# Motor Vehicle Used Tire Conversion into Fuel Using Thermal Degradation Process with Ferric Carbonate Catalyst

Moinuddin Sarker<sup>1</sup>, Mohammad Mamunor Rashid<sup>2</sup>

<sup>1,2</sup>Natural State Research, Inc., Department of Research and Development, 37 Brown House Road (2<sup>nd</sup> Floor), Stamford, CT-06902, USA, Phone: (203) 406 0675, Fax: (203) 406 9852

**Abstract:**—The disposal of motor vehicle scrap tires is currently a major environmental and economical big issue. Recently estimates of the annual arise of scrap tires in North America are about 2.5 million tonnes, in European Union about 2.0-2.5 million tonnes, and in Japan about 0.5-1.0 million tonnes. In China, more than 1.0 million tonnes per year of tires are generated, which results in about 0.22 million tonnes of used tires per year. Unfortunately, most of these scrap tires are simply dumped in the open place and in landfills in our country. Open dumping may result in accidental fires with highly toxic emissions or may act as breeding grounds for insects. Landfills full of tires are not acceptable to the environment because tires do not easily degrade naturally. It can remain as a long period into land fill. In recent years, many attempts have been made to find new ways to recycle tires, i.e., tire grinding and crumbling to recycle rubber powders and tire incineration to supply thermal energy. During incineration is creating also harmful toxic gases and this process is not environmental friendly. Natural State Research has establishes new method for converting all type of motor vehicle used tire in the thermal degradation process in a stainless steel reactor at 200 to 420 °C with ferric carbonate catalyst. By using this process was collect liquid fuel, tar and light gas (C<sub>1</sub>-C<sub>4</sub>). Fuel analysis purpose was use GC/MS equipment. This tire to fuel could be used for feed stock refinery for further modified fuel energy.

Keywords:---motor vehicle tire, energy, fuel, thermal degradation, GC/MS, FT-IR, conversion

T

# INTRODUCTION

The generation of used tires in 2005 was estimated to be 2.5 million tonnes in North America, 2.5 million in Europe, and 0.5-1.0 million in Japan, which means 6 kg (approximately the weight of a car tire) per inhabitant and year in these developed countries[1]. The forecast for 2012 is that world generation will exceed 17 million tonnes per year, given that economic growth in developing countries drives vehicle sales and the substitution of less deteriorated tires, and the measures adopted to lengthen tire life are insufficient to offset these circumstances [2]. China generated 1 million tonnes in 2005 and the annual increase is 12%. This outlook makes the valorization of used tires more interesting, and among the different technologies, pyrolysis has the following advantages: (i) it enables the subsequent individual valorization of gaseous, liquid, and carbon black fractions, which is an interesting aspect for economic viability;[3] (ii) it has a higher efficiency for energy and a lower environmental impact than incineration [4, 5] As illegal dumping of waste tires is becoming an object of public concern in the world, their disposal and treatment come under the spotlight. In Japan, nearly 1 million tons of waste tires have been discharged annually in the past decade [6]. The most popular utilization of waste tires is thermal recovery, given that the combustion heat of tires (7.2-8.5 kcal kg-1) is much higher than that of other solid residues such as plastic-derived fuel or municipal solid wastes and is comparable to that of C-grade heavy oil (9.2 kcal kg-1) [7]. As automobile tires contain appreciable amounts of heavy metals such as zinc, iron, and cobalt, these metals are eventually concentrated in the combustion ashes, especially in fly ash. In view of resource recycling, waste tire fly ash (TFA) would be a promising secondary source for these valuable metals [8].

Pyrolysis as an attractive method to recycle scrap tires has recently been the subject of renewed interest. Pyrolysis of tires can produce oils, chars, and gases, in addition to the steel cords, all of which have the potential to be recycled. Within the past 2 decades, most experiments have been conducted using laboratory-scale batch units to characterize oil, char, and gas products [9]. Different types of reactors have been used for tire pyrolysis, such as autoclaves5 and fixed bed reactors,[10-14] and for a larger scale operation, bubbling fluidized bed reactors,[13-18] moving beds under vacuum, in one and two steps,[19-21] ablative beds,[22] and rotary ovens[23-25]. Key factors for process viability are high throughput and products with suitable properties for their subsequent valorization toward value added compounds such as high-quality carbon black, active carbon, or chemical compounds, such as benzene, toluene, xylene, limonene, Indane and so on.

#### 2.1. Materials

# II. EXPERIMENTAL PROCESS

Motor vehicle waste tire was collected from NY, Pawling city, road 22, car collision center. Collected tire cut into small pieces for experimental setup. Tire has metal part and also cloth part with rubber. For experimental purpose only use tire part with cloth portion. Without wash tire was transfer into reactor chamber for liquefaction process with ferric carbonate  $[Fe_2(CO_3)_3]$  catalyst. Ferric carbonate catalyst was prepared into Natural State Research Laboratory.

### 2.2. Ferric Carbonate Preparation

Ferric chloride ( $FeCl_3$ ) and sodium bicarbonate (NaHCO<sub>3</sub>) collect from VWR.com Company. 1(N) Ferric chloride solution made with D-Ionization water and 1(N) Sodium Bicarbonate solution made with same water. After both solution preparation mixed with Ferric chloride solution and sodium bicarbonate solution. After mixing both solutions it was start to precipitate in to bottom. When was finished precipitate watery portion separated by filter paper with funnel system and kept into separate container for treatment. Solid Ferric Carbonate put into drying oven at 80 °C temperature for 4-6 hours. After drying solid part it was become hard it call Ferric Carbonate [ $Fe_2(CO_3)_3$ ] catalyst. For whole process finished it took time 8-10 hours.

