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Abstract:––The fundamental problem of the reinforced concrete deep beams is that a number of parameters affecting shear 

behavior have led to a limited understanding of shear failure mechanism and prediction of exact shear capacity. Although, a 

large number of researchers carried out work, but there is no agreed rational procedure to predict the shear capacity of deep 

beams. This is mainly due to the non-linear behavior associated with the failure of reinforced concrete deep beams. 

Artificial Neural Networks are widely used to approximate complex systems that are difficult to model using 

conventional modeling techniques such as mathematical modeling. They have been successfully applied by many 

researchers in several civil engineering problems, structural, geotechnical, management etc. Civil and structural engineers 

attempt to improve the analysis, design, and control of the behavior of structural systems. The behavior of structural systems, 

however, is complex and often governed by both known and unknown multiple variables, with their interrelationship 

generally unknown, nonlinear, and sometimes very complicated. The traditional approach used by most researchers in 

modeling starts with an assumed form of an empirical or analytical equation and is followed by a regression analysis using 

experimental data to determine unknown coefficients such that the equation will fit the data. In the last two decades, 

researchers explored the potential of artificial neural networks (ANNs) as an analytical alternative to conventional 

techniques, which are often limited by strict assumptions of normality, linearity, homogeneity, variable independence, etc. 

Researchers found ANNs particularly useful for function approximation and mapping problems, which are tolerant of some 

imprecision and have a considerable amount of experimental data available. In a strict mathematical sense, ANNs do not 

provide closed-form solutions for modeling problems but offer a complex and accurate solution based on a representative set 

of historical examples of the relationship. Advantages of ANNs include the ability to learn and generalize from examples, 

produce meaningful solutions to problems even when input data contain errors or are incomplete, adapt solutions over time 

to compensate for changing circumstances, process information rapidly, and transfer readily between computing systems 

(Flood and Kartam 1994). 

While many efforts have been conducted to understand the shear behavior of reinforced concrete deep beams and (or) to 

derive equations for estimating such shear capacity, some researchers explored the application of ANNs for such predictions. 

For example, Oreta (2004) applied ANNs to a set of 155 experimental tests to simulate the size effect on the shear strength 

of reinforced concrete beams without transverse reinforcement. 

In this research program, one of the largest, reliable and most confident database of 270 deep beams was utilized to 

investigate the applicability of the ANN technique to predict the shear capacity of deep beams for a widest range of all 

affecting parameters. The incorporated variables were width, effective depth, shear span, shear span to depth ratio, 

compressive strength of concrete, percentage of longitudinal steel, percentage of vertical steel, percentage of horizontal web 

steel and yield strength of steel. For this important structural criteria, the proposed model predictions were compared with 

experimental values and five national codes, viz, KBCS, EC-2, CIRIA Guide-2, CSA and ACI-318 and in all the cases, a 

good confidence level of the proposed model was observed.  

 

I. INTRODUCTION 
An artificial neural network is a network of large number of highly connected processing units called neurons. The 

neurons are connected by unidirectional communication channels (connections). The strength of connections between the 

neurons is represented by numerical values called weights. Knowledge is stored in the form of a collection of weights. Each 

neuron has an activation value that is a function of the sum of inputs received from other neurons through the weighted 

connections. Matlab (2007) was used to develop the neural network model. 

 

Pre-processing of Data:  

A comprehensive study was carried out on the collected experimental data to choose the data which can be used in 

the training of neural network model. A reliable data base of test results of 270 deep beams was obtained for developing the 

neural network model. The statistics of database is shown in table 1.1  
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Table: 1.1; Statistics of Experimental Data Base: 

 

width 

(mm) 

Effective 

Depth 

(mm) 

Shear  

Span 

(mm) 

a/d Cylinder 

Strength 

( Mpa) 

% 

Long. 

Steel 

% 

Vert. 

Steel 

% Hor. 

