
International Journal of Engineering Inventions

ISSN: 2278-7461, www.ijeijournal.com

Volume 1, Issue 3 (September2012) PP: 19-26

19

A Synthesizable Design of AMBA-AXI Protocol for SoC

Integration

M. Siva Prasad Reddy
1
, B. Babu Rajesh

2
, Tvs Gowtham Prasad

3

1,2,3
Kuppam Engineering College, Kuppam

Abstract––System-on-a-Chip (SoC) design has become more and more complexly. Because difference functions

components or IPs (Intellectual Property) will be integrated within a chip. The challenge of integration is “how to verify

on-chip communication properties”. Although traditional simulation-based on-chip bus protocol checking bus signals to

obey bus transaction behavior or not, however, they are still lack of a chip-level dynamic verification to assist hardware

debugging. We proposed a rule based synthesizable AMBA AXI protocol checker. The AXI protocol checker contains 44

rules to check on-chip communication properties accuracy. In the verification strategy, we use the Synopsys VIP

(Verification IP) to verify AXI protocol checker. In the experimental results, the chip cost of AXI protocol checker is

70.7K gate counts and critical path is 4.13 ns (about 242 MHz) under TSMC 0.18um CMOS 1P6M Technology.

Keywords--- AMBA, AXI, CMOS, SoC, Verilog

I. INTRODUCTION

In recent years, the improvement of the semiconductor process technology and the market requirement increasing.

More difference functions IPs are integrated within a chip. Maybe each IPs had completed design and verification. But the

integration of all IPs could not work together. The more common problem is violation bus protocol or transaction error. The

bus-based architecture has become the major integrated methodology for implementing a SoC. The on-chip communication

specification provides a standard interface that facilitates IPs integration and easily communicates with each IPs in a SoC.

The semiconductor process technology is changing at a faster pace during 1971 semiconductor process technology was

10μm, during 2010 the technology is reduced to 32nm and future is promising for a process technology with 10nm. Intel,

Toshiba and Samsung have reported that the process technology would be further reduced to 10nm in the future. So with

decreasing process technology and increasing consumer design constraints SoC has evolved, where all the functional units of

a system are modeled on a single chip.

To speed up SoC integration and promote IP reuse, several bus-based communication architecture standards have

emerged over the past several years. Since the early 1990s, several onchip bus-based communication architecture standards

have been proposed to handle the communication needs of emerging SoC design. Some of the popular standards include

ARM Microcontroller Bus Architecture (AMBA) versions 2.0 and 3.0, IBM Core Connect, STMicroelectronics STBus,

Sonics SMARRT Interconnect, Open Cores Wishbone, and Altera Avalon[1]. On the other hand, the designers just integrate

their owned IPs with third party IPs into the SoC to significantly reduce design cycles. However, the main issue is that how

to efficiently make sure the IP functionality, that works correctly after integrating to the corresponding bus architecture.

 There are many verification works based on formal verification techniques [2]-[6]. Device under test (DUT) is

modeled as finite-state transition and its properties are written by using computation tree logic (CTL) [7], and then using the

verification tools is to verify DUT’s behaviors [8]-[10]. Although formal verification can verify DUT’s behaviors

thoroughly, but here are still unpredictable bug in the chip level, which we want to verify them.

The benefits of using rule-based design include improving observability, reducing debug time, improving

integration through correct usage checking, and improving communication through documentation. In the final purpose,

increasing design quality while reducing the time-to-market and verification costs [19]. We anticipate that the AMBA AXI

protocol checking technique will be more and more important in the future. Hence, we propose a synthesizable AMBA AXI

protocol checker with an efficient verification mechanism based on rule checking methodology. There are 44 rules to check

the AMBA AXI protocol that provide AXI master, slave, and default slave protocol issues.

II. AMBA AXI4 ARCHITECTURE
AMBA AXI4 [3] supports data transfers up to 256 beats and unaligned data transfers using byte strobes. In AMBA

AXI4 system 16 masters and 16 slaves are interfaced. Each master and slave has their own 4 bit ID tags. AMBA AXI4

system consists of master, slave and bus (arbiters and decoders). The system consists of five channels namely write address

channel, write data channel, read data channel, read address channel, and write response channel. The AXI4 protocol

supports the following mechanisms:

 Unaligned data transfers and up-dated write response requirements.