### 2.3. Process Description

Small size scrapes motor vehicle tire transfer into reactor chamber with ferric carbonate catalyst. For experimental purpose tire was 100 gm and Ferric Carbonate was 1 gm (1%) by weight. Glass reactor was use for this experiment and temperature was controlled by veriac meter (Figure 1). Tire to fuel production temperature rand was 200 to 420 °C and experiment was under labconco fume hood in presence of oxygen without vacuumed system. Ferric Carbonate and motor vehicle scrape tire mixture put into reactor the reactor was connected with condensation system. Condensation unit was connected with fuel collection system. Reactor and condensation unit connection joint was proper tightening with high temperature tolerable vacuum grease to prevent gas loss or gas leak. Reactor, condensation unit, grease, collection tank and all other necessary parts was provided from VWR.com. Collection tank one end was connected with light gas cleaning and light gas cleaning purposed sodium hydroxide and sodium bicarbonate solution was use as 0.25(N). Light gas collection was connecting with water basin to remove alkali portion from light gas. After light gas wash with water it was transfer into Teflon bag using small pump system. Fuel collection tank was connecting with filter system to remove fuel sediment then filter system was connecting with final fuel collection tank. Reactor temperature capability is 500 °C but in this experimental process was use up to 420 °C. Ferric carbonate and tire mixture to fuel production process heat start from 200 °C and temperature was increase slowly and monitor whole experiment until finished the experiment. Ferric carbonate helps to accelerate the reaction from tire to fuel production. Tire made by rubber, metal, petroleum, additives and cloth mixture. Rubber portion cannot be made fuel but only petroleum part can convert into fuel and rest of all portion settle down as residue. Tire to fuel production conversion rate including light gas almost 40% and rest of 60 percentages was residue. Fuel was filtered with filter system and kept into separate container for GC/MS analysis. Tire to fuel production period some gas was generated that gas was cleaned by using sodium hydroxide and sodium bicarbonate solution to remove contamination if present into light gas then light gas passes through with clean water to remove alkali portion in light gas present. Produce fuel density is 0.84 g/ml. In mass balance calculation liquid fuel was 28.1 gm, light gas generated 13 gm and 58.9 gm was solid black residue. Light gas and black residue analysis under investigation. Total experiment finished time was 3-4 hours and input electricity was 0.690KWh.

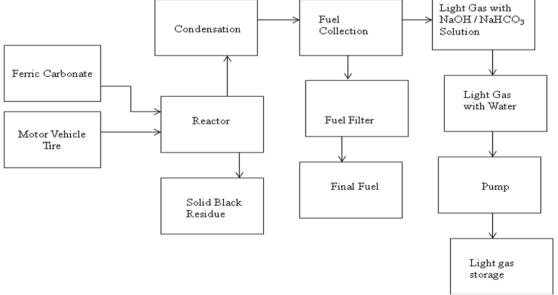



Figure 1: Motor Vehicle used tire into fuel production process with Ferric Carbonate



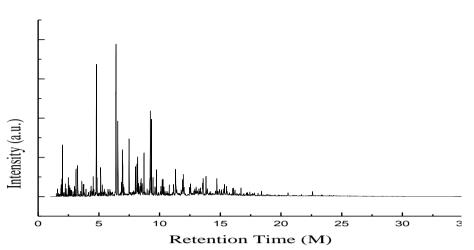



Figure 2: GC/MS chromatogram of motor vehicle tire to fuel

| Numbe<br>r of<br>Peak | Retentio<br>n Time<br>(min.) | Trac<br>e<br>Mass<br>(m/z) | Compound<br>Name                  | Compound<br>Formula              | Molecula<br>r Weight | Probabilit<br>y % | NIST<br>Librar<br>y<br>Numbe<br>r |
|-----------------------|------------------------------|----------------------------|-----------------------------------|----------------------------------|----------------------|-------------------|-----------------------------------|
| 1                     | 1.49                         | 41                         | Cyclopropane                      | C <sub>3</sub> H <sub>6</sub>    | 42                   | 70.1              | 18854                             |
| 2                     | 1.56                         | 43                         | Isobutane                         | C <sub>4</sub> H <sub>10</sub>   | 58                   | 57.5              | 18936                             |
| 3                     | 1.60                         | 41                         | 2-Butene, (E)-                    | C <sub>4</sub> H <sub>8</sub>    | 56                   | 24.1              | 105                               |
| 4                     | 1.75                         | 55                         | 1-Butene, 3-methyl-               | C5H10                            | 70                   | 16.5              | 160477                            |
| 5                     | 1.81                         | 43                         | Butane, 2-methyl-                 | C5H12                            | 72                   | 70.3              | 61287                             |
| 6                     | 1.87                         | 42                         | Cyclopropane, ethyl-              | C5H10                            | 70                   | 22.3              | 114410                            |
| 7                     | 1.90                         | 55                         | Cyclopropane, 1,2-dimethyl-, cis- | C5H10                            | 70                   | 15.2              | 19070                             |
| 8                     | 1.95                         | 67                         | 1,3-Pentadiene                    | C <sub>5</sub> H <sub>8</sub>    | 68                   | 19.2              | 291890                            |
| 9                     | 2.01                         | 55                         | 2-Pentene, (E)-                   | C5H10                            | 70                   | 16.4              | 291780                            |
| 10                    | 2.05                         | 67                         | 1,3-Pentadiene                    | C <sub>5</sub> H <sub>8</sub>    | 68                   | 21.6              | 291890                            |
| 11                    | 2.13                         | 66                         | 1,3-Cyclopentadiene               | C <sub>5</sub> H <sub>6</sub>    | 66                   | 46.1              | 196                               |
| 12                    | 2.24                         | 67                         | Bicyclo[2.1.0]pentane             | C <sub>5</sub> H <sub>8</sub>    | 68                   | 18.5              | 192491                            |
| 13                    | 2.31                         | 42                         | 1-Pentanol, 2-methyl-             | С <sub>6</sub> Н <sub>14</sub> О | 102                  | 35.4              | 19924                             |
| 14                    | 2.36                         | 54                         | Propanenitrile                    | C <sub>3</sub> H <sub>5</sub> N  | 55                   | 94.3              | 40084                             |
| 15                    | 2.42                         | 57                         | Pentane, 3-methyl-                | С <sub>6</sub> Н <sub>14</sub>   | 86                   | 44.1              | 565                               |
| 16                    | 2.49                         | 41                         | 1-Hexene                          | С <sub>6</sub> H <sub>12</sub>   | 84                   | 27.0              | 227613                            |
| 17                    | 2.56                         | 57                         | Hexane                            | С <sub>6</sub> Н <sub>14</sub>   | 86                   | 76.5              | 61280                             |
| 18                    | 2.63                         | 69                         | 2-Butene, 2,3-dimethyl-           | С <sub>6</sub> H <sub>12</sub>   | 84                   | 18.2              | 289588                            |