Steel  

Yield 

Strength 

of Steel  

(N/mm2) 

Shear 

Capacity 

(kN) 

Max 915.00 1750.00 3500.00 3.20 120.00 4.25 2.86 3.17 605.00 8396.00 

Min 100.00 125.00 125.01 0.27 14.00 0.01 0.00 0.00 376.00 14.00 

Mean 201.70 497.13 672.01 1.30 35.13 1.30 0.33 0.35 430.65 908.67 

Stand. 

Dev 174.76 295.140 553.9 0.37 19.384 1.019 0.404 0.4913 48.220 1209.294 

 

II. SCALING OF DATA 
Data scaling is an essential step for neural networks. In a multi-layered NN having a back-propagation algorithm, 

the combination of nonlinear and linear transform functions can result in well trained process. In the present NNs, tan-

sigmoid and linear transform functions were employed in the hidden and output layers, respectively. As upper and lower 

bounds of tan-sigmoid function output are +1 and -1, respectively, input and output in the database were normalized by 

dividing each data parameter by the maximum value of the respective parameter in the data base. Also, after training and 

simulation, outputs having the same units as the original database can be obtained by multiplying the same maximum value 

of the respective parameters to the simulated output. 

 

III. DIVISION OF DATA 
An important factor that can significantly influence the ability of a network to learn and generalize is the number 

of specimens (beams) in the training set. Although it increases the time required to train a network, increasing the number of 

training specimens provides more information about the shape of the solution surface and thus increases the potential level of 

accuracy that can be achieved by the network. Since Back Propagation is most widely used in civil engineering, So it was 

decided to use feed forward back propagation algorithm for developing the neural network. Back propagation recommends 

dividing the data set into three sets, training, validation and testing sets. So, it was decided to use 170 specimen of the data 

for training, 50 for testing and 50 for validation out of the 270 specimens. First of all, training data was  selected randomly, 

and  checked to make sure that it  satisfies a good distribution within the problem domain. 

 

IV. ARCHITECTURE OF NEURAL NETWORK 
The neural network was designed to have an input layer that consists of nine input neurons representing the most 

important parameters that affect the shear capacity of reinforced concrete beams. Based on careful study of recent 

approaches for the shear phenomena in concrete members, it was decided to design the input layer to consist of the said nine 

parameters. The output layer consisted of one neuron representing the ultimate shear capacity of the of the deep beam. There 

are two hidden layers, the first layer is having nine neurons and second hidden layer has eighteen neurons. The transfer 

function used is tansig while as it is purelin for output layer. The complete architecture of the network is shown in figure 1.1.  

 
Figure: 1.1; Architecture of Neural Network 

 

V. TRAINING OF NEURAL NETWORK: 
In a multilayer feed-forward neural network, training refers to the iterative process involving the presentation of 

training data to the network, the invocation of learning rules to modify the connection weights, and, usually, the evolution of 

the network architecture, such that the knowledge embedded in the training data is appropriately captured by the weight 

structure of the network. During the training phase, the training data consist of input and associated output pairs representing 

the problem that we want the network to learn. The training set is used to reduce the ANN error. The error on the validation 

set is monitored during the training process. The validation set error will normally decrease during the initial phase of 

training, as does the training set error. However, when the network begins to overfit the data, the error on the validation set 

will typically begin to rise. When the validation set error increases for a specified number of epochs, the training is stopped. 

The test set is  used  as further check for generalization, but has not any effect on the training. Over fittings and predictions 
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in training and outputs of NNs are commonly influenced by the number of hidden layers and neurons in each hidden layer. 

Therefore, trial and error approach was carried out to choose an adequate number of hidden layers and number of neurons in 

each hidden layer as shown in figure 1.1 above. In addition, NN performance is significantly dependent on initial conditions, 

such as initial weights and biases, back-propagation algorithms, and learning rate. 

