

Utilization of Sugar Palm Fiber in Composite Materials: Research Trends, Fabrication Technologies, and Future Prospects

Agus Dwi Catur*, Salman

Mechanical Engineering Department, Engineering Faculty, University of Mataram
Jln. Majapahit No.62 Mataram, Indonesia, 83125
*Corresponding Author: agus.dc@unram.ac.id

ABSTRACT: Sugar palm fiber, a natural fiber derived from the sugar palm (*Arenga pinnata*) plant, holds significant potential for developing sustainable composite materials. The urgency of utilizing natural fiber in polymer composites is increasing with the need to replace petroleum-based materials with environmentally friendly and renewable alternatives. This review aims to summarize recent developments in fabrication technology, mechanical and functional characteristics, and the challenges and opportunities of sugar palm fiber-based composites. The method used is a narrative review with a literature search of Scopus, Web of Science, and Google Scholar databases.

Key findings indicate that sugar palm fiber composites offer competitive mechanical strength, sound and vibration damping properties, and broad application potential in the automotive, construction, and eco-friendly product sectors. However, significant challenges such as the variability of natural fiber properties, the low quality of the fiber-matrix interface, and limitations in standardization and production scale-up need to be addressed. Implications for future research emphasize the development of hybrid composites, optimization of surface treatments, the use of biopolymer matrices, and the application of modern fabrication technologies to improve the performance and commercialization of sugar palm fiber composites.

Keywords: sugar palm fiber; natural fiber composite; polymer composite; sustainable material; biomaterial

Date of Submission: 22-01-2026

Date of acceptance: 04-02-2026

I. Introduction

In recent decades, global interest in environmentally friendly composite materials has increased significantly due to the need to reduce the environmental impact of petroleum-based plastics, fiberglass, and other synthetic materials [1]. Natural fiber-based composite materials are a promising alternative due to their renewable, biodegradable nature and lower carbon footprint compared to synthetic fibers [2]. In this context, sugar palm fiber, as a tropical natural fiber, shows great potential as a reinforcement in sustainable composite materials.

Sugar palm fiber is known for its abundant availability in tropical regions, particularly in Indonesia and other Southeast Asian countries, making it an economical and sustainable local resource. Physically, sugar palm fiber has a structure that provides advantages in terms of weight and resistance to compression [3]. In terms of its mechanical properties, this fiber exhibits competitive tensile strength and modulus of elasticity compared to other natural fibers such as kenaf and ramie [4]. However, the use of sugar palm fiber in composites still faces several technical challenges.

The main challenges in developing natural fiber-based composite materials include biodegradability issues, which sometimes do not balance product durability requirements; limited adhesion between the polymer matrix and fiber, which can degrade the composite's mechanical properties; and variability in the fiber's physical properties due to environmental factors and the extraction process [5-6]. For sugar palm fiber, the issue of fiber-matrix interfacial adhesion is a crucial research focus to improve the mechanical performance and durability of composites [7]. Therefore, a comprehensive review summarizing developments in fabrication technology, fiber surface modification, and the application of sugar palm fiber in various matrices is essential.

This review aims to provide an overview of current research trends, fabrication technologies used in the manufacture of sugar palm fiber-based composite materials, and future prospects for their use in various industrial applications. Furthermore, this article will identify remaining research gaps and provide recommendations for the development of more effective and sustainable technologies. Thus, this review contributes to the scientific literature by presenting the state of the art of utilizing sugar palm fiber in environmentally friendly composite materials that have the potential to support the development of the global green industry.

II. Review Methodology

The literature search strategy in this study adopted a narrative review approach, focusing on trusted and internationally reputable sources. The literature search was conducted through three main databases: Scopus, Web of Science, and Google Scholar, widely recognized as leading scientific indexing and citation platforms [8]. The use of these three databases provided broad and comprehensive coverage to ensure the inclusiveness of articles related to the use of sugar palm fiber in composite materials from various disciplines.

The keywords used in the literature search were specifically formulated to ensure the relevance and accuracy of the results. The main keywords included "sugar palm fiber," "composite materials," "natural fiber composites," "fabrication technology," and "future prospects." These keyword combinations were connected with Boolean operators (and, or) to clarify the search focus and eliminate irrelevant articles [9]. The search period was set from 2000 to 2025, to capture the latest research and technology developments, as well as future trends in the field of natural fiber-based composite materials.