Motor Vehicle Used Tire Conversion into Fuel Using

| 19 | 2.67 | 41 | 2-Pentene, 3-methyl-, (Z)-          | C <sub>6</sub> H <sub>12</sub>  | 84  | 26.8 | 114483 |
|----|------|----|-------------------------------------|---------------------------------|-----|------|--------|
| 20 | 2.70 | 67 | 1,3-Pentadiene, 3-methyl-, (E)-     | C <sub>6</sub> H <sub>10</sub>  | 82  | 9.53 | 62975  |
| 21 | 2.88 | 56 | Cyclopentane, methyl-               | C <sub>6</sub> H <sub>12</sub>  | 84  | 67.3 | 114428 |
| 22 | 2.94 | 67 | 2,4-Hexadiene, (Z,Z)-               | C <sub>6</sub> H <sub>10</sub>  | 82  | 10.7 | 113646 |
| 23 | 2.99 | 79 | 1,3-Cyclopentadiene, 5-methyl-      | C <sub>6</sub> H <sub>8</sub>   | 80  | 26.7 | 419    |
| 24 | 3.04 | 79 | 1,3-Cyclopentadiene, 5-methyl-      | C <sub>6</sub> H <sub>8</sub>   | 80  | 24.5 | 419    |
| 25 | 3.13 | 67 | Cyclopentene, 1-methyl-             | C <sub>6</sub> H <sub>10</sub>  | 82  | 19.1 | 107747 |
| 26 | 3.26 | 78 | Benzene                             | C <sub>6</sub> H <sub>6</sub>   | 78  | 68.9 | 114388 |
| 27 | 3.40 | 43 | Hexane, 3-methyl-                   | C7H16                           | 100 | 69.1 | 113081 |
| 28 | 3.50 | 67 | Cyclohexene                         | C <sub>6</sub> H <sub>10</sub>  | 82  | 26.2 | 114431 |
| 29 | 3.55 | 56 | 1-Hexene, 2-methyl-                 | C7H14                           | 98  | 12.7 | 114433 |
| 30 | 3.60 | 56 | 1-Heptene                           | C <sub>7</sub> H <sub>14</sub>  | 98  | 22.5 | 19704  |
| 31 | 3.72 | 43 | Heptane                             | C <sub>7</sub> H <sub>16</sub>  | 100 | 70.6 | 61276  |
| 32 | 3.76 | 81 | 1,4-Hexadiene, 4-methyl-            | C <sub>7</sub> H <sub>12</sub>  | 96  | 9.08 | 113135 |
| 33 | 3.79 | 81 | Cyclopentene, 4,4-dimethyl-         | C <sub>7</sub> H <sub>12</sub>  | 96  | 8.92 | 38642  |
| 34 | 3.87 | 69 | 2-Hexene, 3-methyl-, (Z)-           | C7H14                           | 98  | 26.2 | 114046 |
| 35 | 3.94 | 81 | Cyclopentene, 4,4-dimethyl-         | C <sub>7</sub> H <sub>12</sub>  | 96  | 11.8 | 38642  |
| 36 | 4.15 | 83 | Cyclohexane, methyl-                | C7H14                           | 98  | 51.0 | 118503 |
| 37 | 4.29 | 43 | Pentanal, 2,3-dimethyl-             | С7Н14О                          | 114 | 19.2 | 118167 |
| 38 | 4.37 | 79 | 1,3,5-Heptatriene, (E,E)-           | C7H10                           | 94  | 17.4 | 118126 |
| 39 | 4.53 | 81 | Cyclobutane, (1-methylethylidene)-  | C <sub>7</sub> H <sub>12</sub>  | 96  | 12.7 | 150272 |
| 40 | 4.59 | 67 | 1-Ethylcyclopentene                 | C <sub>7</sub> H <sub>12</sub>  | 96  | 42.5 | 114407 |
| 41 | 4.81 | 91 | Toluene                             | C <sub>7</sub> H <sub>8</sub>   | 92  | 56.3 | 291301 |
| 42 | 4.85 | 81 | Cyclohexene, 3-methyl-              | C <sub>7</sub> H <sub>12</sub>  | 96  | 13.3 | 236066 |
| 43 | 5.14 | 55 | Pentane, 2-cyclopropyl-             | C <sub>8</sub> H <sub>16</sub>  | 112 | 9.52 | 113439 |
| 44 | 5.29 | 43 | Hexane, 2,4-dimethyl-               | C <sub>8</sub> H <sub>18</sub>  | 114 | 36.4 | 118871 |
| 45 | 5.45 | 95 | Cyclopentene, 1,2,3-trimethyl-      | C <sub>8</sub> H <sub>14</sub>  | 110 | 13.4 | 113461 |
| 46 | 5.52 | 93 | Pyridine, 3-methyl-                 | C <sub>6</sub> H <sub>7</sub> N | 93  | 32.0 | 791    |
| 47 | 5.63 | 81 | 1-Ethyl-5-methylcyclopentene        | C <sub>8</sub> H <sub>14</sub>  | 110 | 16.7 | 114420 |
| 48 | 5.75 | 95 | Bicyclo[3.1.0]hexane, 1,5-dimethyl- | C <sub>8</sub> H <sub>14</sub>  | 110 | 12.8 | 142175 |
| 49 | 5.79 | 95 | Cyclohexene, 3,5-dimethyl-          | C <sub>8</sub> H <sub>14</sub>  | 110 | 19.0 | 113436 |
| 50 | 5.95 | 54 | Cyclohexene, 4-ethenyl-             | C <sub>8</sub> H <sub>12</sub>  | 108 | 13.0 | 227540 |