In this study, the training phase of ANN is implemented by using the back-propagation learning algorithm 

“trainlm”. Trainlm is a network training function that updates weight and bias values according to Levenberg-Marquardt 

optimization. A backpropagation network typically starts out with a random set of weights. The network adjusts its weights 

each time it sees an input–output pair. Each pair requires two stages: a forward pass and a backward pass. The forward pass 

involves presenting a sample input to the network and letting activations flow until they reach the output layer. During the 

backward pass, the network’s actual output (from the forward pass) is compared with the target output and error estimates 

are computed for the output units. The weights connected to the output units can be adjusted to reduce those errors. We can 

then use the error estimates of the output units to derive error estimates for the units in the hidden layers. Lastly, errors are 

propagated back to the connections stemming from the input units. 

The back-propagation algorithm updates its weights incrementally, after seeing each input–output pair. After it has 

seen all the input–output pairs (and adjusted its weights many times), it is said that one epoch has been completed. Training a 

back-propagation network usually requires many thousands of epochs. An error criteria for the network output is usually 

chosen and the maximum number of iterations is set to provide a condition for terminating the learning process. The 

performance of ANN can be monitored by monitoring the training error with respect to the number of iterations. If the 

network “learns,” the error will approach a minimum value. After the training phase, the ANN can be tested for the other set 

of patterns, which the network has never seen, where the final values of the weights obtained in the training phase are used. 

No weight modification is involved in the testing phase. 

During training of the NN, the MSE (mean square error) of the training set was reduced to less than 0.0004 and 

MSE of validation set was reduced to less than 0.02 as shown in figure 1.2. After 15 epochs, the validation set error started 

to rise. So, training was stopped after 15 epochs and developed neural network model saved. Then, developed neural 

network was validated with the new data to check the generalization of network, discussed in the next section. 

In this way, the model was developed for predicting the shear capacity of deep beams, and henceforth, the said neural 

network model is referred as “PROPOSED MODEL”.  
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Figure: 1.2; Training session of Network 

 

VI. VALIDATION OF PROPOSED MODEL: 

Validation of the proposed model is equally important as its development. Without validation, we can’t rely on the 

model. For this purpose, the predictions of shear capacity by the proposed model were compared with the experimental 

results (from literature) of sixty beams. The model was also compared with the predictions of five national codes, viz ACI-

318, CIRIA Guide-2, EC-2, CSA and KBCS. The results of the proposed model are closer to the experimental values than 

any other national code. The mean error of the proposed model was found equal to 17.41 % which was lowest error, 

compared to the five national codes. The root mean square deviation of proposed model was 326.21, which was again the 

lowest. Hence, the confidence level of the said model is best, when compared with the expressions of five national codes. 

The detailed comparison is presented in Table 1.2. 

 

 

 

Table: 1.2; Comparison of predictions with experimental results 
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city 

(kN) 

city 

(kN) 

city 

(kN) 

(kN) city 

(kN) 

city 

(kN) 

city 

(kN) 

