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Abstract: We have studied the MHD steady periodic regime of laminar mixed convective flow through an 

inclined channel under uniform transverse magnetic field and the temperature of one wall is constant, while the 

temperature of the other wall is sinusoidal function of a time. The expressions for the velocity field, the 

temperature field, the pressure drop, the friction factors and the Nusselt number at any plane parallel to the walls 

are obtained analytically. The effects of various emerging parameters on the velocity field, the temperature field, 

the pressure drop, the friction factors and the Nusselt number are discussed through graphically. 

 

I. INTRODUCTION 
The laminar mixed convection flow in an inclined channel has been the subject of much investigation 

due its possible application in many industrial and engineering processes. These include cooling of electronic 

equipment, heating of the Trombe wall system, gas cooling nuclear reactors geological system, agricultural 

engineering metallurgy, oil technology and others. The theory developed by viscous flow through porous media 

is useful in analyzing the influence of temperature and pressure on the flow of soil water. It is made use of in the 

energy extraction from geothermal regions. The flow of viscous fluid in an inclined channel with free surface 

has applications in coating to paper rolls, hydraulic engineering, and in the designs of drainage and irrigation 

canals. Until the eighteenth century the flow rate in a channel, the channels were related quantitatively on sound 

principles. A comparatively rapid development in the understanding of open channel phenomena has yielded a 

body of knowledge that is very successfully applied to the design of irrigation, flood control and sewerage 

systems as well as to the design of aqueducts, dam spillways and other structures in which water flows with a 

surface in contact with the atmosphere. Heat ransfer in porous medium has several applications in the situations 

viz: nuclear waste disposal, geothermal energy extraction, fossil fuels detection, regenerator bed etc. 

Understanding the development of hydrodynamic and thermal boundary layer along with the heat transfer 

characteristics is the basic requirement to further investigate the problem extensively and more exhaustively.In 

many chemical processing industries generally slurry adheres to the reactor vessels and gets consolidated. As a 

result of this, the chemical compounds within the reactor vessel percolates through the boundaries causing loss 

of production and then consuming more reaction time. The slurry thus formed inside the reactor vessel often acts 

as a porous boundary for the next cycle of chemical processing. Flow in a porous medium can be considered as 

an ordered flow in a disordered geometry. The transport process of fluid through a porous medium involves two 

substances, the fluid and the porous matrix, and therefore it will be characterized by specific properties of these 

two substances. A porous medium usually consists of a large number of interconnected pores each of which is 

saturated with the fluid. The exact form of the structure is highly complicated and differs from one medium to 

other medium. A porous medium may be either an aggregate of a large number of particles such as sand or 

gravel or solid containing many capillaries as seen in a porous rock (laterite stone). When the fluid percolates 

through a porous material, because of the complexity of microscopic flow in the pores, the actual path of an 

individual fluid particle cannot be followed analytically. In all such cases, one has to consider the gross effect of 

the phenomena represented by a macroscopic view applied to the masses of fluid, large compared to the 

dimensions of the pore structure of the medium. The process can be described in terms of equilibrium of forces. 

The driving force necessary to move a specific volume of fluid at a certain speed through a porous medium is in 

equilibrium with the resistance force generated by internal friction between the fluid and the pore structure. Such 

a resistive force is characterized by Darcy’s [1] semi - empirical law. The simplest model for flow through a 

porous medium is the one dimensional model derived by Darcy. From such empirical evidence, Darcy’s law 

indicates that, for an incompressible fluid flowing through a channel filled with a fixed uniform and isotropic 

porous matrix, the flow speed varies linearly with longitudinal pressure variation. Fluids possessing visco 

elasticity had become important industrially. Specifically in polymer processing applications as well as in 

chemical industry, one deals with flow of visco elastic fluids. A classical example of such a liquid is poly iso -

butylene. With the development of general constitutive equations for visco elastic fluids, it has been a point of 

great concern for Non-Newtonian fluids. All such proposed constitutive equations should in principle lead to the 

definition of flow properties that need to be measured to define the rheology and also to the development of the 

equivalent Navier Stokes equations for the solution of all possible boundary values along with initial value 
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problems that arises in several situations. Some of the analytical methods for complex flows of visco elastic 

fluids generally predict the nature of flow field and gives rise to more or less accurate solution though not a 

perfect solution. In all such situations, the methodology that is applied must be evolved and considered 

appropriately. It is pertinent to be quite specific about the experimental conditions applicable to the relevant 