Motor Vehicle Used Tire Conversion into Fuel Using

| 51 | 6.02  | 42  | 2-Nonyn-1-ol                                                  | C <sub>9</sub> H <sub>16</sub> O                     | 140 | 12.7 | 114747 |
|----|-------|-----|---------------------------------------------------------------|------------------------------------------------------|-----|------|--------|
| 52 | 6.07  | 93  | 1,2-Dimethyl-1,4-cyclohexadiene                               | C <sub>8</sub> H <sub>12</sub>                       | 108 | 13.5 | 113101 |
| 53 | 6.12  | 56  | 6-Hepten-1-ol, 3-methyl-                                      | C <sub>8</sub> H <sub>16</sub> O                     | 128 | 5.97 | 60715  |
| 54 | 6.42  | 91  | Ethylbenzene                                                  | C <sub>8</sub> H <sub>10</sub>                       | 106 | 53.3 | 158804 |
| 55 | 6.56  | 91  | p-Xylene                                                      | C <sub>8</sub> H <sub>10</sub>                       | 106 | 37.7 | 113952 |
| 56 | 6.86  | 56  | 1-Nonene                                                      | C9H18                                                | 126 | 5.17 | 229029 |
| 57 | 6.94  | 104 | Styrene                                                       | C <sub>8</sub> H <sub>8</sub>                        | 104 | 36.7 | 291542 |
| 58 | 6.96  | 91  | p-Xylene                                                      | C <sub>8</sub> H <sub>10</sub>                       | 106 | 40.6 | 113952 |
| 59 | 7.01  | 57  | Nonane                                                        | С9Н20                                                | 128 | 27.3 | 228006 |
| 60 | 7.06  | 57  | Ethanol, 2-butoxy-                                            | C <sub>6</sub> H <sub>14</sub> O <sub>2</sub>        | 118 | 44.6 | 118812 |
| 61 | 7.49  | 105 | Benzene, (1-methylethyl)-                                     | C9H12                                                | 120 | 46.7 | 228742 |
| 62 | 7.59  | 57  | 1-Nonyne, 7-methyl-                                           | C <sub>10</sub> H <sub>18</sub>                      | 138 | 6.80 | 114524 |
| 63 | 7.65  | 55  | Bicyclo[3.1.1]heptane, 2,6,6-<br>trimethyl-, [1R-(1α,2α,5α)]- | C <sub>10</sub> H <sub>18</sub>                      | 138 | 7.03 | 140998 |
| 64 | 7.86  | 117 | Deltacyclene                                                  | С9Н10                                                | 118 | 13.9 | 261521 |
| 65 | 8.01  | 91  | Benzene, propyl-                                              | С9Н12                                                | 120 | 71.7 | 113930 |
| 66 | 8.14  | 105 | Benzene, 1-ethyl-3-methyl-                                    | С9Н12                                                | 120 | 33.8 | 228743 |
| 67 | 8.28  | 105 | Benzene, 1,2,3-trimethyl-                                     | С9Н12                                                | 120 | 22.6 | 228017 |
| 68 | 8.37  | 93  | Silanediamine, 1,1-dimethyl-N,N'-<br>diphenyl-                | C <sub>14</sub> H <sub>18</sub> N <sub>2</sub><br>Si | 242 | 46.4 | 73688  |
| 69 | 8.49  | 118 | α-Methylstyrene                                               | С9Н10                                                | 118 | 23.7 | 229186 |
| 70 | 8.57  | 55  | 2-Decene, (Z)-                                                | С <sub>10</sub> Н <sub>20</sub>                      | 140 | 6.89 | 114151 |
| 71 | 8.72  | 105 | Benzene, 1,3,5-trimethyl-                                     | C9H12                                                | 120 | 24.9 | 20469  |
| 72 | 8.81  | 55  | 5-Methylene-1,3a,4,5,6,6a-<br>hexahydropentalen-1-ol          | C9H12O                                               | 136 | 8.67 | 193003 |
| 73 | 8.98  | 105 | Benzene, (1-methylpropyl)-                                    | C <sub>10</sub> H <sub>14</sub>                      | 134 | 36.1 | 228188 |
| 74 | 9.13  | 119 | 2,3-Epoxycarane, (E)-                                         | C <sub>10</sub> H <sub>16</sub> O                    | 152 | 19.2 | 156146 |
| 75 | 9.24  | 119 | Benzene, 1-methyl-2-(1-<br>methylethyl)-                      | C <sub>10</sub> H <sub>14</sub>                      | 134 | 23.1 | 114006 |
| 76 | 9.33  | 68  | D-Limonene                                                    | C <sub>10</sub> H <sub>16</sub>                      | 136 | 25.8 | 62287  |
| 77 | 9.47  | 117 | Indane                                                        | C9H10                                                | 118 | 15.0 | 118485 |
| 78 | 9.62  | 115 | Benzene, 1-ethynyl-4-methyl-                                  | С9Н8                                                 | 116 | 21.2 | 43759  |
| 79 | 9.74  | 119 | 1,3,8-p-Menthatriene                                          | С <sub>10</sub> Н <sub>14</sub>                      | 134 | 21.4 | 70247  |
| 80 | 9.91  | 105 | Bicyclo[3.1.1]hept-2-ene-2-ethanol,<br>6,6-dimethyl-          | C <sub>11</sub> H <sub>18</sub> O                    | 166 | 9.15 | 114741 |
| 81 | 10.06 | 119 | 2,3-Epoxycarane, (E)-                                         | C <sub>10</sub> H <sub>16</sub> O                    | 152 | 18.4 | 156146 |

