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Abstract: The Glycolysis Model Has Been Solved Numerically In Two Dimensions By Using Two Finite
Differences Methods: Alternating Direction Explicit And Alternating Direction Implicit Methods (ADE And
ADI) And We Were Found That The ADE Method Is Simpler While The ADI Method Is More Accurate. Also,
We Found That ADE Method Is Conditionally Stable While ADI Method Is Unconditionally Stable.
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l. INTRODUCTION

Chemical reactions are modeled by non-linear partial differential equations (PDEs) exhibiting
travelling wave solutions. These oscillations occur due to feedback in the system either chemical feedback (such
as autocatalysis) or temperature feedback due to a non-isothermal reaction.

Reaction-diffusion (RD) systems arise frequently in the study of chemical and biological phenomena
and are naturally modeled by parabolic partial differential equations (PDESs). The dynamics of RD systems has
been the subject of intense research activity over the past decades. The reason is that RD system exhibit very
rich dynamic behavior including periodic and quasi-periodic solutions and chaos(see, for example [8].

1.1. MATHEMATICAL MODEL:
A general class of nonlinear-diffusion system is in the form
%=dlAu+a1u+b1v+f(u,v)+g1(x) o
a—: = dyAu+ a;u + byv — f(u,v) + g,(x)
with homogenous Dirchlet or Neumann boundary condition on a bounded domain Q , n<3, with locally
Lipschitz continuous boundary. It is well known that reaction and diffusion of chemical or biochemical species
can produce a variety of spatial patterns. This class of reaction diffusion systems includes some significant
pattern formation equations arising from the modeling of kinetics of chemical or biochemical reactions and from
the biological pattern formation theory.
In this group, the following four systems are typically important and serve as mathematical
models in physical chemistry and in biology:
e Brusselator model:
a; =—(b+1),b; =0,a, =b,b, =0,f =u?v,g; =a,g, =0,
where a and b are positive constants.
e Gray-Scott model:
a,=—(f +k),by =0,a, =0,b, = —F,f =u’v,g, =0,g, = F,
where F and k are positive constants.
e  Glycolysis model:
a, =-1,b; = k,a, =0,b, = —k,f =u’v,g, =p,g, =6,
e where k,p, and § are positive constants
e Schnackenberg model:
ay=—kby = a,= b, =0,f =u’v,g, =a,g, = b,
where k, a and b are positive constants.
Then one obtains the following system of two nonlinearly coupled reaction-diffusion equations (the Glycolysis
model),
Jdu

Frin diAu—u+ kv +u?v+p, (t,x) € (0,0) XQ\

|
dv
—t=d2Av—kv—u2v+5,(t,x)E(O,oo)xQ )

d
u(t,x) =v(t,x) =0, t>0, xX€0Q J
u(0,x) = uy(x), v(0,x) = vy(x), xeQ

where d;, d,, p, k and § are positive constants [9].
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1. MATERIALS AND METHODS
2.1. Derivation Of Alternating Direction Explicit (ADE) For Glycolysis Model:
The two dimensional Glycolysis model is given by

du 0%u  9%u 5 \
== W-FW —u+Kv+u?v+p, (t,x) € (0,0) x Q|

2
v 0%v  9%*v ) @
E: 2 W-I-W —Kv—u, l7+del, (t,x)E(0,00)XQ}

We consider a square region 0<x<l, 0<y<l and u, v are known at all points within and on the
boundary of the square region. We draw lines parallel to x, y, t-axis as x=ph, y=gk, and t=nz, p,g=0, 1, 2,...,M
and n=0, 1, 2,..., N, where h=dx, k= dy, z= dt.