phenomena. The inertia effects become all the more so important that in a sparsely packed porous medium and 

hence their effect on free convection problems needs to be investigated. The aim of the present investigation is, 

therefore, to study systematically the effect of inertial terms on combined free and forced convective heat 

transfer past a semi-infinite inclined plate embedded in a saturated porous medium with variable permeability, 

porosity and thermal conductivity under the influence of gravity. The results obtained under limiting conditions 

agree well with the existing ones and thus verify the accuracy of the method used. There is a fast growing belief 

that the many provocative experimental phenomena and dilemmas now have become a realistic possibility of 

being explained theoretically by Non-Newtonian Fluid Mechanics. An attempt is being made in this paper to 

illustrate such an optimistic thought in advocating visco elastic effect that occurs in several industrial and 

biological applications. The phenomenon of free convection arises in the fluid when temperature changes cause 

density variation leading to buoyancy forces acting on the fluid elements. This can be seen in our everyday life 

in the atmospheric flow, which is driven by temperature differences. Free convective flow past vertical plate has 

been studied extensively and more intensively by Ostrach [2], [3], and [4]. The transient free convection from a 

vertical flat plate has been examined by Siegel [5]. Although this problem is important in polymer processing 

applications Benenati and Brosilow [6] have shown that the permeability of a porous medium varies due to the 

variation of porosity from the wall to the interior of the porous medium. The problem of the exact solutions of 

two dimensional flows of a second order incompressible fluid has been examined by Pattabhi Ramacharyulu [7] 

by considering rigid boundaries while Kaloni [8] examined the fluctuating flow of a visco elastic fluid past an 

infinite porous plate subject to uniform suction. Thereafter, Merkin [9] investigated the mixed convection 

boundary layer flow on a semi-infinite vertical flat plate when the buoyancy forces aid and oppose the 

development of the boundary layer. In this study two series solutions were obtained, one of which is valid near 

the leading edge and the other is valid asymptotically. In the regions where the series solutions are not valid, 

numerical solutions were obtained by Lloyd and Sparrow [10]. The natural convection flows adjacent to both 

vertical and horizontal surfaces, which result from the combined buoyancy effects of thermal and mass 

diffusion, was first investigated by Gebhart and Pera [11] and Pera and Gebhart [12] while, Soundalgekar [13] 

investigated the situation of unsteady free convective flows wherein the effects of viscous dissipation on the 

flow past an infinite vertical porous plate was highlighted. In the course of analysis, it was assumed that the plate 

temperature oscillates in such a way that its amplitude is small. Oosthuizen and Hart [14] and Wilks [15] have 

carried out a numerical study of the combined forced and free convection flow over a vertical plate. Later, a 

linear analysis of the compressible boundary layer flow over a wall was presented by Lekoudis [16] et al while, 

Shankar and Sinha [17] studied the problem of Rayleigh for a wavy wall. Subsequently, Lessen and Gangwani 

[18] examined the effect of small amplitude wall waviness on the stability of the laminar boundary layer while, 

the free convective heat transfer on a vertical semi-infinite plate has been investigated by Berezovsky et al. [19]. 

The unsteady free convection flow past an infinite vertical plate with constant suction and mass transfer was 

analysed by Soundalgekar et al [20] while for the same situation when the suction is variable was examined by 

Soundalgekar and Wavre [21]. The problem of free convection heat transfer from a vertical plate embedded in a 

fluid saturated porous medium is studied by Cheng and Minkowycz [22], who have obtained the similarity 

solutions for the problem considered. Murthy et al [23] had examined the dispersion effects due to a heated 

vertical flat plate. Subsequently, the problem of free convective heat transfer in a viscous incompressible fluid 

confined between vertical wavy wall and a flat wall was examined by Vajravelu and Shastri [24]. Cheng [25] 

has provided an extensive review of early works on free convection in porous media while, Mucoglu and Chen 

[26] had examined the mixed convection flow over an inclined surface for both the assisting and the opposing 

buoyancy forces. The linearity between speed and pressure variation breaks down for large enough flow speed 

was presented by Mac Donald et al. [27]. Later, Chen et al [28] studied the combined effect of buoyancy forces 

from thermal and mass diffusion on forced convection. Merkin and Mahmood [29] have obtained the similarity 

solution of the mixed convection flow over a vertical plate for the constant heat flux case, while Tsuruno and 