| 82  | 10.12 | 119 | Benzene, 1-methyl-3-(1-<br>methylethyl)-           | C <sub>10</sub> H <sub>14</sub>   | 134 | 13.5 | 149866 |
|-----|-------|-----|----------------------------------------------------|-----------------------------------|-----|------|--------|
| 83  | 10.29 | 117 | Indan, 1-methyl-                                   | С <sub>10</sub> Н <sub>12</sub>   | 132 | 7.92 | 150963 |
| 84  | 10.36 | 57  | Undecane                                           | С <sub>11</sub> Н <sub>24</sub>   | 156 | 26.4 | 114185 |
| 85  | 10.46 | 105 | 7-Methyl-1,2,3,5,8,8a-<br>hexahydronaphthalene     | C <sub>11</sub> H <sub>16</sub>   | 148 | 8.19 | 142188 |
| 86  | 10.62 | 119 | Benzene, 1,3-diethyl-5-methyl-                     | С11Н16                            | 148 | 26.8 | 113941 |
| 87  | 10.69 | 117 | 2,4-Dimethylstyrene                                | C <sub>10</sub> H <sub>12</sub>   | 132 | 9.40 | 136251 |
| 88  | 10.80 | 119 | Benzene, 1,2,3,4-tetramethyl-                      | С <sub>10</sub> Н <sub>14</sub>   | 134 | 16.2 | 232298 |
| 89  | 10.86 | 117 | 3a,6-Methano-3aH-indene, 2,3,6,7-<br>tetrahydro-   | С <sub>10</sub> Н <sub>12</sub>   | 132 | 7.53 | 185591 |
| 90  | 10.92 | 131 | Benzene, (3-methyl-2-butenyl)-                     | С11Н14                            | 146 | 11.3 | 186387 |
| 91  | 11.16 | 117 | Benzene, 1-methyl-2-(2-propenyl)-                  | С <sub>10</sub> Н <sub>12</sub>   | 132 | 9.47 | 2982   |
| 92  | 11.41 | 130 | Tetracyclo[5.3.0.0<2,6>.0<3,10>]de<br>ca-4,8-diene | C <sub>10</sub> H <sub>10</sub>   | 130 | 10.8 | 193836 |
| 93  | 11.54 | 104 | Naphthalene, 1,2,3,4-tetrahydro-                   | C <sub>10</sub> H <sub>12</sub>   | 132 | 29.4 | 113929 |
| 94  | 11.78 | 41  | 3-Dodecene, (E)-                                   | С <sub>12</sub> Н <sub>24</sub>   | 168 | 16.1 | 70642  |
| 95  | 11.83 | 131 | Benzene, (3-methyl-2-butenyl)-                     | C <sub>11</sub> H <sub>14</sub>   | 146 | 9.64 | 186387 |
| 96  | 11.95 | 128 | Naphthalene                                        | С10Н8                             | 128 | 40.8 | 114935 |
| 97  | 12.03 | 131 | 1H-Indene, 2,3-dihydro-1,6-                        | С11Н14                            | 146 | 15.8 | 4241   |
| 98  | 12.13 | 133 | dimethyl-<br>Benzaldehyde, 4-(1-methylethyl)-      | С <sub>10</sub> Н <sub>12</sub> О | 148 | 19.5 | 35365  |
| 99  | 12.47 | 117 | Benzene, cyclopentyl-                              | С <sub>11</sub> Н <sub>14</sub>   | 146 | 52.5 | 187011 |
| 100 | 12.55 | 135 | Benzothiazole                                      | C7H5NS                            | 135 | 70.8 | 118929 |
| 101 | 12.90 | 91  | Benzene, hexyl-                                    | C <sub>12</sub> H <sub>18</sub>   | 162 | 17.3 | 113954 |
| 102 | 13.01 | 129 | Naphthalene, 1,2-dihydro-3-methyl-                 | C <sub>11</sub> H <sub>12</sub>   | 144 | 18.8 | 4003   |
| 103 | 13.10 | 129 | 1H-Indene, 2,3-dihydro-1,2-<br>dimethyl-           | С <sub>11</sub> Н <sub>14</sub>   | 146 | 15.5 | 4235   |
| 104 | 13.25 | 41  | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-<br>dimethyl-   | C <sub>14</sub> H <sub>20</sub>   | 188 | 12.2 | 211230 |
| 105 | 13.36 | 57  | Tridecane                                          | C <sub>13</sub> H <sub>28</sub>   | 184 | 17.4 | 114282 |
| 106 | 13.43 | 145 | Naphthalene, 1,2,3,4-tetrahydro-1,8-               | C <sub>12</sub> H <sub>16</sub>   | 160 | 10.9 | 39302  |
| 107 | 13.55 | 149 | dimethyl-<br>Benzothiazole, 2-methyl-              | C <sub>8</sub> H <sub>7</sub> NS  | 149 | 23.9 | 227888 |
| 108 | 13.59 | 142 | Naphthalene, 1-methyl-                             | С <sub>11</sub> Н <sub>10</sub>   | 142 | 25.3 | 291511 |
| 109 | 13.71 | 145 | Benzene, (1,3-dimethyl-2-butenyl)-                 | C <sub>12</sub> H <sub>16</sub>   | 160 | 10.0 | 62328  |
| 110 | 13.83 | 141 | Naphthalene, 1-methyl-                             | C <sub>11</sub> H <sub>10</sub>   | 142 | 20.9 | 291511 |
| 111 | 13.93 | 145 | Falcarinol                                         | C <sub>17</sub> H <sub>24</sub> O | 244 | 10.4 | 112661 |
| 112 | 14.18 | 145 | Oct-3-ene-1,5-diyne, 3-t-butyl-7,7-<br>dimethyl-   | C <sub>14</sub> H <sub>20</sub>   | 188 | 7.61 | 211230 |
| 113 | 14.24 | 143 | Tricyclo[6.4.0.0(3,7)]dodeca-1,9,11-<br>triene     | С <sub>12</sub> Н <sub>14</sub>   | 158 | 29.2 | 298964 |