 Variable-length bursts, from 1 to 16 data transfers per burst.

 A burst with a transfer size of 8, 16, 32, 64, 128, 256, 512 or 1024 bits wide is supported.

 Updated AWCACHE and ARCACHE signaling details.

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

20

Each transaction is burst-based which has address and control information on the address channel that describes

the nature of the data to be transferred. The data is transferred between master and slave using a write data channel to the

slave or a read data channel to the master. Table 1[3] gives the information of signals used in the complete design of the

protocol.

The write operation process starts when the master sends an address and control information on the write address

channel as shown in fig. 1. The master then sends each item of write data over the write data channel. The master keeps the

VALID signal low until the write data is available. The master sends the last data item, the WLAST signal goes HIGH.

Figure 1: Write address and data burst.

Figure 2: Read address and data burst.

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

21

TABLE 1: Signal descriptions of AMBA AXI4 protocol.

When the slave has accepted all the data items, it drives a write response signal BRESP[1:0] back to the master to

indicate that the write transaction is complete. This signal indicates the status of the write transaction. The allowable

responses are OKAY, EXOKAY, SLVERR, and DECERR. After the read address appears on the address bus, the data

transfer occurs on the read data channel as shown in fig. 2. The slave keeps the VALID signal LOW until the read data is

available. For the final data transfer of the burst, the slave asserts the RLAST signal to show that the last data item is being

transferred. The RRESP[1:0] signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY,

SLVERR, and DECERR.

The protocol supports 16 outstanding transactions, so each read and write transactions have ARID[3:0] and AWID

[3:0] tags respectively. Once the read and write operation gets completed the module produces a RID[3:0] and BID[3:0] tags.

If both the ID tags match, it indicates that the module has responded to right operation of ID tags. ID tags are needed for any

operation because for each transaction concatenated input values are passed to module

2.1 Comparison of AMBA AXI3 and AXI4:

AMBA AXI3 protocol has separate address/control and data phases, but AXI4 has updated write response

requirements and updated AWCACHE and ARCACHE signaling details. AMBA AXI4 protocol supports for burst lengths

up to 256 beats and Quality of Service (QoS) signaling. AXI has additional information on Ordering requirements and

details of optional user signaling. AXI has the ability to issue multiple outstanding addresses and out-oforder transaction

completion, but AXI has the ability of removal of locked transactions and write interleaving. One major up-dation seen in

AXI is that, it includes information on the use of default signaling and discusses the interoperability of components which

can’t be seen in AXI3.

In this paper features of AMBA AXI listed above are designed and verified. The rest of the paper is organized as

follows: Section 2 discusses related work. Section 3 of this paper, discusses proposed work. In Section 4, simulation

parameters are discussed. Section 5 discusses results. Future scope and concluding remarks are given in Section 6.

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

22

III. RELATED WORK
In a SoC, it houses many components and electronic modules, to interconnect these a bus is necessary. There are

many buses introduced in the due course some of them being AMBA [2] developed by ARM, CORE CONNECT [4]

developed by IBM, WISHBONE [5] developed by Silicore Corporation, etc. Different buses have their own properties the

designer selects the bus best suited for his application. The AMBA bus was introduced by ARM Ltd in 1996 which is a

registered trademark of ARM Ltd. Later advanced system bus (ASB) and advanced peripheral bus (APB) were released in

1995, AHB in 1999, and AXI in 2003[6]. AMBA bus finds application in wide area. AMBA AXI bus is used to reduce the

precharge time using dynamic SDRAM access scheduler (DSAS) [7]. Here the memory controller is capable of predicting

future operations thus throughput is improved. Efficient Bus Interface (EBI) [8] is designed for mobile systems to reduce the

required memory to be transferred to the IP, through AMBA3 AXI. The advantages of introducing Network-on-chip (NoC)

within SoC such as quality of signal, dynamic routing, and communication links was discussed in [9]. To verify on-chip

communication properties rule based synthesizable AMBA AXI protocol checker [10] is used.

