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Abstract––In this paper we show the new Bell-type inequality for three qubit systems (i.e a tripartite system with two 

measurements in each side and two outputs for each measurement). This inequality is violated by quantum theory with a 

factor violation of 3.5 tolerating 0.5 fraction of white noise. Our inequality includes only 19 different joint probabilities 

whereas in other works it is much more than this. We will also show violation amount of this inequality is 2.5. Note that 

the maximum violation factor and amount of violation in available inequalities are both 2, also the whi t e  noi se  

to lerance  of  our  inequal i t y  i s  in  agreem ent  wi th  m axim um value ca lcula t ed  so  far . 

 

Keyword s––non loca l i t y;  Bel l  inequal i t y;  am ount of  v io la t ion;  v io la t ion  factor ;  whi t e  noise  

to lerance .  

 

I. INTRODUCTION 

Quantum mechanics cannot be described by local hidden variable theories. In quantum theory, the tests of local 

realism are based on Bell-type inequalities. Original Bell inequality d id  no t  have any capabi l i t ies  to  be  s tud ied  

empir ical ly in  the  laborator ies  [1]. Since then, many attempts have been made to obtain Bell-type inequalities which 

are violated by a higher factor so that it would be experimentally easy to test the non-locality feature of quantum theory. As 

the  non- local i ty feature  of quantum theory i s  in tensively used  in  quantum informat ion ,  Bel l  type  

inequal i t ies  have received  more a t ten t ion  in  recen t  years  [2 ] .  

 A variant of Bell-type inequality, being more general and more useful for an experimental test, was derived by Clauser, 

Horne, Shimony and Holt (CHSH) [3]. In 1982, Aspect, et al. performed a verification experiment for a possible violation of 

Bell inequalities in CHSH form [4]. CHSH inequality is derived from two particles. N-particle generalizations of the CHSH 

inequality were proposed by Mermin, and later developed by Ardehali, Bleinski and Khyshko and others. See [5-8]. 

Quantum predictions can violate such inequalities by an amount increasing exponentially with the particle number [9]. for 

N=3, maximal violation factor (i.e. the ratio of the value of Bell-type inequalities in quantum theory to their value in local 

theory) and maximum amount of violation  (i.e. the difference between the value of Bell expression according to quantum 

theory and its extermum value according to local theory) are both 2. In these systems, white noise tolerance is 0.5 [10]. 

In this paper, we consider a three qubit system (i.e a three particles system with two dichotomic measurements on each 

particle, and two outcomes for each measurement). Then for local theory, we introduce a new Bell type expression for this 

system based on numerical calculations. We will show that the violation factor and the amount of violation of this inequality 

exceed those of available inequalities [5-9], while its white noise tolerance agrees with the previous results. 

 

II. THREE QUBIT SYSTEMS 

To verify the non-locality in quantum theory We would introduce a three qubit system consisting of particles 21   , AA  

and 3A  in which two dichotomic measurements 
i

1
B , 

j

2
B  and 

k

3
B  can be performed on particles 21   , AA  and 3A  

respectively, where }2,1{k,j,i  . The outcomes of these measurements are denoted 
j

2

i

1
bb   ,  and 

k

3
b  which can take the 

values 0, 1. 

The local  real i sm assumes the  exis tence of posi t ive  t r ip le  jo in t  p robabi l i t ies  involving a l l  

poss ib le  observat ions  from which  i t  should  be poss ib le  to  ob tain  a l l  the  quantum pred ict ions  as  

marginals .  Le t ' s  denote these triple joint probabilities  by 
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outcome values for measurements 
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BandB     on particle 1A , 
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b and b    represent the outcome values for 

measurements 
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B and B   on particle 2A  and 
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1

3
b and b   represent the outcome values for measurements 

2

3
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3
BandB    on particle 3A  respectively. These probabilities are positive. Obviously: 
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    Also assume 
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bbb
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P
,,

,,

 represen ts  the  jo in t  p robabi l i ty that  in  a  par t icu lar  se t t ing,  (i.e. the probability 

of obtaining the values 
i

1
b , 

j

2
b  and 

k

3
b  in a simultaneous measurement of observables 

kji

321
BandBB     ,  on the 

particles 321  and    , AAA  respectively). 

 

The joint probabilities take the form: 
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where }2,1{k,j,i   and kkandjjii        , . 

From Eqs. (1) and (2) we have  
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As it is clear, for a local theory a Bell type expression, ß , is a linear combination of joint probabilities which can be written 

as:  
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 Using equation (2) the Bell inequality in terms of s'q  would become: 
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It is clear that: 

 

de ß                            (5 )                                                                               where  

d (e)  i s  the  greates t  o f  posi t ive  real  numbers   s''   in  equat ion  (5) .  

 

 

One of the  wel l–known Bel l  type  inequal i t ies  fo r  th ree  par t i te  sys tems i s  Mermin  inequal i ty ,  

which  i s  expressed  as  [ 6 ] :  
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In the above equation "u" is the number of zero’s resulted in each particular setting. 

It is shown in [6] that Mermin inequality for local theories is: 

22
M

ß                                                                                                                  (8) 

Mermin inequality satisfies in Eq. (5) for e=d=2, however, according to quantum theory, the upper bound of Mermin 

inequality is 4. Here, the violation factor and amount of violation are both 2 and the maximum white noise tolerance 

calculated is 0.5 [10, 11]. 