Iguchi [30] have investigated the effects of the surface mass transfer on the mixed convection flow on a 

permeable vertical surface. Plumb and Huenefeld [31] have investigated non-Darcy natural convection from 

vertical isothermal surfaces in saturated porous media. This was emphasized later by Joseph et al [32] who 

stressed force modeled by the Frochheimer acts in a direction opposite to the velocity vector. A numerical and 

experimental investigation of the effects of the presence of a solid boundary and initial forces on mass transfer in 

porous media was presented by Vafai and Tien [33]. The laminar free convection from a vertical plate has been 

studied by Martynenko et al. [34]. In all their papers, the plate was assumed to be maintained at a constant 

temperature, which is also the temperature of the surrounding stationary fluid. Bejan and Poulikakos [35] have 

used Forchheimer’s model to study vertical boundary layer natural convection in a porous medium. The steady 
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flow of an incompressible second grade fluid past an infinite porous plate subject to suction or blowing was 

investigated by Rajagopal and Gupta [36]. Chandrasekhar and Namboodiri [37] have shown the effectiveness of 

variable permeability of the porous medium on velocity distribution and heat transfer. Hong et al [38] have 

studied analytically the non-Darcian effects on a vertical plate natural convection in porous media. They used a 

combination of Rayleigh and Darcy numbers to describe the inertia and boundary terms and obtained similar 

solutions. They found that these effects decrease the velocity and reduce the heat transfer rate. Lai and Kulacki 

[39] have used both Darcy and non- Darcy models to study mixed convection from horizontal and vertical 

surfaces embedded in saturated porous media. Nakayama and Koyama [40] have obtained the similarity solution 

for the problem of free convection in the boundary layer adjacent to a vertical plate immersed in a thermally 

stratified porous medium. Ramachandran et al [41] have studied the mixed convection flow over vertical and 

inclined surfaces, theoretically as well as experimentally. Kumari et al [42] have investigated the non-Darcian 

effects on forced convection heat transfer over a flat plate in a highly porous medium. Subsequently, Ramanaiah 

and Malarvizhi [43] investigated the free convection on a horizontal plate in a saturated porous medium with 

prescribed heat transfer coefficient. Wickern [44] has examined the influence of the inclination angle of the plate 

and the Prandtl number on the mixed convection flow over an inclined plate. Thereafter, Das and Ahmed [45] 

had studied the effects of thermal dispersion and dissipation effects on non – Darcy mixed convection problems 

and established the trend of heat transfer rate convection from a vertical plate in porous medium and investigated 

the flow and temperature fields. Hsieh et al [46] have obtained a non-similar solution for combined convection 

from vertical plates in porous media with variable surface temperatures or heat flux. Later, Knupp and Lage [47] 

analyzed the theoretical generalization to the tensor permeability case (anisotropic medium) of the empirically 

obtained Frochheimer extended Darcy unidirectional flow model. Hung and Chen [48] have studied non-Darcy 

free convection in a thermally stratified fluid saturated porous medium along a vertical plate with variable heat 

flux. It follows that, in multidimensional flow, the momentum equations for each velocity component derived by 

using the Frochheimer extended Darcy equation is atleast speculative while Patidar and Purohit [49] studied the 

free convective flow of a viscous incompressible fluid in porous medium between two long vertical wavy walls. 

Vighnesam and Soundalgekar [50] investigated the combined free and forced convection flow of water from a 

vertical plate with variable temperature. The transient free convection flow past an infinite vertical plate with 

periodic temperature variation was studied by Das et al [51]. Later, Kuznetsov [52] had investigated the effect of 

transverse thermal dispersion on forced convection in porous media and identified the situations favorable to 

heat transfer under dispersion effects. Thereafter, Mohammadien and El-Amin [53] studied the dispersion and 

radiation effects in fluid saturated porous medium on heat transfer rate for both Darcy and non-Darcy medium. 

