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Abstract––System-on-a-Chip (SoC) design has become more and more complexly. Because difference functions 

components or IPs (Intellectual Property) will be integrated within a chip. The challenge of integration is “how to verify 

on-chip communication properties”. Although traditional simulation-based on-chip bus protocol checking bus signals to 

obey bus transaction behavior or not, however, they are still lack of a chip-level dynamic verification to assist hardware 

debugging. We proposed a rule based synthesizable AMBA AXI protocol checker. The AXI protocol checker contains 44 

rules to check on-chip communication properties accuracy. In the verification strategy, we use the Synopsys VIP 

(Verification IP) to verify AXI protocol checker. In the experimental results, the chip cost of AXI protocol checker is 

70.7K gate counts and critical path is 4.13 ns (about 242 MHz) under TSMC 0.18um CMOS 1P6M Technology. 
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I. INTRODUCTION 

In recent years, the improvement of the semiconductor process technology and the market requirement increasing. 

More difference functions IPs are integrated within a chip. Maybe each IPs had completed design and verification. But the 

integration of all IPs could not work together. The more common problem is violation bus protocol or transaction error. The 

bus-based architecture has become the major integrated methodology for implementing a SoC. The on-chip communication 

specification provides a standard interface that facilitates IPs integration and easily communicates with each IPs in a SoC. 

The semiconductor process technology is changing at a faster pace during 1971 semiconductor process technology was 

10μm, during 2010 the technology is reduced to 32nm and future is promising for a process technology with 10nm. Intel, 

Toshiba and Samsung have reported that the process technology would be further reduced to 10nm in the future. So with 

decreasing process technology and increasing consumer design constraints SoC has evolved, where all the functional units of 

a system are modeled on a single chip. 

To speed up SoC integration and promote IP reuse, several bus-based communication architecture standards have 

emerged over the past several years. Since the early 1990s, several onchip bus-based communication architecture standards 

have been proposed to handle the communication needs of emerging SoC design. Some of the popular standards include 

ARM Microcontroller Bus Architecture (AMBA) versions 2.0 and 3.0, IBM Core Connect, STMicroelectronics STBus, 

Sonics SMARRT Interconnect, Open Cores Wishbone, and Altera Avalon[1]. On the other hand, the designers just integrate 

their owned IPs with third party IPs into the SoC to significantly reduce design cycles. However, the main issue is that how 

to efficiently make sure the IP functionality, that works correctly after integrating to the corresponding bus architecture.  

      There are many verification works based on formal verification techniques [2]-[6]. Device under test (DUT) is 

modeled as finite-state transition and its properties are written by using computation tree logic (CTL) [7], and then using the 

verification tools is to verify DUT’s behaviors [8]-[10]. Although formal verification can verify DUT’s behaviors 

thoroughly, but here are still unpredictable bug in the chip level, which we want to verify them.   

The benefits of using rule-based design include improving observability, reducing debug time, improving 

integration through correct usage checking, and improving communication through documentation. In the final purpose, 

increasing design quality while reducing the time-to-market and verification costs [19]. We anticipate that the AMBA AXI 

protocol checking technique will be more and more important in the future. Hence, we propose a synthesizable AMBA AXI 

protocol checker with an efficient verification mechanism based on rule checking methodology. There are 44 rules to check 

the AMBA AXI protocol that provide AXI master, slave, and default slave protocol issues. 

 

II. AMBA AXI4 ARCHITECTURE 
AMBA AXI4 [3] supports data transfers up to 256 beats and unaligned data transfers using byte strobes. In AMBA 

AXI4 system 16 masters and 16 slaves are interfaced. Each master and slave has their own 4 bit ID tags. AMBA AXI4 

system consists of master, slave and bus (arbiters and decoders). The system consists of five channels namely write address 

channel, write data channel, read data channel, read address channel, and write response channel. The AXI4 protocol 

supports the following mechanisms: 

 Unaligned data transfers and up-dated write response requirements. 

 Variable-length bursts, from 1 to 16 data transfers per burst. 

 A burst with a transfer size of 8, 16, 32, 64, 128, 256, 512 or 1024 bits wide is supported. 

 Updated AWCACHE and ARCACHE signaling details. 
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Each transaction is burst-based which has address and control information on the address channel that describes 

the nature of the data to be transferred. The data is transferred between master and slave using a write data channel to the 

slave or a read data channel to the master. Table 1[3] gives the information of signals used in the complete design of the 

protocol. 