Inclusion and exclusion criteria were strictly defined to maintain the quality and relevance of the articles analyzed [10]. Inclusion criteria included studies discussing the use of sugar palm fiber as a reinforcement in composite materials, including both experimental research and literature reviews discussing the fabrication technology and applications of this material. The types of testing included mechanical, thermal, and environmental tests relevant to the performance of composite materials. Meanwhile, exclusion criteria included studies that only discussed other natural fibers without a focus on sugar palm fiber, non-peer-reviewed articles, and publications in languages other than English.

The article selection procedure was conducted manually by thoroughly reading the abstracts and contents to determine their suitability to the study's focus, without using the prism diagrams common in systematic reviews [11]. The data analysis technique used in this review is thematic analysis, which allows the identification of key patterns and research trends, fabrication technologies, and prospects for the use of sugar palm fiber in composite materials based on selected literature [12]. This approach provides a comprehensive and critical overview of the developments in the reviewed field.

III. Characteristics of Sugar Palm Fiber and Its Utilization in Composite Materials

3.1 Characteristics of Sugar Palm Fiber

Sugar palm fiber is a natural fiber derived from the fronds of the sugar palm (*Arenga pinnata*) plant. It possesses unique physical characteristics that support its potential as a reinforcing material in composite materials. The morphology of sugar palm fiber is characterized by its elongated and hollow shape. Its microscopic structure, which can be analyzed using a Scanning Electron Microscope (SEM), reveals a rough and textured fiber surface, providing a large surface area for interaction with the polymer matrix [13]. The diameter of sugar palm fiber varies between 150 and 300 μm , with a relatively low density of around 1.2 g/cm³, and a distinctive yellowish-brown color due to its relatively high lignocellulose content [14]. The lignocellulose content of sugar palm fiber consists of cellulose, hemicellulose, and lignin, which significantly influences the fiber's physical and mechanical properties [15].

In terms of mechanical properties, sugar palm fiber exhibits competitive tensile strength among natural fibers, with tensile strength values reaching 190–276 MPa and a modulus of elasticity ranging from 3–6 GPa [13–15]. Elongation at break of sugar palm fiber is generally in the range of 1.5–3%, indicating sufficient ductility for composite material applications requiring a balance between strength and flexibility. When compared to other natural fibers such as sisal, kenaf, and ramie, sugar palm fiber has a tensile strength comparable to sisal and kenaf, but slightly lower than ramie, which is known to have the highest tensile strength among these natural fibers [16]. This difference is related to the microfibril structure and chemical composition of each fiber.

The chemical composition of sugar palm fiber plays a critical role in the performance of the resulting composite material. This fiber consists of approximately 37–66% cellulose, 4.7–21% hemicellulose, and 46.4% lignin, with extractives of 0.9–6.3% [17]. The high cellulose content provides good mechanical strength and chemical resistance, while hemicellulose and lignin contribute to the hydrophobicity and thermal stability of the fiber. The hydrophobicity of sugar palm fiber is relatively low, so it tends to absorb water which can reduce adhesion with hydrophobic polymer matrices such as polyethylene and polypropylene [4]. Therefore, surface modification or the use of coupling agents is often required to improve the interaction between the fiber and the polymer matrix, which directly improves the performance of the composite [7].

3.2 Sugar Palm Fiber-Based Composite Fabrication Technology and Methods

Matrix selection is a crucial aspect in sugar palm fiber-based composite fabrication, directly affecting the performance and application of the final material. Commonly used matrices fall into two main categories: thermoset and thermoplastic. Thermoset matrices such as epoxy, polyester, and vinyl ester are widely used due to their good adhesion and high thermal and mechanical stability [18]. On the other hand, thermoplastic matrices

such as polypropylene (PP), polyethylene (PE), and polylactic acid (PLA) are gaining popularity due to their recyclability, shorter production cycle times, and flexibility in the fabrication process [19].

Various fabrication techniques have been applied to produce sugar palm fiber composites of optimal quality. The hand lay-up method is a simple and economical basic technique, but it has limitations in fiber consistency and orientation [20]. Compression molding techniques allow for increased composite density and homogeneity, resulting in improved mechanical properties [21]. Resin transfer molding (RTM) and injection molding offer advantages in mass production with tighter parameter control, resulting in composite products with good surface quality and superior mechanical properties [22]. The choice of fabrication method significantly influences the final properties of the composite, particularly in terms of tensile strength, elastic modulus, and deformation resistance.