1) Master

2) AMBA AXI4 Interconnect

2.1) Arbiters

2.2) Decoders

3) Slave

The master is connected to the interconnect using a slave interface and the slave is connected to the interconnect using a

master interface as shown in fig. 3. The AXI4 master gets connected to the AXI4 slave interface port of the interconnect and

the AXI slave gets connected to the AXI4 Master interface port of the interconnect. The parallel capability of this

interconnects enables master M1 to access one slave at the same as master M0 is accessing the other.

AMBA 3.0 AXI

AMBA 2.0 AHB

Channel-based specification, with five separate channels for

read address, read data, writes address, write data, and write

response enabling flexibility in implementation

Explicit bus-based specification, with single

shared address bus and separate read and write

data buses.

Burst mode requires transmitting address of only first data

item on the bus.

Requires transmitting address of every data

item transmitted on the bus.

Out-of-Order ransaction completion provides native support

for multiple, outstanding ransactions.

Simpler SPLIT transaction scheme provides

limited and rudimentary outstanding

transaction completion

Fixed burst mode for memory mapped I/O peripherals. No fixed burst mode.

Advanced security and cache hint support. Simple protection and cache hint support.

Native low-power clock control interface. No low-power interface.

Default bus matrix topology support. Default hierarchical bus topology support

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

23

Figure 4: AMBA AXI slave Read/Write block Diagram

IV. SIMULATION
Simulation is being carried out on Model Sim Quretus II [11] which is trademark of Mentor Graphics, using

Verilog [12] as programming language. The test case is run for multiple operations and the waveforms are visible in

discovery visualization environment.

2.2 Simulation inputs:

To perform multiple write and read operations, the concatenated input format and their values passed to invoke a

function is shown in the fig. 6 and 7 respectively. Here the normal type of the burst is passed to module. Internal lock value

is 0, internal burst value is 1 and internal port value is 1,for both read and write operations, which indicate that the burst is of

normal type. For write operation address locations passed to module are 40, 12, 35, 42 and 102; for read operations 45, 12,

67 and 98.

2.3 Simulation outputs:

The simulation output signals generated are as follows:

 From input side the validating signals AWVALID/ARVALID signals are generated by interconnect which gives

the information about valid address and ID tags.

 For write operations BRESP[1:0] response signal generated from slave indicates the status of the write transaction.

The allowable responses are OKAY, EXOKAY, SLERR, and DECERR.

 For read operations RLAST signal is raised by slave for every transaction which indicates the completion of

operation.

V. RESULTS
Simulation is carried out in Modelsim tool and Verilog is used as programming language.

5.1 Simulation result for write operation:

The AResetn signal is active low. Master drives the address, and the slave accepts it one cycle later. The write

address values passed to module are 40, 12, 35, 42 and 102 as shown in fig. 8 and the simulated result for single write data

operation is shown in fig. 9. Input AWID[3:0] value is 11 for 40 address location, which is same as the BID[3:0] signal for

40 address location which is identification tag of the write response. The BID[3:0] value is matching with the AWID[3:0]

value of the write transaction which indicates the slave is responding correctly. BRESP[1:0] signal that is write response

signal from slave is 0 which indicates OKAY. Simulation result of slave for multiple write data operation is shown in fig. 10.

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

24

Fig 8: Simulation result of slave for write address operation

Fig9: Simulation result of slave for single write data operation

Figure 10: Simulation result of slave for multiple write data operation

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

25

VI. SIMULATION RESULT FOR READ OPERATION
The read address values passed to module are 45, 12, 67, 98 as shown in fig. 11 and the simulated result for single

read data operation is shown in fig. 12.

Figure 11: Simulation result of slave for read address operation

Input ARID[3:0] value is 3 for 12 address location, which is same as the RID[3:0] signal for 12 address location

which is identification tag of the write response. The RID[3:0] and ARID[3:0] values are matching, which indicates slave

has responded properly. RLAST signal from slave indicates the last transfer in a read burst. Simulation result of slave for

multiple read data operation is shown in fig. 13.