NNV-1 44 80.18 82.22 169.8 285.9 78.42 78.24 96.21 118.6 80.18 143 46.12 4.82 

NNV-2 65 95.86 47.48 122.5 88.48 79.02 21.58 115 76.97 95.86 96.7 32.82 49.5 

NNV-3 90 106.4 18.24 231 156.7 110.2 22.48 127.7 41.88 106.4 57.7 72.22 19.7 

NNV-4 93.75 110.6 17.98 158.9 69.58 108.8 16.1 132.7 41.58 110.6 57.3 86.87 7.34 

NNV-5 105 152 44.82 230.6 119.6 142.7 35.99 127.5 21.48 165.5 56.9 87.15 17 

NNV-6 124.1 98.81 20.38 73.38 40.87 79.48 35.96 82.89 33.21 107.5 13.7 119.6 3.62 

NNV-7 124.1 101 18.6 76.35 38.48 89.32 28.02 84.74 31.72 109.9 11.8 98.52 20.6 

NNV-8 133 45 66.17 150.7 13.36 79.79 40.01 54 59.4 45 54.8 166.6 25.3 

NNV-9 134 45 66.42 150.7 12.51 79.79 40.46 54 59.7 45 55.2 166.6 24.3 

NNV-10 135 45 66.67 160.2 18.66 83.21 38.37 54 60 45 55.5 128.7 4.64 

NNV-11 136.1 70.79 47.99 92.35 32.15 55.21 59.44 84.94 37.59 70.79 30.6 77.68 42.9 

NNV-12 137.2 96.55 29.63 70.38 48.7 111.3 18.88 80.99 40.97 105 23.7 102.8 25.0 

NNV-13 140.3 101 28 243.6 73.67 109.8 21.72 84.74 39.6 109.9 21.9 134.7 3.95 

NNV-14 143.6 99.31 30.84 89.18 37.9 80.27 44.1 83.3 41.99 108 25 121.9 15.0 

NNV-15 145.2 98.56 32.12 87.98 39.41 101.5 30.06 82.68 43.06 107.2 26.4 81.42 43.9 

NNV-16 149 72.13 51.59 196.3 31.79 73.95 50.37 86.55 41.91 72.13 35.4 105.6 29.0 

NNV-17 152.6 95.27 37.57 68.7 54.98 127.8 16.19 79.92 47.63 103.6 32.3 203.4 33.2 

NNV-18 155 97.06 37.38 226.7 46.29 147.3 4.94 81.42 47.47 105.6 32.1 174.9 12.8 

NNV-19 158.4 96.55 39.05 84.77 46.49 119.3 24.63 80.99 48.87 105 33.9 167.7 5.89 

NNV-20 161 95.02 40.98 94.67 41.2 142.4 11.51 79.7 50.5 103.4 36 160.6 0.24 

NNV-21 165 45 72.73 160.2 2.91 83.21 49.57 54 67.27 45 63.6 128.7 21.9 

NNV-22 178 45 74.72 160.2 10 83.21 53.25 54 69.66 45 66.2 128.7 27.6 

NNV-23 242 193.9 19.87 227.3 6.04 157.9 34.74 232.7 3.84 193.9 6.9 290.4 20.0 

NNV-24 297 192.9 35.02 136 54.18 186.6 37.15 161.8 45.5 210 29.6 259.8 12.5 

NNV-25 298 72.96 75.52 152.5 48.81 113.3 61.97 87.55 70.62 72.96 67.3 269 9.71 

NNV-26 310 138.3 55.38 263.5 14.98 175.1 43.51 165.9 46.46 138.3 40.4 462.5 49.2 

NNV-27 334 193.9 41.94 299.4 10.35 199.2 40.33 232.7 30.33 193.9 22.5 435 30.2 

NNV-28 359 208.5 41.9 333.1 7.21 201.6 43.82 250.2 30.28 208.5 22.5 392.5 9.34 

NNV-29 427 256 40.05 198 53.61 231.3 45.82 214.7 49.71 278.6 35 458.7 7.44 

NNV-30 448 200.3 55.27 310.7 30.64 220 50.88 240.4 46.32 200.3 40.3 498.2 11.2 

NNV-31 534 237.1 55.58 335.9 37.09 455.2 14.74 284.6 46.7 237.1 40.7 542.8 1.65 

NNV-32 577 208.5 63.85 333.1 42.27 267.5 53.64 250.2 56.62 208.5 51.7 590.3 2.32 

NNV-33 578 201.2 65.18 250.6 56.63 428.5 25.86 241.5 58.22 201.2 53.5 485.8 15.9 

NNV-34 582 204.5 64.86 321.9 44.68 265 54.45 245.4 57.83 204.5 53.1 578.9 0.53 

NNV-35 600 135.6 77.39 123.1 79.48 213.9 64.34 113.7 81.04 147.6 75.5 421.4 29.7 

NNV-36 605 232.3 61.59 324.1 46.42 451.7 25.34 278.8 53.91 232.3 48.7 536.6 11.3 

NNV-37 608 204.5 66.36 321.9 47.04 265 56.4 245.4 59.63 204.5 55.1 578.9 4.78 

NNV-38 626 208.5 66.68 333.1 46.79 225.5 63.97 250.2 60.02 208.5 55.5 417.9 33.2 