Surface treatment of sugar palm fiber is a crucial step to enhance adhesion between the fiber and the polymer matrix, which directly impacts the mechanical properties of the composite. Alkali treatment using sodium hydroxide (NaOH) is the most common method, removing excess dirt, grease, and lignin from the fiber surface, thereby increasing roughness and contact area. Additionally, silane treatment is used to form a chemical bridge between the fiber and the matrix, improving compatibility and mechanical stability. Overall, the surface treatment of sugar palm fiber significantly improves the tensile strength, elastic modulus, and wear resistance of the composite, thus expanding its application potential in various industrial sectors.

3.3 Mechanical and Functional Properties of Sugar Palm Fiber Composites

Various studies have reported the mechanical properties of sugar palm fiber-based composites, particularly in terms of tensile strength, flexural strength, and impact resistance. Tensile strength values for sugar palm fiber composites generally range from 23–77 MPa, while flexural strength reaches 50–90 MPa, and impact resistance shows a significant improvement compared to pure polymer matrices. These variations in results are strongly influenced by key factors such as fiber volume fraction, fiber orientation, fiber length, and the quality of the fiber-matrix interface. The optimal fiber volume fraction is generally between 20–40%, and increases outside this range can lead to decreased mechanical properties due to stress concentration and uneven fiber dispersion [23-24-25].

Analysis of the thermal properties of sugar palm fiber composites using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA) techniques indicates adequate thermal stability for moderate to high temperature applications. TGA indicates that the composite begins to experience significant degradation at temperatures around 280–320 °C, which is in line with the degradation characteristics of lignocellulose. DSC shows a glass transition (T_g) that is influenced by the type of matrix and fiber surface treatment, while DMA reveals a dynamic modulus of deviation that indicates an increase in material stiffness with fiber addition [26-27-28-29]. This temperature resistance makes sugar palm fiber composites suitable for vehicle and building interior applications that do not require extreme temperature exposure.

In addition to its mechanical and thermal properties, sugar palm fiber and its composites offer advantages as sound absorbers and vibration dampers due to their porous structure and fiber elasticity [31-32]. This opens up potential applications as interior panels in vehicles, buildings, and electronic equipment, where noise and vibration reduction are critical. However, the water absorption rate of sugar palm fiber composites remains a challenge, with relatively high absorption values due to the hydrophilic nature of the natural fiber, which can reduce mechanical durability and accelerate degradation [4]. Studies have shown that chemical treatments such as alkali and silane treatment significantly reduce water absorption while increasing fiber-matrix adhesion, contributing to improved mechanical properties and biodegradation resistance of the composites [33].

A comparison of sugar palm fiber composites before and after chemical treatment highlights the importance of fiber surface modification. Alkali and silane treatments can remove impurities and increase the roughness of the fiber surface, thus significantly increasing adhesion with the polymer matrix. This is reflected in the increase in tensile and flexural strength values by up to 20–40% as well as better impact resistance [33]. With promising mechanical, thermal, and functional characteristics, sugar palm fiber composites have great potential as an alternative environmentally friendly material in various engineering and industrial applications.

IV. Challenges and Opportunities

4.1 Challenges and Research Gaps

The development of sugar palm fiber-based composites faces several challenges related to the variability in the properties of the natural fiber itself. Because sugar palm fiber is derived from natural biomass sources, its physical and chemical properties are strongly influenced by environmental factors, growing location, and extraction methods, resulting in significant heterogeneity between fiber batches [34]. This variability impacts the inconsistency of the composite's mechanical and functional performance, posing a major obstacle to product standardization and industrial applications.

The quality of the fiber-matrix interface remains a critical issue, limiting the optimization of the composite's mechanical properties. Although various surface treatments have been applied, adhesion between sugar palm fiber and the polymer matrix is often less optimal, especially in thermoplastic matrices, resulting in poor stress transfer and potential delamination. Furthermore, the less homogeneous distribution of fibers within the composite matrix also reduces performance, as fiber buildup or voids can be a precursor to material failure [35].

The research gap is also evident in the limited number of studies exploring the use of premium thermoset matrices such as epoxy, which has higher mechanical and thermal potential than conventional polyester or vinyl ester. Comprehensive research on the interaction of sugar palm fiber with epoxy matrices is still limited, opening up significant opportunities for further research to improve the application of composites with superior performance [36]. Furthermore, in-depth studies on the functional properties of sugar palm fiber composites, such as thermal, dynamic, and acoustic properties, are also limited, even though these aspects are crucial for applications in automotive and building interior panels [37-38].