Figure 12: Simulation result of slave for single read data operation

Figure 13: Simulation result of slave for multiple read data operation.

A Synthesizable Design of AMBA-AXI Protocol for SoC Integration

26

VII. CONCLUSION
AMBA AXI4 is a plug and play IP protocol released by ARM, defines both bus specification and a technology

independent methodology for designing, implementing and testing customized high-integration embedded interfaces. The

data to be read or written to the slave is assumed to be given by the master and is read or written to a particular address

location of slave through decoder. In this work, slave was modeled in Verilog with operating frequency of 100MHz and

simulation results were shown in Modelsim tool. To perform single read operation it consumed 160ns and for single write

operation 565ns.

REFERENCES

1. Shaila S Math, Manjula R B, “Survey of system on chip buses based on industry standards”, Conference

onEvolutionary Trends in Information Technology(CETIT), Bekgaum,Karnataka, India, pp. 52, May 2011.

2. ARM, AMBA Specifications (Rev2.0). [Online]. Available at http://www.arm.com.

3. ARM, AMBA AXI Protocol Specification (Rev 2.0). [Online]. Available at http://www.arm.com, March 2010.

4. IBM, Core connect bus architecture. IBM Microelectronics. [Online]. Available :

 http://www.ibm.com/chips/products/coreconnect

5. Silicore Corporation, Wishbone system-on-chip (soc) interconnection architecture for portable ip cores.

6. ARM, AMBA AXI protocol specifications, Available at, http://www.arm.com, 2003.

7. Jun Zheng, Kang Sun , Xuezeng Pan, and Lingdi Ping “Design of a Dynamic Memory Access Scheduler”, IEEE

transl, Vol 7, pp. 20-23, 2007.

8. Na Ra Yang, Gilsang Yoon, Jeonghwan Lee, Intae Hwang, Cheol Hong Kim, Sung Woo Chung and Jong Myon

Kim, “Improving the System-on-a-Chip Performance for Mobile Systems by Using Efficient Bus Interface”, IEEE

transl, International Conference on Communications and Mobile Computing, Vol 4, pp. 606-608, March 2009.

9. Bruce Mathewson “The Evolution of SOC Interconnect and How NOC Fits Within It”, IEEE transl, DAC,2010,

California, USA,Vol 6, pp. 312-313, June 2010.

10. Chien-Hung Chen, Jiun-Cheng Ju, and Ing-Jer Huang, “A Synthesizable AXI Protocol Checker for SoC

Integration”, IEEE transl, ISOCC, Vol 8, pp.103-106, 2010.

11. Synopsys, VCS / VCSi User Guide Version 10.3[Online]. Available at, www.synopsys.com, 2005.

12. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and synthesis, 2nd ed, Prentice Hall PTR Pub, 2003.

Mr. M. Siva Prasad Reddy, Assistant Professor, Dept of ECE, Kuppam Engineering College, Kuppam

received B.Tech in Electronics and Communication Engineering from Mekapati Rajamohan Reddy

Institute of Technology and Science, Udayagiri, Nellore and received M.Tech from Sree Venkateswara

College of Engineering and Technology, Chittoor.

Mr. B.Babu Rajesh, Assistant Professor, Dept of ECE, Kuppam Engineering College, Kuppam received

B.Tech in Electronics and Communication Engineering from PBR VITS, Kavali, Nellore and received

M.Tech from Sree Venkateswara College of Engineering and Technology, Chittoor.

Mr. T V S Gowtham Prasad Associate Professor, Dept of ECE, Kuppam Engineering College, Kuppam

received B.Tech in Electronics and Communication Engineering from Sree Vidyanikethan Engineering

College, A.rangampet, Tirupati and M.Tech received from S V University college of Engineering,

Tirupati. Pursuing Ph.D from JNTU, Anantapur in the field of signal processing as ECE faculty.

Interesting Areas are Digital Signal Processing, Array signal processing, image processing, Video

surveillance, Embedded systems, Digital Communications.

