materials, which cut embodied emissions by 18%.

The Carbon Intensity (CI) metric declined from 0.87 kg CO2-e/kg product to 0.64 kg CO:-e/kg product, aligning
closely with the emission benchmarks suggested by the International Energy Agency (IEA, 2023). These
quantifiable outcomes affirm that the proposed optimization framework delivers measurable sustainability
benefits, grounded in real-time operational data.

4.6 Economic and Operational Benefits

Beyond environmental performance, the optimized system achieved substantial cost savings. The total
operational cost per production batch decreased from $12,450 to $10,850, primarily due to: Reduced grid
electricity dependence; Lower material procurement costs through circular sourcing; and Enhanced process
scheduling reducing machine idle time by 14%.

Productivity improved by 17.6%, driven by the algorithm’s capacity to dynamically adjust production sequences
based on energy and material availability. These findings validate the economic viability of integrating
renewable and circular strategies into smart manufacturing, reinforcing the argument that sustainability and
profitability can co-exist through intelligent optimization (Tao et al., 2019; Qi et al., 2022).

4.7 Comparative Evaluation with Existing Models

A comparative analysis against three benchmark studies (Li et al., 2021; de Oliveira Neto et al., 2023; Park et
al., 2024) shows that the proposed model consistently outperforms traditional optimization frameworks in all
sustainability dimensions. This is because: The emission reduction achieved (24.6%) is approximately 1.3x
higher than comparable digital twin—based models; The material circularity improvement (26 points) exceeds
reported averages by 8—10 percentage points; and The economic savings are also notable, reflecting the
advantage of hybrid AI-NSGA-II integration in dynamic manufacturing settings.

This comparative edge highlights the methodological innovation of coupling real-time digital twin data with
multi-objective optimization, providing a reproducible pathway for sustainable manufacturing transformation.
Table 8 compares the performance of this study against leading models in renewable and circular manufacturing
optimization. The results confirm superior performance across all sustainability metrics, highlighting
methodological novelty and data-driven strength.
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Table 8: Environmental and economic performance comparison with existing studies

Study Reference Optimization Method Emission Circularity Gain | Cost Savings | Key Distinguishing
Reduction (%) | (%) (%) Feature

Li et al. (2021) Renewable—Grid Hybrid | 18.0 — 10.0 Renewable integration
Scheduling only

de Oliveira Neto et | Circular Material | — 17.0 8.0 Material-based CE

al. (2023) Optimization model

Park et al. (2024) Data-driven Circular Factory | 19.5 20.5 11.0 Smart CE integration

This Study (2025) AI-NSGA-II + Digital Twin | 24.6 26.0 12.8 Real-time hybrid
Integration optimization

A comparative benchmark performance of the proposed optimization framework against existing studies in
terms of production cost, carbon emissions, and energy efficiency is highlighted in Figure 5. The grouped bar
chart illustrates that the proposed model outperforms benchmark approaches across all key indicators, achieving
a 12.8% lower production cost, 24.5% reduction in carbon emissions, and 32.7% improvement in energy
efficiency. These results confirm the model’s superior balance between environmental and economic
performance, demonstrating its methodological robustness and potential for practical adoption in sustainable
smart manufacturing systems.

Al—NSGA-11 + Digital Twin Integration
Data-driven Circular Factory
Circular Material Optimization

Renewable—Grid Hybrid Scheduling

(8] =1 10 15 20 25 30

Cost Savings (2¢6) m Circularity Gain (24) m Emission Reduction (24)

Figure 5: Comparative benchmark performance

4.8 Discussion of Methodological Innovation

The proposed approach distinguishes itself through three interrelated innovations: Real-time digital twin
integration, enabling synchronization between physical and virtual manufacturing systems for adaptive
sustainability optimization; Hybrid AI-NSGA-II modeling, which captures nonlinear dependencies between
renewable availability, material sustainability, and production performance; and Multi-dimensional
sustainability quantification, offering measurable metrics (EE, MCI, CI, CSI) that allow holistic performance
evaluation.

By embedding data-driven intelligence within manufacturing optimization, this study advances the
methodological frontier of Industry 5.0, aligning with the principles of resilient, human-centric, and sustainable
production (European Commission, 2022). The model’s modular structure further ensures adaptability across
diverse industrial domains—ranging from automotive and electronics to additive manufacturing.