| 114 | 14.60 | 143 | (1-Methylpenta-1,3-dienyl)benzene                                                 | C <sub>12</sub> H <sub>14</sub>                | 158 | 31.1 | 210058 |
|-----|-------|-----|-----------------------------------------------------------------------------------|------------------------------------------------|-----|------|--------|
| 115 | 14.72 | 154 | Biphenyl                                                                          | С <sub>12</sub> Н <sub>10</sub>                | 154 | 63.7 | 53609  |
| 116 | 14.81 | 162 | Isoquinoline, 1-[3-methoxy-5-<br>hydroxybenzyl]-1,2,3,4-tetrahydro-<br>6-methoxy- | C <sub>18</sub> H <sub>21</sub> NO<br>3        | 299 | 12.0 | 117076 |
| 117 | 15.11 | 156 | Naphthalene, 1,3-dimethyl-                                                        | C <sub>12</sub> H <sub>12</sub>                | 156 | 14.1 | 27648  |
| 118 | 15.28 | 156 | Naphthalene, 1,8-dimethyl-                                                        | С <sub>12</sub> Н <sub>12</sub>                | 156 | 13.4 | 118790 |
| 119 | 15.34 | 156 | Naphthalene, 1,7-dimethyl-                                                        | С <sub>12</sub> Н <sub>12</sub>                | 156 | 20.4 | 39233  |
| 120 | 15.52 | 157 | Quinoline, 2,4-dimethyl-                                                          | C <sub>11</sub> H <sub>11</sub> N              | 157 | 47.6 | 5407   |
| 121 | 15.76 | 141 | Naphthalene, 1,2-dihydro-2,5,8-<br>trimethyl-                                     | C <sub>13</sub> H <sub>16</sub>                | 172 | 9.88 | 34865  |
| 122 | 16.02 | 57  | Pentadecane                                                                       | C <sub>15</sub> H <sub>32</sub>                | 212 | 13.7 | 22620  |
| 123 | 16.08 | 168 | 1,1'-Biphenyl, 4-methyl-                                                          | C <sub>13</sub> H <sub>12</sub>                | 168 | 29.7 | 155802 |
| 124 | 16.22 | 168 | 1,1'-Biphenyl, 2-methyl-                                                          | C <sub>13</sub> H <sub>12</sub>                | 168 | 24.6 | 157536 |
| 125 | 16.71 | 170 | Naphthalene, 2,3,6-trimethyl-                                                     | C <sub>13</sub> H <sub>14</sub>                | 170 | 20.1 | 228329 |
| 126 | 16.89 | 170 | 3-(2-Methyl-propenyl)-1H-indene                                                   | С <sub>13</sub> Н <sub>14</sub>                | 170 | 45.6 | 187785 |
| 127 | 17.24 | 57  | Hexadecane                                                                        | C <sub>16</sub> H <sub>34</sub>                | 226 | 9.81 | 114191 |
| 128 | 17.49 | 182 | 1,1'-Biphenyl, 3,4'-dimethyl-                                                     | C <sub>14</sub> H <sub>14</sub>                | 182 | 20.1 | 7573   |
| 129 | 17.60 | 153 | 1-Isopropenylnaphthalene                                                          | C <sub>13</sub> H <sub>12</sub>                | 168 | 37.1 | 217205 |
| 130 | 18.12 | 92  | Benzene, 1,1'-(1,3-propanediyl)bis-                                               | C <sub>15</sub> H <sub>16</sub>                | 196 | 66.9 | 34894  |
| 131 | 18.40 | 57  | Heptadecane                                                                       | C <sub>17</sub> H <sub>36</sub>                | 240 | 12.8 | 22871  |
| 132 | 18.54 | 184 | 2(3H)-Naphthalenone, 4,4a,5,6,7,8-<br>hexahydro-4a-phenyl-, (R)-                  | C <sub>16</sub> H <sub>18</sub> O              | 226 | 45.9 | 47572  |
| 133 | 20.58 | 41  | Hexalycio-4a-pitchyl-, (K)-                                                       | C <sub>16</sub> H <sub>31</sub> N              | 237 | 58.6 | 72104  |
| 134 | 22.60 | 43  | Heptadecanenitrile                                                                | C <sub>17</sub> H <sub>33</sub> N              | 251 | 21.3 | 12200  |
| 135 | 23.32 | 230 | p-Terphenyl                                                                       | C <sub>18</sub> H <sub>14</sub>                | 230 | 47.6 | 287537 |
| 136 | 23.42 | 220 | Tricyclo[9.2.2.2(4,7)]heptadeca-<br>1(14),2,4(17),5,7(16),11(15),12-<br>heptaene  | C <sub>17</sub> H <sub>16</sub>                | 220 | 43.4 | 202224 |
| 137 | 23.98 | 219 | Phenanthrene, 1-methyl-7-(1-<br>methylethyl)-                                     | C <sub>18</sub> H <sub>18</sub>                | 234 | 50.5 | 243807 |
| 138 | 24.13 | 57  | di(Butoxyethyl)adipate                                                            | C <sub>18</sub> H <sub>34</sub> O <sub>6</sub> | 346 | 22.5 | 279801 |
| 139 | 26.00 | 57  | 5α-Cholest-8-en-3-one, 14-methyl-                                                 | C <sub>28</sub> H <sub>46</sub> O              | 398 | 10.4 | 48716  |