Limitations in industrial scaling also pose a significant challenge. Fabrication processes, which have been dominated by laboratory techniques, are difficult to adapt to mass production with guaranteed quality consistency. This is exacerbated by inconsistent testing and characterization standards for sugar palm fiber composites, which vary across studies, making it difficult to compare results and implement research findings broadly in industry. Therefore, the development of harmonized and standardized testing protocols is crucial to advance research and commercialization of sugar palm fiber-based composites.

4.2 Prospects and Future Research Directions

The future development of sugar palm fiber-based composites holds significant potential through the concept of hybrid composites, which combines sugar palm fiber with other natural or synthetic fibers to optimize the mechanical and functional properties of the composite. This approach can overcome the limitations of individual sugar palm fiber properties while improving overall material performance, particularly in structural applications that require a combination of high strength and durability [39]. Furthermore, optimizing fiber surface treatments remains a key focus to enhance fiber-matrix adhesion while reducing the fiber's hydrophilic properties, through innovative techniques such as plasma treatment, grafting, or the use of bio-based coupling agents [40].

Microstructural analysis and fracture mechanisms of composites require advanced approaches using advanced characterization techniques such as Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy [41]. These techniques are essential for understanding fiber-matrix interactions at the microscopic level and detecting chemical and physical changes that occur during surface treatments or fabrication processes. This in-depth understanding can lay the foundation for engineering materials with tailored properties tailored to application needs.

Biopolymer-based composites have emerged as a highly promising research trend, replacing conventional petroleum-based polymer matrices with biodegradable polymers such as polylactide (PLA) and poly hydroxy alcanoate (PHA). The integration of sugar palm fiber into biopolymer matrices not only supports the development of environmentally friendly materials but also expands composite applications in the medical, packaging, and disposable products that require rapid biodegradation [42]. This approach aligns with the global demand for sustainable materials.

The use of Life Cycle Assessment (LCA) in evaluating the environmental impact of sugar palm fiber composites is a crucial aspect for measuring the material's sustainability from upstream to downstream. LCA studies can provide a comprehensive overview of carbon emissions, energy use, and potential waste throughout a product's life cycle, thus serving as a tool for design decisions and industrial policy [43]. This is particularly relevant in the context of increasing environmental awareness and climate friendly regulations.

Modern fabrication technologies such as 3D printing and vacuum infusion offer new opportunities for the production of sugar palm fiber composites with high precision, complex designs, and material efficiency. 3D printing enables the creation of composite structures with controlled fiber orientation, while vacuum infusion can improve resin penetration and material homogeneity [44-45]. The implementation of these technologies is expected to accelerate the commercialization and diversification of sugar palm fiber composite applications.

Potential high value applications for sugar palm fiber composites include the automotive, aerospace, electronics, and consumer products sectors, which demand lightweight, strong, and environmentally friendly materials. Innovative research and multidisciplinary collaboration are key to exploring and optimizing the use of these composites in these applications, which will expand the market and significantly contribute to the sustainable materials industry.

V. Conclusion

This review article comprehensively examines the use of sugar palm fiber in composite materials, highlighting recent research trends, fabrication technologies, and future prospects. The review results indicate that sugar palm fiber has promising mechanical and functional potential, particularly in thermoset and thermoplastic matrix-based composite applications. However, the variability of natural fiber properties, the need for improved fiber-matrix interfacing quality, and limitations in standardization and production scale are key challenges that must be overcome. Modern fabrication technologies and optimal surface treatments have proven effective in enhancing composite performance, but further studies are needed to explore premium matrices and composite functional properties in greater depth.

The implications of further research are highly strategic, particularly in the development of hybrid composites, optimization of fiber surface modification techniques, and the utilization of biopolymer matrices that support sustainability. Advanced microstructural and fracture analysis approaches and the application of life cycle assessments (LCA) will strengthen scientific understanding and support data driven environmental decision making. From an industrial perspective, increasing technological readiness through the integration of modern fabrication techniques such as 3D printing and vacuum infusion can open up opportunities for broader commercialization and application diversification, particularly in the automotive, construction, and eco-friendly product sectors.