In recent times, Hossain et al. [54] studied the influence of fluctuating surface temperature and concentration on 

natural convection flow from a vertical flat plate. An explicit analytical technique namely homotopy analysis to 

solve the non - Darcy natural convection over a horizontal plate with surface mass flux and thermal dispersion 

was studied by Wang et al [55]. The wide range of its technological and industrial applications has stimulated 

considerable amount of interest in the study of heat and mass transfer in convection flows. In many practical 

applications, the particle adjacent to a solid surface no longer takes the velocity of the surface. The particle on 

the surface acquires finite tangential velocity and hence "slips" along the surface. The flow regime is called the 

slip-flow regime and this effect cannot be neglected. Under the assumptions made by Sharma and Chaudhary 

[56] and Sharma and Sharma [57] have also discussed the free convection flow past a vertical plate in slip-flow 

regime. Several applications were cited in their papers that occur in several engineering applications wherein 

heat and mass transfer occurs at high degree of temperature differences. Subsequently, Taneja and Jain [58] had 

examined the problem of MHD flow with slip effects and temperature dependent heat source in a viscous 

incompressible fluid confined between a long vertical wall and a parallel flat plate. Recently, Ramana Murthy 

and Kulkarni [59] examined the problem of elastic - viscous fluid of second order type by causing disturbances 

in the liquid which was initially at rest and the bounding surface was subjected to sinusoidal oscillations. In view 

of the above studies, in this paper, we have studied the MHD steady periodic regime of laminar mixed 

convective flow through an inclined channel under uniform transverse magnetic field and the temperature of one 

wall is constant, while the temperature of the other wall is sinusoidal function of a time. 

 

II. MATHEMATICAL FORMULATION AND SOLUTION OF THE PROBLEM 
We consider the laminar flow of a Newtonian fluid in the gap between two infinitely-wide plane 

parallel walls. The flow is assumed to be parallel such that U has the only non-vanishing component along the 

X -axis. The axis orthogonal to the walls, the gravitational acceleration ‘ g ’ and the X -axis lie on the same 

plane. The latter condition ensures that the flow can be considered as two-dimensional, i.e. both the velocity 

field and the temperature field depend only on two spatial coordinates. A uniform magnetic field B0 is applied in 

the transverse direction to the flow. The electrical conductivity of the fluid is assumed to be small so that the 

magnetic Reynolds number is small and the induced magnetic field is neglected in comparison with the applied 

magnetic field. The external electric field is zero and the electric field due to polarization of charges is also 
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negligible. Heat due to Joule dissipation is neglected. The system under consideration is sketched in Fig. 1, 

where the chosen coordinate axes ( ,X Y ) are drawn. Let us assume that the wall at Y L   is kept isothermal 

with a constant temperature 1T , while the wall at Y L is subjected to an oscillating temperature 

2 ( , , )     cos( )T X L t T T t   .                                        (1) 

Moreover, heat flow is assumed to occur only in the transverse direction, so that / 0T X   . The 

latter assumption is conceivable since each wall is kept at a uniform temperature. The Boussinesq approximation 

is invoked, so that U is a solenoidal field and, as a consequence, / 0U X   . A steady mass flow rate is 

prescribed; therefore the average velocity in a channel section, defined as 
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Fig.1 The Physical Model 

 

The equation of state, ( )T   considered as linear, 

0 0   [ 1   ( ) ]T T                                     (3) 

Where 0T is an average temperature both with respect to the interval L Y L    and to the 

period
2

0 t



  , namely 
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                                             (4) 

Since, / 0T X    the reference temperature 0T is a constant. According to the Boussinesq 

approximation, the momentum balance equation yields, along the X and Y axes, 
2

2

0 0 0 02
     ( ) cos    

U P U
g T T B U

t X Y
     
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                            (5) 

0 0   ( ) sin     0.
P

g T T
Y

  


  


                              (6) 

Where  0      ( cos   sin )P p g X Y     . 

Differentiating equations (5) and (6) on both sides with respect to X, we obtain, 

  L  

L  

X  

Y  

g  

0B  
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


 
                                 (8) 

It is easily verified that Equations (7) and (8) imply the existence of two functions ( , )A Y t  and ( )B t  

such that 

  ( , , )  ( , )  ( ) P X Y t A Y t B t X  .                               (9) 

The energy balance equation is given by 

 

2

2
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 
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                              (10) 

 

Let us define the dimensionless quantities 
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Where 4D L  is the hydraulic diameter. By employing Equations (9) and (11), Equations (5) and (10) can be 

rewritten as 

 

2
2

2
          

Re
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M u

y
 


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2
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1
   

Pr y

 


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
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                               (13) 

The no slip condition at the walls implies that 

( 1/ 4, )  0  (1/ 4, )u u                                    (14) 

While the dimensionless thermal boundary conditions are 

1
( , )  

4
  


                                (15) 

1
( , )      cos
4

                                    (16) 

Equations (2) and (4) imply the following constraints on the functions ( , )u y   and ( , )y  : 