Produce fuel was analysis by using Perkin Elmer GC/MS (Clarus 500) with auto sampler chromatogram shown figure 2 and traced compounds list showed table 1. GC/MS analysis result showed table 1 produced fuel has different types of compounds mixture such as hydrocarbon compounds aliphatic and aromatic group compounds, alcoholic compounds, oxygen containing compounds, nitrogen containing compounds. Benzene group compounds present in this produce fuel with hydrocarbon group. Present fuel carbon range showed in to GC/MS analysis chromatogram  $C_3$  to  $C_{28}$ . Chromatogram compounds was detected based on retention time (t) and trace mass (m/z). Large peak detected from GC/MS chromatogram Ethylbenzene at retention time 6.42 min and trace mass 91. From analysis result some compounds are elaborated in this section based on compounds retention time and trace mass (time vs. m/z) such as Cyclopropane ( $C_{3H_6}$ ) (t=1.49, m/z= 41) compounds molecular weight is 42 and compound probability is 70.1%, cis-1,2-dimethyl-Cyclopropane ( $C_{5H_{10}}$ ) (t=1.90, m/z=55) compounds molecular weight is 55 and compound probability is 94.3%, methyl-Cyclopentane ( $C_{6H_{12}}$ ) (t=2.88, m/z=56)

compounds molecular weight is 84 and compound probability is 67.3%, Benzene (C<sub>6</sub>H<sub>6</sub>) (t=3.26, m/z=78) compounds molecular weight is 78 and compound probability is 68.9 %, Heptane (C7H16) (t=3.72, m/z=43) compounds molecular weight is 100 and compound probability is 70.6 %, methyl-Cyclohexane (C7H14) (t=4.15, m/z=83) compounds molecular weight is 98 and compound probability is 51.0%, Toluene (C7H8) (t=4.81, m/z=91) compounds molecular weight is 92 and compound probability is 56.3%, 2,4-dimethyl-Hexane (C8H18) (t=5.29, m/z=43) compounds molecular weight is 114 and compound probability is 36.4%, 1-Ethyl-5-methylcyclopentene (C8H14) (t=5.63, m/z=81) compounds molecular weight is 110 and compound probability is 16.7%, 2-Nonyn-1-ol (C9H16O) (t=6.02, m/z=42) compounds molecular weight is 140 and compound probability is 12.7%, p-Xylene ( $C_8H_{10}$ ) (t= 6.56, m/z=91) compounds molecular weight is 106 and compound probability is 37.7%, Styrene (C8H8) (t=6.94, m/z=104) compounds molecular weight is 104 and compound probability is 36.7 %, 2-butoxy- Ethanol (C<sub>6</sub>H<sub>14</sub>O<sub>2</sub>) (t=7.06, m/z=57) compounds molecular weight is 118 and compound probability is 44.6 %, Deltacyclene (C9H10) (t=7.86, m/z=117) compounds molecular weight is 118 and compound probability is 13.9%,  $\alpha$ -Methylstyrene (C9H10) (t=8.49, m/z=118) compounds molecular weight is 118 and compound probability is 23.7%, 1-methylpropyl- Benzene (C10H14) (t=8.98, m/z=105) compounds molecular weight is 134 and compound probability is 36.1 %, D-Limonene (C10H16) (t=9.33, m/z=68) compounds molecular weight is 136 and compound probability is 25.8 %, 1-methyl-3-(1-methylethyl)-Benzene (C10H14) (t=10.12, m/z=119) compounds molecular weight is 134 and compound probability is 13.5%, 1,3-diethyl-5-methyl-Benzene (C<sub>11</sub>H<sub>16</sub>) (t=10.62, m/z=119) compounds molecular weight is 148 and compound probability is 26.8 %, 3-methyl-2-butenyl- Benzene (C11H14) (t=10.92, m/z=131) compounds molecular weight is 146 and compound probability is 11.3%, (E)- 3-Dodecene (C12H24) (t=11.78, m/z=41) compounds molecular weight is 168 and compound probability is 16.1 %, cyclopentyl- Benzene (C<sub>11</sub>H<sub>14</sub>) (t=12.47, m/z=117) compounds molecular weight is 146 and compound probability is 52.5%, Tridecane (C13H28) (t=13.36, m/z=57) compounds molecular weight is 184 and compound probability is 17.4%, 1,3-dimethyl-2-butenyl-Benzene (C12H16) (t=13.71, m/z=145) compounds molecular weight is 160 and compound probability is 10.0 %, Biphenyl (C12H10) (t=14.72, m/z=154) compounds molecular weight is 154 and compound probability is 63.7%, 1,7-dimethyl-Naphthalene (C12H12) (t=15.34, m/z=156) compounds molecular weight is 156 and compound probability is 20.4 %, 4methyl-1,1'-Biphenyl (C13H12) (t=16.08, m/z=168) compounds molecular weight is 168 and compound probability is 29.7 %, 2,3,6-trimethyl- Naphthalene (C13H14) (t=16.71, m/z=170) compounds molecular weight is 170 and compound probability is 20.1 %, Heptadecane (C17H36) (t=18.40, m/z=57) compounds molecular weight is 240 and compound probability is 12.8%, p-Terphenyl (C18H14) (t=23.32, m/z=230) compounds molecular weight is 230 and compound probability is 47.6%, 14-methyl- 5α-Cholest-8-en-3-one (C<sub>28</sub>H<sub>46</sub>O) (t=26.00, m/z=57) compounds molecular weight is 398 and compound probability is 10.4%. Benzene or aromatic group concentration high in present fuel and fuel efficiency is high for that reason this fuel can be use a feed for electricity generation.

#### IV. CONCLUSION

Motor vehicle scrape tire to fuel production process thermal degradation process applied with ferric carbonate catalyst. Temperature range was 200- 420 °C and fuel density is 0.84 g/ml and fuel production conversion rate was almost 40%. Fuel color is light yellow and odor is burning tire. Fuel analysis purpose gas chromatography and mass spectrometer was use and carbon compounds detected Cyclopropane to 14-methyl-5 $\alpha$ -Cholest-8-en-3-one. Aromatic compounds percentage is higher than other compounds and aromatics compounds present into fuel such as Benzene, Toluene, Ethylbenzene, p-Xylene, Styrene, propyl-Benzene,  $\alpha$ -Methylstyrene, D-Limonene, Indane, 1,2,3,4-tetramethyl-Benzene, Naphthalene, 1,3-dimethyl-Naphthalene, p-Terphenyl and so on. The technology can convert all motor vehicle used tire to fuel and save the environmental problem as well as reduce some oil problem at this time. Fuel can be use for refinery station for further modification and after that can be use for internal combustion engine.