Denote the values of u at these mesh points by u(ph,gk,nz) = up qn and v(ph,gk,nz) =V qn - The

explicit finite difference representation of the Glycolysis model is

Upgnil “Upgn dg

2
] Upsrgn ~2pgn *Up-tgn *Upastn ~Xpgn *Upg-Ln) “Upgn *Kpgn tUpgnVpan * P

=

Vpgnil “Vpgn dp

2
(v p+lgn ~ 2Vp,q,n + Vp—l,q,n + Vp,q+1,n - ZVM‘n + Vp,q—l,n) - Kv pan ~UpgnVpan del,

=

z
and
dy? 2
Upgnsl ~Upgn = hT (u p+La,n -2u p.an FUp-1gn *UpgeLn -2u p.an FUpg-Ln )-u pan * ZKv pan T 2pgnYpgn A2

dyz

Vpan ~Vpa.n :hT("rHl,q,n -

2
-2v -2v pYq‘nvpyqynﬁrdel

pan *Vp-1an *Vpgrtn ~2pan *Vpg-1n) - K pgn

Assume that h=k and m; = dLZZ,i =1, 2. Then simplifying the system to obtain
h

2
u p,q.n+l “Upgn = ml(u p+La.n -2u pgn tY p-1,q,n +u p.g+ln = 2u pgn *Y p,q—l,n)’ Wpgn * Kv pan T 2p,qnYpgn * A2

2
’va,q,n *Vp—l,q,n *Vp,q+1,n ’zvp,q,n +Vp,q—1,n)’ZKV pan ~2pgnYpan + del,

Vp,gnit ~Vp.gn = M2 pi1gn
and

2
Up,gqn+l = (1-4mqy —z(B+1))u p.a.n * my (u p+La,n TUp-1q,n tUp,geLn U p,q—l,n) +pqnl* ZKv pan T ApagnVpan * A2

Vp,q,n+1 =@1- 4m2)vp,q,n + (v p+lgn * u p-lq.n * u p.g+ln * u p,q—l,n)mz — zZKv p.g.n zu p,q,nvp,q,n' + del

This is the alternating direction explicit formula for the Glycolysis model

Derivation Of Alternating Direction Implicit (ADI)For Glycolysis Model:

In the ADI approach, the finite difference equations are written in terms of quantities at two x levels.
However, two different finite difference approximations are used alternately, one to advance the calculations
from the plane n to a plane n+1, and the second to advance the calculations from (n+1)-plane to the (n+2)-

2 2
plane by replacing ZT;‘ and 27127 by implicit finite difference approximation [5]. we get

u -u d d
p.g.n+l ~p,q.n 1 1
z - h2 (Upi1,g,n+L ~2Up,gne +Up-1g,n+) + K2 (Upg+n ~2Up,gn +Up,g-1n)~Upgn +Kpgn+

2
Up,gnVpgn+ o

Vpantl ~Vpan dp

dy 2
, = hT(V p+La.n ~2VpgnHl TVp-1q,n+1) + F(Vp,qﬂ,n —~2Vp.gn +Vp,g-1n) ~KVpgn —UpgnVp,gn *del

and

u —-u
p.g.n+2 ~Upgn+l dp dq
S = hT(” p+La.n+l ~2Up g+l +Up-Lgnd) + kT(” p.g+lne2 ~2Upgn+2 *Upg-1n+2) ~Upqn +Kpgn +

2
Up,g.nVpgn + A
d

v -v
pan+2 ~Vpgnil  dp 2 2
= hT(V pLa.n+l ~ 2Vpgnd +Vp-1q.n+) + K2 (Vp,g+1n+2 = 2Vp,gne2 *Vp,g-Ln+2) ~KVpgn —UpqnVp,qn +del

z
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Simplifying the system will give

dll dll 2
Up,gn+l = hT(“ pLg,n+l ~2Upgnel T Up-1gn+l) * kT(“ p.g+Ln ~2Up.gn +Upg-1n) = Wpgn +UpgnVpgn T2V pan
PL+Upgn
dzz d22 2
Vp,g,n+l = ?(V p+Lg,n+l ~2Vp,gn+d +Vp-1qn+l) F (Vp,g+tn ~2p,gn *+Vp,g-Ln) ~Kpgn ~2UpgnVpan + 2Vpqgn + 2del
From the second two equations we will obtain a system of the form
dll d]_Z 2
Upgnt2 = h—z(upjrl‘qml— YA panl *“p—l,q,n+1) +k7(“p,q+1,n +2- pgn +2+ Upg-Ln+ 2)-w pan * ApgnVpant ZKVp,q,n
PHUpgn
dyz dyz