NNV-39 655 377.9 42.31 566.5 13.51 261.7 60.04 317 51.6 411.2 37.4 632.9 3.36 

NNV-40 681 227.5 66.59 312.2 54.15 448 34.2 273 59.91 227.5 55.4 529.8 22.2 

NNV-41 699 498.1 28.74 537.2 23.13 561.4 19.68 597.7 14.49 498.1 4.94 963.4 37.8 

NNV-42 735 465 36.73 343.3 53.29 592.7 19.35 558 24.08 465 15.6 808.2 9.97 

NNV-43 743 404.7 45.52 317.8 57.22 327.4 55.93 339.5 54.3 440.5 40.9 744.2 0.17 

NNV-44 750 558.2 25.56 549.6 26.71 579.2 22.76 605.6 19.24 558.2 3.08 1090 45.4 

NNV-45 778 222.5 71.4 300.2 61.41 507.9 34.71 267 65.68 222.5 61.8 848.6 9.08 

NNV-46 890 244.8 72.49 187.9 78.88 247.2 72.22 205.3 76.93 266.4 70.2 780.5 12.3 

NNV-47 940 386.4 58.89 340.2 63.81 398.3 57.63 463.7 50.67 386.4 45.1 951.5 1.22 

NNV-48 988 245 75.2 189.2 80.84 316.8 67.93 205.5 79.19 266.7 73.1 1020 3.3 

NNV-49 1050 652.3 37.88 505.5 51.85 430.9 58.96 547.1 47.89 709.9 32.6 1072 2.13 

NNV-50 1181 419.3 64.49 436.6 63.03 465.3 60.6 351.7 70.21 456.4 61.5 1081 8.46 

NNV-51 1464 2109 44.09 1355 7.39 2138 46.07 1769 20.87 2296 56.1 2000 36.6 

NNV-52 1491 1739 16.65 972.3 34.79 2008 34.71 1458 2.15 1893 26.3 1767 18.5 

NNV-53 2083 1782 14.41 1015 51.23 2015 3.23 1495 28.2 1940 7.27 1655 20.5 

NNV-54 2122 1830 13.74 1064 49.86 2436 14.84 1535 27.65 1992 6.54 2607 22.8 

NNV-55 2225 1780 20 1013 54.46 2419 8.73 1493 32.89 1937 13.3 2556 14.8 

NNV-56 2296 1987 13.45 1226 46.58 2216 3.48 1666 27.4 2162 6.22 1935 15.6 

NNV-57 2657 2061 22.43 1304 50.91 2517 5.24 1728 34.93 2243 15.9 2958 11.3 

NNV-58 2923 2260 22.65 1520 47.97 2531 13.39 1896 35.12 2460 16.1 3257 11.4 
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% Mean 

Error 
44.6   50.16   36.2   46.47   40.1   17.4 

  R M S     872.3   718.5   797.9   511.9   326. 

 

As seen the shear capacity predicted by proposed model was much closer to the experimental results as compared 

to different codes. The mean error and root mean square deviation of shear capacity predicted by the proposed model was 

much lesser as compared to different codes. Therefore, proposed model was used for carrying out the parametric study, 

whereby influence of various parameters on shear capacity was studied. 
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VII. CONCLUSIONS 
The proposed model was studied by comparing the shear strength predictions with experimental data (from 

technical literature) and five national codes viz, KBCS, EC-2, CIRIA Guide -2, CSA and ACI-318 in general. The above 

comparisons were also made through parametric study. In both the cases proposed model showed good agreements, 

indicating the consistency of the proposed model. The proposed model adequately predicts the shear capacity of deep beams 

for different values of influencing parameters like longitudinal steel, shear span to depth ratio etc. Neural Networks have a 

great capacity of providing the solution to complex problems like deep beams. 
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