
International Journal of Engineering Inventions

e-ISSN: 2278-7461, p-ISSN: 2319-6491

Volume 2, Issue 10 (June 2013) PP: 39-44

www.ijeijournal.com Page | 39

FPGA Implementation of CORDIC Algorithm Architecture

Ramanpreet Kaur
1
, Parminder Singh Jassal

2

1
Department of Electronics And Communication Engineering, Punjabi University Yadavindra College of

Engineering, Talwandi Sabo Punjab, India
2
Assistant Professor, Yadvindra College of Engineering, Talwandi Sabo (Pb)-India

Abstract: - CORDIC algorithm is very simple and iterative process for performing various mathematical

computations. Most of the literature lacks in calculation of resources utilized by a particular CORDIC

architecture. In this paper, serial, parallel and pipelined CORDIC architecture has been implemented for

computing both sin & cos functions

Keywords: - About five key words in alphabetical order, separated by comma

I. INTRODUCTION
 CORDIC algorithm is an iterative algorithm, which can be used for the computation of trigonometric

functions, multiplication and division [1]. Last half century has witnessed a lot of progress in design and

development of architectures of the algorithm for high-performance and low-cost hardware solutions. CORDIC

algorithm got its popularity, when [2] showed that, by varying a few simple parameters, it could be used as a

single algorithm for unified implementation of a wide range of elementary transcendental functions involving

logarithms, exponentials, and square. During the same time, [3] showed that CORDIC technique is a better

choice for scientific calculator applications.

 The popularity of CORDIC was very much enhanced thereafter primarily due to its potential for

efficient and low-cost implementation. With the advent of low cost, low power FPGAs, this algorithm has

shown its potential for efficient and low-cost implementation. CORDIC algorithm can be widely used in as

wireless communications, Software Defined Radio and medical imaging applications, which are heavily

dependent on signal processing.

 Although CORDIC may not be the fastest technique to perform these operations, yet it is attractive due

to the simplicity and efficient hardware implementation.

 The development of CORDIC algorithm and architecture has taken place for achieving high throughput

rate and reduction of hardware-complexity as well as the latency of implementation. Latency of implementation

is an inherent drawback of the conventional CORDIC algorithm. Angle recoding schemes and higher radix

CORDIC have been developed for reduced latency realization. Parallel and pipelined CORDIC have been

suggested for high-throughput computation. CORDIC computation is inherently sequential due to two main

bottlenecks firstly the micro-rotation for any iteration is performed on the intermediate vector computed by the

previous iteration and secondly the (i+1)th iteration could be started only after the completion of the ith

iteration, since the value of which is required to start the (i+1)th iteration could be known only after the

completion of the ith iteration. To alleviate the second bottleneck some attempts have been made for evaluation

of values corresponding to small micro-rotation angles [4]. However, the CORDIC iterations could not still be

performed in parallel due to the first bottleneck. A partial parallelization has been realized in [4] by combining a

pair of conventional CORDIC iterations into a single merged iteration which provides better area-delay

efficiency. But the accuracy is slightly affected by such merging and cannot be extended to a higher number of

conventional CORDIC iterations since the induced error becomes unacceptable [5]. Parallel realization of

CORDIC iterations to handle the first bottleneck by direct unfolding of micro-rotation is possible, but that

would result in increase in computational complexity and the advantage of simplicity of CORDIC algorithm

gets degraded [6]. Although no popular architectures are known to us for fully parallel implementation of

CORDIC, different forms of pipelined implementation of CORDIC have however been proposed for improving

the computational throughput [7].To handle latency bottlenecks, various architectures have been developed and

reported in this review. Most of the well-known architectures could be grouped under bit parallel iterative

CORDIC, bit parallel unrolled CORDIC , bit serial iterative CORDIC architecture.

II. CORDIC ALGORITHM

Keeping the requirements and constraints of different application environments in view, the

development of CORDIC algorithm and architecture has taken place for achieving high throughput rate and

reduction of hardware-complexity as well as the latency of implementation. Some of the typical approaches for

reduced-complexity implementation are focused on minimization of the complexity of scaling operation and the

Fpga Implementation Of Cordic Algorithm Architecture

www.ijeijournal.com Page | 40

complexity of barrel-shifter in the CORDIC engine. Latency of implementation is an inherent drawback of the

conventional CORDIC algorithm. Parallel and pipelined CORDIC have been suggested for high-throughput

computation and efficient CORDIC algorithm.