4.9 Implications and Future Directions

The results confirm that integrating renewable energy and sustainable material utilization through digital twin—
based optimization can yield substantial triple-bottom-line benefits.
Future research should focus on: Incorporating uncertainty modeling for renewable intermittency; Extending the
framework to multi-factory network optimization; and Integrating carbon pricing mechanisms and life-cycle
cost accounting for long-term sustainability planning.

The presented framework establishes a scalable reference architecture for next-generation sustainable
manufacturing systems, capable of guiding both academic research and industrial deployment. The results
validate that renewable energy and sustainable materials can be co-optimized within a smart manufacturing
framework without sacrificing economic performance. Integration of ML-based predictive control ensures
adaptive optimization under dynamic energy supply and demand conditions. This aligns with circular economy
principles and supports Net-zero manufacturing pathways.
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V. Conclusion and Implications
5.1 Conclusion

This study presented an integrated framework for optimizing smart manufacturing systems through the
combined application of renewable energy integration, sustainable material utilization, and digital twin—driven
multi-objective optimization. The research demonstrated that intelligent coupling of physical manufacturing
processes with data-centric digital models can deliver quantifiable sustainability gains while maintaining
economic competitiveness.

The developed hybrid AI-NSGA-II model successfully minimized production cost and carbon
emissions while maximizing energy efficiency and throughput. Simulation outcomes revealed a 12.8%
reduction in cost, a 24.5% reduction in carbon emissions, and a 17.6% increase in productivity when compared
with baseline operations. Furthermore, the material circularity index improved by 26 points due to the adoption
of recycled and bio-based materials. These measurable sustainability improvements confirm the efficacy of
integrating renewable energy systems and circular material flows within a unified optimization framework.

By embedding real-time digital twin feedback loops, the study achieved dynamic synchronization
between energy supply, material availability, and production scheduling. This capability allowed adaptive
optimization under variable operating conditions, demonstrating the practicality and resilience of the proposed
model in real-world manufacturing contexts. The findings also validate that sustainability-oriented optimization
need not compromise operational efficiency or profitability when supported by robust data analytics and system-
level integration. Overall, the research provides a methodological advancement in sustainable manufacturing
optimization, bridging the gap between theory and industrial application. The proposed framework can serve as
a replicable template for designing intelligent, adaptive, and resource-efficient manufacturing systems under the
broader paradigm of Industry 5.0.

5.2 Practical Implications

From an industrial perspective, the proposed model offers a clear pathway toward achieving triple-
bottom-line performance in manufacturing systems. The integration of renewable energy sources reduces
dependence on fossil-based electricity, thereby stabilizing energy costs and improving carbon accountability.
Manufacturers can adopt similar digital twin—based frameworks to anticipate energy fluctuations, optimize load
scheduling, and improve resilience against grid volatility. The enhanced utilization of sustainable materials
provides additional strategic benefits. By leveraging circular material sourcing and process optimization,
manufacturers can reduce supply chain vulnerabilities, minimize waste, and comply with emerging
environmental regulations and extended producer responsibility policies. These outcomes align with the
evolving global standards for carbon-neutral and circular production systems.

Moreover, the multi-objective optimization model can be tailored for different industrial contexts, from
discrete manufacturing to continuous processing. Its modular structure allows scalability, enabling integration
with Enterprise Resource Planning (ERP) systems, predictive maintenance tools, and real-time carbon
accounting platforms. This adaptability positions the framework as a strategic decision-support tool for both
operational managers and sustainability planners.

5.3 Policy and Research Implications

The outcomes of this study also carry important implications for policy development and academic
research. At the policy level, the demonstrated synergy between renewable energy and material circularity
underscores the need for integrated sustainability incentives. Policymakers could encourage adoption of similar
optimization frameworks through green financing schemes, renewable energy credits, and performance-based
sustainability certifications.

From a research perspective, this study opens multiple directions for future inquiry. These include
expanding the optimization framework to multi-factory networks, incorporating uncertainty modeling for
renewable intermittency, and developing predictive digital twins with real-time learning capabilities. Further
work could also integrate life-cycle assessment modules and social sustainability indicators, advancing toward a
holistic Industry 5.0 sustainability model.

5.4 Final Remarks

The integration of renewable energy and sustainable materials within smart manufacturing systems
represents a transformative step towards the attainment of global sustainability goals. This research
demonstrates that data-driven, digitally enabled optimization can simultaneously advance economic,
environmental, and operational objectives. By quantifying measurable benefits through rigorous modeling and
simulation, the study provides both theoretical contribution and practical relevance, thereby laying a strong
foundation for the next generation of sustainable and intelligent manufacturing ecosystems.
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