1/ 4

1/ 4

1
 ( , )   
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Obviously, Equation (17) yields the further constraint 
1/4
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  0

u y
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






                                (19) 

 On account of Equation (19), an integration of Equation (12) with respect to y  in the range 

[ 1/ 4,1/ 4]  yields 
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
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

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The friction factors 1f  and 2f  at the walls Y L   and Y L respectively are defined as 
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On account of Equation (3.20), the friction factors and the parameter    are related as follows: 
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1 2
1/ 4
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
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Analytical solution for steady periodic regime: 
 

 Since Equations (12) – (18) are linear, one can define the complex valued functions namely the velocity 
*( , )u y  , temperature 

*( , )y   and friction factor 
*( )   which fulfill the equations 
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and are such that 
* * *Re( ), Re( ), Re( )u u       .  

 In steady-periodic regime, a solution of Equations (27) can be written in the form 
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Due to the linearity of Equations (27), if we substitute Equations (28) into Equations (27) we obtain two distinct 

boundary value problems. The first is given by 
2
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While the second one is given by 
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Solving the Equations making use of corresponding boundary conditions, 

we get 
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where  

2

2 2
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
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. 

By employing Equation (11), the heat flux per unit area can be written as 

       
T k T
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                              (40) 

In analogy with the literature (10) – (13), we will define a dimensionless heat flux per unit area, called Nusselt 

number, as follows: 
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   

  
                          (41) 

Where
*Nu is defined as 

 
*          i ia a

a bNu e Nu Nu e
y y

   
   

 
                           (42) 

Finally, Equations (37) and (39) allow one to express the quantities 1 Ref  and 2 Ref  as 

1 1/ 4 1 1

1/ 4

Re   2Re( )  Re( Re Re )
Re Re

i ia b
y a b

y

u uGr Gr
f e f f e

y y

 





 
   

 
                        (43) 

2 1/ 4 1/ 4 2 2Re   2Re( )  Re( Re Re )
Re Re

i ia b
y y a b

u uGr Gr
f e f f e

y y

 

 

 
    

 
                       (44) 

where 1 1 2Re, Re, Rea b af f f  and 2 Rebf  are given by 

1 1/ 4 1 1/ 4Re   2                            Re   2 ,a b
a y b y

u u
f f

y y
 

 
 

 
                         (45) 

2 1/ 4 2 1/ 4Re   2                           Re   2 ,a b
a y b y

u u
f f

y y
 

 
   

 
                          (46) 
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a
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2 2
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Re tanh( / 4)( ) {tanh( / 4) coth( / 4)}

( )

b
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N N N N

 
 

  
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III. RESULTS AND DISCUSSIONS 
 We have studied the MHD steady periodic regime of laminar mixed convective flow through an 

inclined channel under uniform transverse magnetic field and the temperature of one wall is constant, while the 

temperature of the other wall is sinusoidal function of a time. The velocity field, temperature field, the pressure 

drop the friction factor and the Nusselt number obtained so for are discussed through graphically for various 

values of the physical parameters namely the Prandtl number Pr , angular frequency  , Hartmann number M. 

Figs. (2 – 3) represents the effects of Prandtl number Pr , angular frequency   and Hartmann number 

M on the velocity 
bu  (amplitude of the velocity oscillations). Fig.(2) shows the effect of Pr  on the 

bu  with 

10r  and 1M  . It is found that, for Pr 0.7,  bu  is exactly symmetric with respect to the midplane of 

the channel on the other hand, for Pr 7  and Pr 100 , the 
bu  is not symmetric with respect to the 

midplane of the channel. Fig.(3) depicts the effect of   on 
bu with Pr 7  and 1M   .It is observed that, 

for 1,   bu  is symmetric with respect to the midplane of the channel, whereas for 10 and 

100 , the 
bu  is not symmetric with respect to the midplane of the channel. Fig.(4) presents the effect of 

Hartmann number on 
bu  with Pr 7, 10.   It is observed that, 

bu  decreases with increasing M  at any 

position except at the else, where velocity oscillations cannot occur. 

Fig.(5) shows the effect of Pr on the 
b as a function of   with 1M  . It is observed that, the 

friction factor 
b  decreases with increase of  . Further it is observed, the 

b  decreases with an increase in 

Pr . The effect of Hartmenn number M  on 
b as a function of   with Pr 0.7  is shown in Fig.(6). It is 

found that, the 
b  decreases with an increase in M . Fig.6(a) represents enlargement of Fig.(6). 