# ACKNOWLEDGEMENT

The author acknowledges the support of Dr. Karin Kaufman, the founder and sole owner of Natural State Research, Inc. The authors also acknowledge the valuable contributions NSR laboratory team members during the preparation of this manuscript.

#### REFERENCES

- Larsen, M. B.; Schultz, L.; Glarborg, P.; Skaarup-Jensen, L.; Dam-Johansen, K.; Frandsen, F.; Herriksen, U. Devolatilization characteristics of large particles of tyre rubber under combustion conditions. Fuel 2006, 85, 1335– 1345.
- Sunthonpagasit, N.; Duffey, R. Scrap tires to crumb rubber: feasibility analysis for processing facilities. Resour., ConserV. Recycl. 2004, 40, 281–299.
- [3]. Huffman, G. P.; Shah, N. Can waste plastics and tires be recycled economically. CHEMTECH 1998, 28, 34–43.
- [4]. Sharma, V. K.; Fortuna, F.; Macarini, M.; Berillo, M.; Cornacchia, G. Disposal of waste tyres for energy recovery and safe environment. Appl. Energy 2000, 65, 381–394.
- [5]. Miriam Arabiourrutia, Martin Olazar, Roberto Aguado, Gartzen Lopez, Astrid Barona and Javier Bilbao, HZSM-5 and HY Zeolite Catalyst Performance in the Pyrolysis of Tires in a Conical Spouted Bed Reactor, Ind. Eng. Chem. Res. 2008, 47, 7600–7609.

- [6]. JATMA (The Japan Automobile Tyre Manufacturers Association, Inc.) Tire Industry of Japan 2004. English text available at http://www.jatma.or.jp/ (accessed Sep 2004).
- [7]. JSRA (Japan Scraptire Recycle Association), 2004. http:// www.j-sra.jp/materials/ (in Japanese) (accessed Sep 2004).
- [8]. Koichi Yamaguchi,\* Takehiko Kinoshita, and Shigendo Akita, Thermal Treatment of Waste Tire Fly Ash with Polyvinyl Chloride: Selective Leaching of Zinc with Water, Ind. Eng. Chem. Res. 2006, 45, 1211-1216.
- [9]. S.-Q. Li, Q. Yao, Y. Chi, J.-H. Yan and K.-F. Cen, Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactorl, Ind. Eng. Chem. Res. 2004, 43, 5133-5145.
- [10]. Gonzalez, J. F.; Encinar, J. M.; Canito, J. L.; Rodriguez, J. J. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis 2001, 58, 667–683.
- [11]. [11] Laresgoiti, M. F.; de Marco, I.; Torres, A.; Caballero, B.; Cabrero, M. A.; Chomo'n, M. J. Chromatographic analysis of the gases obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 2000, 55, 43–54.
- [12] [12] Laresgoiti, M. F.; Caballero, B.; de Marco, I.; Torres, A.; Cabrero, M. A.; Chomo'n, M. J. Characterization of the liquid products obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 2004, 71, 917–934.
- [13]. [13] Berrueco, C.; Esperanza, E.; Mastral, F. J.; Ceamanos, J.; Garcia- Bacaicoa, P. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. J. Anal. Appl. Pyrol. 2005, 74, 245–253.
- [14]. [14] Ucar, S.; Karagoz, S.; Ozkan, A. R.; Yanik, J. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 2005, 84, 1884–1892.
- [15] Williams, P. T.; Besler, S.; Taylor, D. T. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel 1990, 69, 1474–1482.
- [16]. [16] Lee, J. M.; Lee, J. S.; Kim, J. R.; Kim, S. D. Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor. Energy 1995, 20, 969–976.
- [17]. [17] Wey, M. Y.; Huang, S. C.; Shi, C. L. Oxidative pyrolysis of mixed solid wastes by sand bed and freeboard reaction in a fluidized bed. Fuel 1997, 76, 115–121.
- [18]. [18] Kaminsky, W.; Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 2001, 58-59, 803–811.
- [19]. [19] Roy, C.; Labrecque, B.; de Caumia, B. Recycling of scrap tires to oil and carbon black by vacuum pyrolysis. Resour., ConserV. Recycl. 1990, 51, 203–213.
- [20]. [20] Roy, C.; Chaala, A.; Darmstadt, H. The vacuum pyrolysis of used tires: End-uses for oil and carbon black products. J. Anal. Appl. Pyrolysis 1999, 51, 201–221.
- [21]. [21] Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Porier, M. A. Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. Fuel 1995, 74, 1589–1594.
- [22] [22] Bridgwater, A. V.; Peacocke, G. V. C. Fast pyrolysis processes for biomass. Renewable Sustainable Energy ReV. 2000, 4, 1–73.
- [23]. [23] Fortuna, F.; Cornacchia, G.; Mincarini, M.; Sharma, V. K. Pilotscale experimental pyrolysis plant: Mechanical and operational aspects. J. Anal. Appl. Pyrolysis 1997, 40-41, 403–417, May 1997.
- [24]. [24] Li, S. Q.; Yao, Q.; Chi, Y.; Yan, J. H.; Cen, K. F. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind. Eng. Chem. Res. 2004, 43, 5133–5145.
- [25]. [25] Diez, C.; Sanchez, M. E.; Haxaire, P.; Martinez, O.; Moran, A. Pyrolysis of tyres: A comparison of the results from a fixed-bed laboratory reactor and a pilot plant (rotary reactor). J. Anal. Appl. Pyrolysis 2005, 74, 254–258.