Figure 1: Vector Rotation

 CORDIC algorithm has two types of computing modes Vector rotation (Rotating mode) and vector

translation (Vectoring mode). The CORDIC algorithm was initially designed to perform a vector rotation, where

the vector V with components (,)x y is rotated through the angle yielding a new vector
'V with component

' '(,)x y shown in Figure 1.

' [][]V R V
 (1)

where R is the rotation matrix:

cos sin

sin cos
R

 (2)

'

'

'

cos sin

sin cos

xx
V

yy

 (3)

individual equations for
'x and

'y can be rewritten as:

' .cos() .sin()x x y
 (4)

' .cos() .sin()y y x (5)

and rearranged so that
' cos()[.tan()]x x y (6)

' cos()[.tan()]y y x (7)

 The multiplication by the tangent term can be avoided if the rotation angles and therefore tan() are

restricted so that tan() 2 i . In digital hardware this denotes a simple shift operation. Furthermore, if those

rotations are performed iteratively and in both directions every value of tan() is representable. With

arctan(2)i the cosine term could also be simplified and since cos() cos() it is a constant for a

fixed number of iterations. This iterative rotation can now be expressed as:

1 [. .2]i

i i i i ix k x y d

 (8)

1 [. .2]i

i i i i iy k y x d

 (9)

where cos(arctan(2))i

ik and 1id . The product of the ik 's represents the so-called K factor .

Fpga Implementation Of Cordic Algorithm Architecture

www.ijeijournal.com Page | 41

1

0

n

i

i

k k

 (10)

This K factor can be calculated in advance and applied elsewhere in the system. Equations (8) and (9)

can now be simplified to the basic CORDIC equations:

1 [. .2]i

i i i ix x y d

 (11)

1 [. .2]i

i i i iy y x d

 (12)

The direction of each rotation is defined by id and the sequence of all id 's determines the final vector.

Each vector V can be described by either the vector length and angle or by its coordinates x and y . Following

this incident, the CORDIC algorithm knows two ways of determining the direction of rotation: the rotation

mode and the vectoring mode. Both methods initialize the angle accumulator with the desired angle oz . The

rotation mode, determines the right sequence as the angle accumulator approaches 0 while the vectoring mode

minimizes the y component of the input vector.

The angle accumulator is defined by:

1 .arctan(2)i

i i iz z d

 (13)

where the sum of an infinite number of iterative rotation angles equals the input angle :

0

.arctan(2)i

i

i

d

 (14)

 Those values of arctan(2)i
can be stored in a small lookup table or hardwired depending on the way

of implementation. Since the decision is which direction to rotate instead of whether to rotate or not, id is

sensitive to the sign of iz . Therefore id can be described as:

1, 0

1, 0

i

i

i

if z
d

if z

 (15)

With equation (15) the CORDIC algorithm in rotation mode is described completely. Note, that the

CORDIC method as described performs rotations only within / 2 and / 2 . This limitation comes from the

use of
02 for the tangent in the first iteration. However, since a sine wave is symmetric from quadrant to

quadrant, every sine value from 0 to 2 can be represented by reflecting and/or inverting the first quadrant

appropriately.

 In vector translation, rotates the vector V with component (X, Y) around the circle until the Y

component equals zero as illustrated in Figure 2. The outputs from vector translation are the magnitude X’ and

phase
'z , of the input vector V with component (X,Y).

Figure2: Vector Translation

After vector translation, output equations are:

 2 2X' = ki X Y
 (16)

Fpga Implementation Of Cordic Algorithm Architecture

www.ijeijournal.com Page | 42

' 0Y (17)

' tan

Y
z a

X

 (18)

To achieve simplicity of hardware realization of the rotation, the key ideas used in CORDIC arithmetic

are to decompose the rotations into a sequence of elementary rotations through predefined angles that could be

implemented with minimum hardware cost and to avoid scaling, that might involve arithmetic operation, such as

square-root and division. The second idea is based on the fact the scale-factor contains only the magnitude

information but no information about the angle of rotation.

In 1971, John S. Walther found how CORDIC iterations could be modified to compute hyperbolic

functions and reformulated the CORDIC algorithm into a generalized and unified form which is suitable to

perform rotations in circular, hyperbolic and linear coordinate systems. The unified formulation includes a new

variable m , which is assigned different values for different coordinate systems. The generalized CORDIC is

formulated as follows:

1

1

1

.2 .

.2 .

.

i

i i i i

i

i i i i

i i i i

x x m y

y y x

w w

 (19)

Where

()

()

i

i

i

sign w

sign w

for rotation mode

for vectoring mode

III.