As a strategic recommendation, multidisciplinary collaboration between academia, industry, and policymakers needs to be strengthened to address technical challenges and improve testing standardization. Focusing on developing scalable and environmentally friendly fabrication protocols, as well as investing in innovative fiber modification technologies, will accelerate the adoption of sugar palm fiber composites across various industrial sectors. With this holistic approach, sugar palm fiber has the potential to become a competitive and sustainable natural composite raw material, making a significant contribution to the transition to a green economy and the future materials industry

REFERENCES

- [1]. Findik,F.(2025). Sustainable composite materials: Applications and future, Sustainable Engineering and Innovation, Vol. 7, No. 2, pp.415-424, <https://doi.org/10.37868/sei.v7i2.id504>
- [2]. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. <https://doi.org/10.1016/j.carbpol.2007.05.040>
- [3]. Imraan, M., Ilyas R.A, Norfarhana, A.S., Bangar, S.P., Knight, V.F., Norrrahim, M.N.F. (2023). Sugar palm (*Arenga pinnata*) fibers: new emerging natural fibre and its relevant properties, treatments and potential applications, journal of materials research and technology, 24, 4551 - 4572
- [4]. Sherwani, S. F. K., Zainudin,E. S., Sapuan,S. M., Leman, Z., Abdan, K.(2021). Mechanical Properties of Sugar Palm (*Arenga pinnata* Wurmbl. Merr)/Glass Fiber-Reinforced Polylactic acid Hybrid Composites for Potential Use in Motorcycle Components Polymers, 13, 3061. <https://doi.org/10.3390/polym13183061>
- [5]. Huzaifah, M.R.M., Sapuan,S.M., Leman, Z., Ishak, M.R. (2019). Sugar palm fibre composites, BioResources, 14(1),619-637.
- [6]. Li, X., Lope G., Tabil, Satyanarayan Panigrahi (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J Polym Environ, 15, 25–33.
- [7]. Husen, M., Balfas, M., Kamil, K. (2016). Surface Morphology and Interfacial Bonding Between Palm Fiber Treated with Sea Water and Sago Matrix, ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 23.
- [8]. Chigbu,U.E., Atiku, S.O., Plessis, C.C.D. (2023). The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising, Publications, 11, 2. <https://doi.org/10.3390/publications11010002>
- [9]. Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic Approaches to a Successful Literature Review. Sage Publications.
- [10]. Peters, M. D., Godfrey, C. M., Khalil, H., McInemey, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141-146. <https://doi.org/10.1097/xb.0000000000000050>
- [11]. Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101-117. [https://doi.org/10.1016/S0899-3467\(07\)60142-6](https://doi.org/10.1016/S0899-3467(07)60142-6)
- [12]. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. <https://doi.org/10.1191/1478088706qp063oa>
- [13]. Ishak, M.; Sapuan, M.S.; Leman, Z.; Rahman, M.; Anwar, U.; Siregar, J. (2013). Sugar palm (*Arenga pinnata*): Its fibres, polymers and composites. Carbohydr. Polym. , 91, 699–710.
- [14]. Bachtiar D., Sapuan S. M., Zainudin E. S., Khalina A. and Dahlan, K.Z.M. (2010). The tensile properties of single sugar palm (*Arenga pinnata*) fibre. IOP Conf. Series: Materials Science and Engineering 11 (2010) 012012 doi:10.1088/1757-899X/11/1/012012
- [15]. Chandrasekar, M.; Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Jawaid, M. (2017). A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast. Rubber Compos, 46, 119–136
- [16]. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose-based fibres. Progress in Polymer Science, 24(2), 221-274. [https://doi.org/10.1016/S0079-6700\(98\)00018-5](https://doi.org/10.1016/S0079-6700(98)00018-5)
- [17]. Khoo P. S., Ilyas R. A., Jamal T., Gan C.S., Yu J.M., Ikram M. A. A. M., Jing C. L. Z., Haron S, Norrrahim M.N.F., Knight V.F., Mahardika M. (2025). Sugar Palm (*Arenga pinnata*): Newly Discovered Natural Fiber with Its Properties and Applications, ChamBioEng Review, Volume12, Issue4, e70010, <https://doi.org/10.1002/cben.70010> Digital Object Identifier (DOI)
- [18]. Edah G.O., Joshua O., Atiba, Ojo S.I., Fayomi. (2025). Advancements in fibre-reinforced polymers: Properties, applications (A mini review), Next Materials 8 (2025) 100743.
- [19]. Yousaf A., Rashid,A., Polat,R., Muammer K., Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing, Sustainable Materials and Technologies, Volume 41, September 2024, e01103.
- [20]. Elkington M., Bloom L.D., Ward C., Chatzimichali A. (2015). Hand layup: Understanding the manual process, Advanced Manufacturing Polymer & Composites Science 1 (3): 2055035915Y.000