The write operation process starts when the master sends an address and control information on the write address 

channel as shown in fig. 1. The master then sends each item of write data over the write data channel. The master keeps the 

VALID signal low until the write data is available. The master sends the last data item, the WLAST signal goes HIGH. 

  

 
Figure 1: Write address and data burst. 

 

 
Figure 2: Read address and data burst. 
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TABLE 1: Signal descriptions of AMBA AXI4 protocol. 

 
 

When the slave has accepted all the data items, it drives a write response signal BRESP[1:0] back to the master to 

indicate that the write transaction is complete. This signal indicates the status of the write transaction. The allowable 

responses are OKAY, EXOKAY, SLVERR, and DECERR. After the read address appears on the address bus, the data 

transfer occurs on the read data channel as shown in fig. 2. The slave keeps the VALID signal LOW until the read data is 

available. For the final data transfer of the burst, the slave asserts the RLAST signal to show that the last data item is being 

transferred. The RRESP[1:0] signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, 

SLVERR, and DECERR. 

The protocol supports 16 outstanding transactions, so each read and write transactions have ARID[3:0] and AWID 

[3:0] tags respectively. Once the read and write operation gets completed the module produces a RID[3:0] and BID[3:0] tags. 

If both the ID tags match, it indicates that the module has responded to right operation of ID tags. ID tags are needed for any 

operation because for each transaction concatenated input values are passed to module 

2.1 Comparison of AMBA AXI3 and AXI4: 

AMBA AXI3 protocol has separate address/control and data phases, but AXI4 has updated write response 

requirements and updated AWCACHE and ARCACHE signaling details. AMBA AXI4 protocol supports for burst lengths 

up to 256 beats and Quality of Service (QoS) signaling. AXI has additional information on Ordering requirements and 

details of optional user signaling. AXI has the ability to issue multiple outstanding addresses and out-oforder transaction 

completion, but AXI has the ability of removal of locked transactions and write interleaving. One major up-dation seen in 

AXI is that, it includes information on the use of default signaling and discusses the interoperability of components which 

can’t be seen in AXI3. 

In this paper features of AMBA AXI listed above are designed and verified. The rest of the paper is organized as 

follows: Section 2 discusses related work. Section 3 of this paper, discusses proposed work. In Section 4, simulation 

parameters are discussed. Section 5 discusses results. Future scope and concluding remarks are given in Section 6. 
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III. RELATED WORK 
In a SoC, it houses many components and electronic modules, to interconnect these a bus is necessary. There are 

many buses introduced in the due course some of them being AMBA [2] developed by ARM, CORE CONNECT [4] 

developed by IBM, WISHBONE [5] developed by Silicore Corporation, etc. Different buses have their own properties the 

designer selects the bus best suited for his application. The AMBA bus was introduced by ARM Ltd in 1996 which is a 

registered trademark of ARM Ltd. Later advanced system bus (ASB) and advanced peripheral bus (APB) were released in 

1995, AHB in 1999, and AXI in 2003[6]. AMBA bus finds application in wide area. AMBA AXI bus is used to reduce the 

precharge time using dynamic SDRAM access scheduler (DSAS) [7]. Here the memory controller is capable of predicting 

future operations thus throughput is improved. Efficient Bus Interface (EBI) [8] is designed for mobile systems to reduce the 

required memory to be transferred to the IP, through AMBA3 AXI. The advantages of introducing Network-on-chip (NoC) 

within SoC such as quality of signal, dynamic routing, and communication links was discussed in [9]. To verify on-chip 

communication properties rule based synthesizable AMBA AXI protocol checker [10] is used. 

1) Master 

2) AMBA AXI4 Interconnect 

2.1) Arbiters 

2.2) Decoders 

3) Slave 

The master is connected to the interconnect using a slave interface and the slave is connected to the interconnect using a 

master interface as shown in fig. 3. The AXI4 master gets connected to the AXI4 slave interface port of the interconnect and 

the AXI slave gets connected to the AXI4 Master interface port of the interconnect. The parallel capability of this 

interconnects enables master M1 to access one slave at the same as master M0 is accessing the other. 