 

III.  A NEW TREE QUBIT BELL INEQUALITY 
According to local theories, various Bell expressions are defined which correspond to different values of e and d in 

Eq. (5). These expressions are violated by quantum theory. The violation factor and the amount of violation of original Bell 



Stronger Violation of Local Realism for Three Qubit Systems with a New Bell-Type Inequality 

57 

inequality, for e=1 and d=0 in Eq. (5), are 1.414 and 0.414 respectively. In [12] several Bell type inequalities, with different 

values of e and d, are introduced. The numerical results in [12, 13] show that amount of violation and the violation factor of 

inequalities, as defined in section 2, are related to e and d, and maximum violation increases when the upper/lower bound in 

Eq. (5) increases/decreases.   

One of these Bell expressions, for a tow qubit system, is as follows [12]: 
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where 
ji

1 2
BandB  are two possible measurements performed on particles 

2
AandA

1
respectively and 

 2,1j,i  . With this notation, outcomes of these measurements are 
ji

1 2
bandb  which  1,0b ,b j

2

i

1
 . So 

j
2

i
1

j
2

i
1

b,b

B,B

P denotes the probability that in a particular experiment, measurement  
i

1
B  on  par t ic le  A 1  resu l t s  

i

1
b  and  

measurement  
i

2
B  on  par t ic le  A2  resu l t s

j

2
b . The calculated violation factor and amount of violation, for inequality 

(9), are 1.621 and 0.621 respectively which are more than the previous results in the literature. 

 Inspired by the result obtained in [12, 13], we have looked for three qubit Bell- type inequality in local theories which 

violates quantum theory with stronger violation.  

Writing Eq. (2) in matrix form, i.e. UqP  , where  P  i s  an  1NP   mat r ix ,  PN  is the total number of jo in t  

p robabi l i t ies , q  is an 1N
q
  matrix, the total number of triple jo in t  p robabi l i t ies  is 

q
N , and U is the conversion 

matrix with dimension 
qP

NN  . Using numerical method mentioned in [12, 13] we have solved equation UqP   to 

find all possible Bell expressions that satisfy eq. (5). Using the three qubit GHZ state, we obtain the values of derived Bell 

expressions in quantum theory. The violation factor and the amount of violation for the expressions that are violated by 

quantum theory have been calculated and the inequality that is violated more strongly than those other expressions in 

quantum theory has been obtained. However we don't discuss these here, because the result that we are going to use in 

following can be tested directly and easily.   

Let's consider xB1 


 and yB 2 
  where 3,2,1 , we find the following Bell expression with the help of 

numerical calculations mentioned above: 
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 In  appendix A,  i t  i s  shown that :  

1
new

ß                                                                                         (11)                                      

Now we show that inequality (11) is violated by quantum theory. Consider a three-qubit Greenberger-Horne-Zeilinger state 

[14] which is:  
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where    and  ↓  are  sp in  po lar izat ion  a long z  axis .  So  in  quantum theory,  new
ß would  become:  
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(13)  

                                                                                                     

It can be seen that the violation factor and the amount of violation of the inequality (11) are 3.5 and 2.5 respectively, whereas 

the maximum violation factor and maximum amount of violation of the available inequalities so far, are both 2. 

To calculate the white noise tolerance of 
new

ß  in three qubit systems, we consider the following density matrix [11]: 

 

I
8

)1(
GHZGHZNoise White


                                                         (14)  

where    i s  the  to lerance of the  Bel l  express io n ,  i.e. the maximum fraction of white noise admixture for which 

a Bell expression stops being violated.  

Obviously:  
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P  i s  the joint probability in  the  presence of whi te  no ise .  From equat ions  (11)  and  (1 5) ,  we 
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where  
QM
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ß  i s  the  value of our  Bel l  express ion ,  

new
ß ,  accord ing to  quantum theory and   

L
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ß  i s  

the  upper  bound  of 
new

ß  accord ing to  local  theory,  and  f(g)  i s  the  number  of posi t ive(negat ive)  

terms in  Bel l  express ion .   

So the white no ise  tolerance of our equality, i.e. Eq. (11),  is: 
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which  agrees  wi th  maximu m value calcu lated  up  to  now.   

 

IV. CONCLUSION 

In this paper, it is shown that a new bell-type inequality exists for the three-qubit system, i.e. a three particles 

system with two measurements for each side and two outputs for each measurement, in local theories and shown that this 

inequality is violated by quantum theory with a violation factor of 3.5 and violation amount of 2.5. We have also shown that 

white noise tolerance in this new Bell type expression is 0.5. Two typical bipartite qubit inequalities are CHSH and CH 

inequalities in which the violation factor is 0.414 and the tolerance of white noise is 0.292. The bipartite qutrits inequalities 

have been studied widely in recent years. Their maximum value of the amount of violation and the tolerance are predicted to 

be 0.87293 and 0.30385 respectively for maximally entangled state. Note that for inequalities in three qubit systems, the 

violation factor and amount of violation predicted are both 2 which are less than those of our inequality. Also the  

maximum whi te  no ise  to lerance of avai lab le  th ree  qubi t  inequal i t ies  i s  0 .5 ,  which  agrees  wi th  

whi te  no ise  to lerance of our  inequal i ty.  As no experiment is error- free, there was an endeavor to gain a kind of 

Bell type inequality that could be violated as much as possible, and would be experimentally easy to test non-locality feature 

of quantum theory,  so in our inequality, this increment of violation factor and the amount of violation increase the accuracy 

of experiments in which the errors are inevitable. Also one of the advantages of our inequality is that it includes only 19 

different terms of joint probabilities whereas in other works it is much more than this ( for example  in Mermin and 

Svetlichny inequalities, it is 32 and 64 respectively). So, our inequality requires less measurement which in turn, reduces the 

errors due to experiment. See [13]. 

 

Appendix  A  

In this appendix we derive equation (11) From the definition (2) and denoting 
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After simplifying we obtain: 
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Please note that all q’s are positive here, so according to equation 12, 
new

ß  is less than or equal to 1. 
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