[21]. Phiri R., Rangappa, S.M., Siengchin,S. , Oladijo O.P., Ozbakkaloglu,T. (2024). Advances in lightweight composite structures and manufacturing technologies: A comprehensive review, *Heliyon* 10 (2024) e39661

[22]. Hiremath P., Ambiger K.D., Jayashree P.K., Heckadka S.S., Deepak G.D., Murthy B. R. N., Kowshik S., Naik N. (2025). Computational Approach for Optimizing Resin Flow Behavior in Resin Transfer Molding with Variations in Injection Pressure, Fiber Permeability, and Resin Sorption *Journal of Composite Science*, 9, 129

[23]. Widodo R D, Robi W, Rusiyanto, Nugroho A., AlJanan, D. H. (2020). The Effect of Orientation Fibres on Flexural and Tensile Properties of Arenga Pinnata Fibres Reinforced Polyester Composites, *IOP Conf. Series: Materials Science and Engineering* 807 012031 doi:10.1088/1757-899X/807/1/012031

[24]. Pakaya F., Nantan Y., Huwae J.C., Tappy M.S., Simanjuntak R.G., Wasum, Subawa I.N. (2025). Arenga pinnata Merr. Reinforced Polyester Biocomposite as a Candidate Material for Fishing Vessel Hull: Mechanical Properties Analysis, *Maritime Technology and Society*, Vol. 4(2): 56-66.

[25]. Widodo, R.D., Darsono, F.B., Rusiyanto, Mukmin K., Masturi. (2022). The influence of Arenga pinnata fibres – reinforced orientation on tensile and flexural strength of epoxy matrix – based composite *IOP Conf. Series: Earth and Environmental Science* 969 012039 IOP Publishing doi:10.1088/1755-1315/969/1/012039

[26]. Nasir, M.H.M., Taha, M.M., Razali, N., Ilyas, R.A., Knight, V.F., Norrrahim, M.N.F. (2022). Effect of Chemical Treatment of Sugar Palm Fibre on Rheological and Thermal Properties of the PLA Composites Filament for FDM 3D Printing, *Materials*, 15, 8082. <https://doi.org/10.3390/ma15228082>

[27]. Izwan,S.M., Sapuan, S.M., Zuhri M.Y.M., Mohamed, A.R. (2021), Thermal Stability and Dynamic Mechanical Analysis of Benzoylation Treated Sugar Palm/Kenaf Fiber Reinforced Polypropylene Hybrid Composites, *Polymers*, 13, 2961. <https://doi.org/10.3390/polym13172961>

[28]. Ishak, M.R., Sapuan, S.M., Leman, Z., Rahman M.Z.A., Anwar, U.M.K. (2012). Characterization of sugar palm (Arenga pinnata) fibres. *Journal of Thermal Analysis and Calorimetry*, Volume 109, Number 2, DOI 10.1007/s10973-011-1785-1

[29]. Sherwani, S.F.K., Salit, M.S.B., Zainudin, E.S.B., Leman, Z., Khalina, A. (2022), Physical and flammability properties of treated sugar palm fibre reinforced polylactic acid composites, *Journal of Industrial Textiles*, Volume 52: 1–28, DOI: 10.1177/15280837221133574

[30]. Nazrin A., Sapuan S. M., Zuhri, M. Y. M. (2020). Mechanical, Physical and Thermal Properties of Sugar Palm Nanocellulose Reinforced Thermoplastic Starch (TPS)/Poly (Lactic Acid) (PLA) Blend Bionanocomposites, *Polymers*, 12, 2216; doi:10.3390/polym12102216

[31]. Ismail,L., Ghazali,M.I., Mahzam,S. Zaidi, A.M.A. (2010). Sound Absorption of Arenga Pinnata Natural Fiber, *International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering* Vol:4, No:7.