 

AMBA 3.0 AXI 

 
AMBA 2.0 AHB 

Channel-based specification, with five separate channels for 

read address, read data, writes address, write data, and write 

response enabling flexibility in implementation 

Explicit bus-based specification, with single 

shared address bus and separate read and write 

data buses. 

Burst mode requires transmitting address of only first data 

item on the bus. 

Requires transmitting address of every data 

item transmitted on the bus. 

Out-of-Order ransaction completion provides native support 

for multiple, outstanding  ransactions. 

Simpler SPLIT transaction scheme provides 

limited and rudimentary outstanding 

transaction completion 

Fixed burst mode for memory mapped I/O peripherals. No fixed burst mode. 

Advanced security and cache hint support. Simple protection and cache hint support. 

Native low-power clock control interface. No low-power interface. 

Default bus matrix topology support. Default hierarchical bus topology support 
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Figure 4: AMBA AXI slave Read/Write block Diagram 

 

IV. SIMULATION 
Simulation is being carried out on Model Sim Quretus II [11] which is trademark of Mentor Graphics, using 

Verilog [12] as programming language. The test case is run for multiple operations and the waveforms are visible in 

discovery visualization environment. 

 

2.2 Simulation inputs: 

To perform multiple write and read operations, the concatenated input format and their values passed to invoke a 

function is shown in the fig. 6 and 7 respectively. Here the normal type of the burst is passed to module. Internal lock value 

is 0, internal burst value is 1 and internal port value is 1,for both read and write operations, which indicate that the burst is of 

normal type. For write operation address locations passed to module are 40, 12, 35, 42 and 102; for read operations 45, 12, 

67 and 98. 

 

2.3 Simulation outputs: 

The simulation output signals generated are as follows: 

 From input side the validating signals AWVALID/ARVALID signals are generated by interconnect which gives 

the information about valid address and ID tags. 

 For write operations BRESP[1:0] response signal generated from slave indicates the status of the write transaction. 

The allowable responses are OKAY, EXOKAY, SLERR, and DECERR. 

 For read operations RLAST signal is raised by slave for every transaction which indicates the completion of 

operation. 

V. RESULTS 
Simulation is carried out in Modelsim tool and Verilog is used as programming language. 

5.1 Simulation result for write operation: 

The AResetn signal is active low. Master drives the address, and the slave accepts it one cycle later. The write 

address values passed to module are 40, 12, 35, 42 and 102 as shown in fig. 8 and the simulated result for single write data 

operation is shown in fig. 9. Input AWID[3:0] value is 11 for 40 address location, which is same as the BID[3:0] signal for 

40 address location which is identification tag of the write response. The BID[3:0] value is matching with the AWID[3:0] 

value of the write transaction which indicates the slave is responding correctly. BRESP[1:0] signal that is write response 

signal from slave is 0 which indicates OKAY. Simulation result of slave for multiple write data operation is shown in fig. 10. 
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Fig 8: Simulation result of slave for write address operation 

 

 
Fig9: Simulation result of slave for single write data operation 

 

 
Figure 10: Simulation result of slave for multiple write data operation 
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VI. SIMULATION RESULT FOR READ OPERATION 
The read address values passed to module are 45, 12, 67, 98 as shown in fig. 11 and the simulated result for single 

read data operation is shown in fig. 12. 

 
Figure 11: Simulation result of slave for read address operation 

 

Input ARID[3:0] value is 3 for 12 address location, which is same as the RID[3:0] signal for 12 address location 

which is identification tag of the write response. The RID[3:0] and ARID[3:0] values are matching, which indicates slave 

has responded properly. RLAST signal from slave indicates the last transfer in a read burst. Simulation result of slave for 

multiple read data operation is shown in fig. 13. 

 

 
Figure 12: Simulation result of slave for single read data operation 

 

 
Figure 13: Simulation result of slave for multiple read data operation. 
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VII. CONCLUSION 
AMBA AXI4 is a plug and play IP protocol released by ARM, defines both bus specification and a technology 

independent methodology for designing, implementing and testing customized high-integration embedded interfaces. The 

data to be read or written to the slave is assumed to be given by the master and is read or written to a particular address 

location of slave through decoder. In this work, slave was modeled in Verilog with operating frequency of 100MHz and 

simulation results were shown in Modelsim tool. To perform single read operation it consumed 160ns and for single write 

operation 565ns. 
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