Fig.(7). shows the effect of  Pr  on the amplitude of oscillations of 
1 Rebf  with 1.M   It is 

observed that, the 
1 Rebf  decreases with increasing Pr . Fig.(8) depicts the effect of M on the 

1 Rebf  with 

Pr 7 . It is found that, the 
1 Rebf  decreases with an increase in M . Fig.(9) presents the effect of Pr  on 

the amplitude of the 
2 Rebf  (resonance frequency for the oscillations of the friction factor at the wall Y L ) 

with 1M  . It is observed that, with increase in the Pr , decreases the 
2 Rebf . The effect of M on the 

2 Rebf  with Pr 7  is shown in Fig.(10). It was found that, the 
2 Rebf  decreases with increasing M . 

The modules of bNu , the steady-temperature wall ( 0.25),Y    at 0.05Y   , and at the midplane 

of the channel ( 0)Y   is plotted versus Pr  in Fig.(11), in the range 0 Pr 400  . As is illustrated by 

this figure, the amplitude of the oscillations of the Nusselt number is a decreasing function of Pr in the whole 

interval 0.25 0y   . On the contrary, is the open interval 0 0.25y  , for every value of y  there exists 

a value of Pr  which maximizes the modules of bNu  i.e. there exists a reasonable frequency for the 

fluctuation of the Nusselt number which is proportional to the inverse of Pr . In this interval, the value of Pr  

which maximizes the modules of bNu  is an increasing function of y . Finally, at the right wall, the modules of 

bNu  are an increasing function of Pr , and no resonance occurs. These phenomena are illustrated in fig.(12) 

& (13). In Fig.(12), plots of the modulus of bNu  versus Pr  are reported in the range 0 Pr 1200,   
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for 0.1,0.17 &0.2y  . For the plots reported in Fig.(12) the resonance frequencies correspond to 

Pr 93.61,312.7and800.0.   In Fig.(13), plots of the modules of bNu  versus Pr  are reported in the 

range 0 40,000,r  for 0.22,0.24&0.25y  (right wall). The first plot presents a resonance 

frequency for 2222,r   the second presents a resonance frequency for 20,000,r   while the third 

presents no resonance. 

 Fig.(14) shows the effect of Pr  as the amplitude of temperature oscillations 
b . The figure shows 

that, for Pr 10,   the amplitude of the temperature oscillations looks like a line as function of y  on the 

other hand, when the value of Pr  becomes higher and higher, the temperature oscillations land to be sensible 

only in a narrow region of the channel adjacent to the wall Y L . 
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Fig.6(ii) The enlargement of Fig. 6(i) 

 

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

Fig.7 The effect of Pr  on the 
1 Rebf   with 1M  . 
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Fig.10 The effect of M  

 

 

 

2 Rebf  

0,2,5M   



Heat Transfer On Steady Laminar Mixed Convective 

www.ijeijournal.com                      Page | 20 

  

the 
2 Rebf   with 7Pr  . 
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Fig.11 Effect of Pr on 
bNu  in the range 0 400Pr   

 

for 0.25, 0.05 and 0y    . 
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Fig.12 Effect of Pr on 
bNu  in the range 0 1200Pr   

For 0.1,0.17 and 0.2y  . 
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Fig.13 Effect of Pr on 
bNu  in the range 0 40000Pr   

for 0.22,0.24 and 0.25y  . 
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Fig.14 Effect of Pr on 
b  for ΩPr =10,100 and 1000 . 

 

 

 

IV. CONCLUSIONS 
  

 

 
We have studied the MHD steady periodic regime of laminar mixed convective flow through an inclined channel under uniform transverse 

magnetic field and the temperature of one wall is constant, while the temperature of the other wall is sinusoidal function of a time. The 
conclusions are made as the following. 

[1]. The amplitude of the velocity oscillations is exactly symmetric with respect to the midplane of the channel for  Pr=0.71 on the other 

hand, the same is not symmetric with respect to the midplane of the channel for Pr=7.  

[2]. The friction factor | |b  decreases with increase of angular frequency   and Hartmann number M.  

[3]. The resonance frequency for the oscillations of the friction factor decreases with increase in Prandtl number Pr and Hartmann number 

M.  

[4]. The amplitude of the temperature oscillations | |b  looks like a line as fraction y on the other hand when the value of 

Pr becomes higher and higher the temperature oscillations land to be sensible only in a narrow of the channel adjacent to the 

wall. 
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