For 1,0m or 1 and
1tan (2),2i i

i
 or

1tanh (2)i
, the algorithm given by (19) works in

circular, linear or hyperbolic coordinate systems, respectively. Table 1 summarizes the operations that can be

performed in rotation and vectoring modes in each of these coordinate systems. The convergence range of linear

and hyperbolic CORDIC are obtained, as in the case of circular coordinate, by the sum of all i given by

0

i

i

 .

IV.

Table 1 Generalized CORDIC Algorithm

V.

The

hyperbolic CORDIC requires to execute iterations for 4,13,40........i twice to ensure

convergence. Consequently, these repetitions must be considered while computing the scale-factor
2 1/2(1 2)i

hK , which converges to 0.8281.

III. Fpga Implementation Of Cordic Algorithm For Sin And Cos Functions
CORDIC can be used to compute Sin of any angle with little variation. The angle is given as input.

A vector length 1.647 (CORDIC gain) along the x-axis is taken. The vector is then rotated in steps so as to reach

the desired input angle . The x and y values are accumulated. After fixed number of iterations the final co-

ordinates of the vector i.e. the x and y values give value of Cos and Sin respectively of the given angle . When

the Sin Cos functional configuration is selected, the unit vector is rotated, using the CORDIC algorithm, by

Fpga Implementation Of Cordic Algorithm Architecture

www.ijeijournal.com Page | 43

input angle . This generates the output vector (cos(),sin()) .The compensation scaling module is disabled

for the Sin and Cos functional configuration as it is internally pre-scaled to compensate for the CORDIC scale

factor.

Table 2 Resource Utilization of Sin and Cos functional Configuration

Configuration

Parameters

Serial Parallel

(No

Pipeline)

Parallel

(Pipeline)

No. of slice f/f 349 (22%) 66(4%) 1146 (74%)

No. of 4 i/p LUT’s 472 (30%) 1006(65%) 1020(66%)

No. of occupied

Slices

 330

(42%)

564(73%) 623(81%)

No. of slices

containing

Only related logic

330(100%) 564(100%) 623(100%)

Total No. of 4 i/p

LUT’s

595 (38%) 1087(70%) 1123 (73%)

Figure 3: Resource Utilization of Sin and Cos functional Configuration in serial architecture

Figure 4: Resource Utilization of Sin and Cos functional Configuration in parallel architecture

Fpga Implementation Of Cordic Algorithm Architecture

www.ijeijournal.com Page | 44

Figure 5: Resource Utilization of Sin and Cos functional Configuration in parallel architecture

From Table 2 and Figures 3-5, it has been concluded parallel architecture uses 74% no. of slices as

compare to 4% no. of slices used by parallel architecture without pipelining mode and 22% no. of slices used by

serial architecture. 66% no. of 4 input LUTs used by parallel architecture with pipeline mode but 65% no. of 4

input LUTs are used by parallel architecture without pipelining and 30% no. of 4 input LUTs are used by serial

architecture. 81% and 73% occupied slices are used by parallel architecture with or without pipelining

continuously and 42% occupied slices are used by serial architecture.

IV. CONCLUSION
 From the above discussion, although parallel architecture with pipeline seems to be costlier as compare

to parallel without pipelining and serial architecture, yet parallelarchitecture has high throughput (i.e. speed) as

compare to serial architecture.

REFERENCES
[1] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Transactions on Electronic Computers, vol. EC- 8, pp. 330–

334, Sept. 1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the 38th Spring Joint Computer Conference,

Atlantic City, NJ, 1971, pp.379–385.
[3] D. S. Cochran, “Algorithms and accuracy in the HP-35,” Hewlett-Packard Journal, pp. 1–11, June 1972.

[4] S. Wang, V. Piuri, and J. E. E. Swartzlander, “Hybrid CORDIC algorithms,”IEEE Transactions on Computers, volume 46, no. 11,

pp. 1202–1207, November1997.
[5] S. Wang and E. E. Swartzlander, “Merged CORDIC algorithm,” in IEEE International Symposium on Circuits Systems

(ISCAS’95),1995, volume 3, pp.1988–1991.

[6] B. Gisuthan and T. Srikanthan, “Pipelining flat CORDIC based trigonometric function generators,” Microelectronics Journal,
volume 33, Pp.77–89, 2002.

[7] E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architectures for fast VLSI filtering and array processing,” in IEEE

International Conference on Acoustic, Speech, Signal Processing, ICASSP’84, March 1984, volume 9, pp.250–253.
[8] D. E. Metafas and C. E. Goutis, “A floating point pipeline CORDIC processor with extended operation set,” in IEEE International

Symposium on Circuits and Systems, ISCAS’91, June 1991, volume 5, pp. 3066–3069.