[32]. Ismail,L. (2012). Acoustic And Durability Performances of Arenga Pinnata Panel, A thesis of Master of Mechanical Engineering, Faculty of Mechanical and Manufacturing Engineering Universiti of Tun Hussein Onn Malaysia.

[33]. Atiqah A., Jawaid M., Sapuan S.M., Ishak M.R. (2018). Physical properties of silane-treated sugar palm fiber reinforced thermoplastic polyurethane composites, *IOP Conf. Series: Materials Science and Engineering* 368 (2018) 012047 doi:10.1088/1757-899X/368/1/012047

[34]. Sahari J.,SapuanS. M, Ismarrubie Z. N., Rahman,M. Z. A., Physical and Chemical Properties of Different Morphological Parts of Sugar Palm Fibres, Fibres & Textiles in Eastern Europe 2012, 20, 2(91), 23-26

[35]. Suriani M.J., Ruzaidi C.M., Nik W.B W., Zulkifli F., Sapuan S. M., Ilyas R.A., Khalina,A., Bakar A.A., Musapha R., Radzi F.S.M., Effect of fibre contents toward manufacturing defects and interfacial adhesion of Arenga Pinnata fibre reinforced fibreglass/kevlar hybrid composite in boat construction, *Journal of Physics: Conference Series* 1960 (2021) 012022 doi:10.1088/1742-6596/1960/1/012022

[36]. Sapuan, S.M., Harussani, M.M. (2022). Effect of incorporation of sugar palm (Arenga Pinnata [Wurmb] Merr.) fiber from various geographical regions towards the tensile and flexural properties of SPF/epoxy composites for engineering applications, *Polymer Composites*, Volume 43, Issue7, Pages 4408-4416

[37]. Abdullah, A.H., Khadir, M.S.A., Roseley, N.R.N., 2015, Dynamic Mechanical Thermal Analysis of Arenga Pinnata Fibre Reinforced Epoxy Composites: Effects of Alkaline Treatment, *Advanced Materials Research* (Volume 1102), 139-142, <https://doi.org/10.4028/www.scientific.net/AMR.1102.139>.

[38]. Abdullah, A.H. & Jamaludin,A.H.B. (2015), Dynamic Mechanical Analysis of Arenga Pinnata Fibre Reinforced Epoxy Composites: Effects of Fibre Aging, *MATEC Web of Conferences* ,27, 02001, DOI: 10.1051/matecconf/20152702001

[39]. Ismail, S.O., Akpan, E., Dhakal, H.N. (2022). Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives, *Composites Part C: Open Access* 9 (2022) 100322.

[40]. Verma,D. & Jain, S. (2017), Effect of Natural Fibers Surface Treatment and their Reinforcement in Thermo- Plastic Polymer Composites: A Review, *Current Organic Synthesis* 14(2):186-199, DOI:10.2174/1570179413666160921114114

[41]. Muarif, M.F., Yusuf, Y., Agipa, A.I. (2024). *Journal of Energy, Material, and Instrumentation Technology*, Vol 5, No.1, P.35-42.

[42]. Mousa, S.A., Sapuan, S.M., Harussanib M.M., Jamal, T, Azrib, M.A.M., Ilyasd, R.A., Azman, M.A., Siddiquib, V.U., Rafin,T. (2023). Development and Characterization of Sugar Palm (Arenga Pinnata (Wurmb. Merr)) Fiber Reinforced Cassava (Manihot esculenta) Starch Biopolymer Composites, *Journal of Natural Fibers*, vol.20, no.2, 2259103. <https://doi.org/10.1080/15440478.2023.2259103>

[43]. Salwa H.N., Sapuan S.M., Mastura M.T., Zuhri, M.Y.M. (2020). Life Cycle Assessment of Sugar Palm Fiber Reinforced-Sago Biopolymer Composite Takeout Food Container, *Applied Science*, 10, 7951; doi:10.3390/app10227951

[44]. Zhang, H., Wu,J, Robert,C, Brádaigh,C.M.O, Yang,D. (2022). 3D printing and epoxy-infusion treatment of curved continuous carbon fibre reinforced dual-polymer composites, *Composites Part B: Engineering*, Volume 234, 1 April, 109687

[45]. Saputra,A.H. and Setyarso,G. (2016). Vacuum infusion equipment design and the influence of reinforcement layers addition to the resin infusion time, *IOP Conference Series: Materials Science and Engineering*, Volume 162, 012015, DOI 10.1088/1757-899X/162/1/012015