2 2
Vpgne2 = hT(Vp+1,q,n+1 ~2pget tVp-Lgni) *kT(meLM ~Wpgns2 *Vpg-1ns2) - pgn - WpgaVpgn t Vpgnel 20

dlZ dlz dZZ

From the first two equations where r = —=-, r, =
h

k h?
Up,gn+t = 1Ups1,gned —2Up,gnd +YUp-1gn+1) 12U pgitn ~2Upgn *Up,g-Ln) = Zpagn +Zpgn

d
and m, = <%, we get
k

2
Zu p,q,nvp,q,n +pL+U p,g,n:
Vpgnl =MV piagn+d ~2Vp,gnd +Vp-1a,n) + M2V pgin ~2Vpgn +Vp,g-1n) ~ZKpgn -
2
WpgnVpan el +vpqn,
and this implies that
2
Up,qned = r(u p+Lan+l ~ 2u p,g,nl +U p—l,q,n+l) + (U p,g+Ln +U p,q—l,n) +(1-2r -2z)u p,a.n T p.qgnVpgn + A+ ZKv p,a.n
2
Vp,gnl =MV pignid ~2Vpgned +Vp-Lgn+1) *M2(Vp gian +Vp,g-Ln) + L =2M2)Vp qn = 2Up g nVp,q,n-+ 2del
We have simplifying these systems of equations yields
(@+21)up gn+1 =1WUpi1,gn+l TUp-1,g,n+l) *2WUp g+Ln +Up,g-1n) + @—2rp —2)up qn +
2
PL+2ZKVp qn +2Up q,nVp,q,n
A+2mVp gn+l =MV pa1g,n+1 +Vp-1,g,n+1) TM2(Vp g+1,n +Vp,g-1n) + A =2M2)Vp g n —
2
2p,q,nVp,q,n-
also the second system of equations, yields
(+2r)up g n+2 = Ups1,gnad +Up-1,g,n+1) + @ =21)Up g1 +T2(Up geln+2 +Up,g-Ln+2) ~Npgn +
2
pgnVpgn * zKv p.q.n + P2
Q+2m2)Vp g2 =MV pignl +Vp-1,gn+1) + @=2MVp g nd M2V gine2 FVp,g-Ln+2) —
2 del
Zu p'q'nvp’q’n + zdel.
The last two systems represent Alternating Direction implicit under the conditions
Ui, q,n+1 = U1,q+1,n+1 =0
UM,g.n+1 = UM ,g+Ln+1 =0
Also we have

V. =Viqini = 0

v =VM.qin = 0.

The tridiagonal matrices for the system in the level n advanced to the level n+1, for both u and v can be
formulated as follows AU=B.

1,9,n+1

M,q,n+1

(1+2n)

0

0 0

- C : U2 q,n+1
-n @+2m) -§ 0 0 0 0 0 0 TA—
0 - (@+2q) - 0 0 O 0 0 u4" N
,d,N+
0 0 - (1+27) -n u5q " -
0 0 -n a
0 0 .
0 0
S S S e | B
-1 (1+25 -1
1 1 1 Un—2,g+1
0 0 0 0 0 0 0 -n (1+2p)
L - [YM—1q,n+ |
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2
pL+12(U2 getn +U2,g-1n) + (L =212 —2)Up qn +2U72,,nV2 g n
2
PL A+ Ty (U3,q+1,n + U3’q_1’n) +@-2rp - Z)Uqu’n +zu 3,q,nV3’q'n

2
pL+ Ty (U4,q+l,n + u4,q—1,n) +@-2rp - Z)U4,q,n +2u74,g,nV4,q,n

2
| P2+ 2UM-1,g+1n *UM-1,g-1n) + A =2r2 = 2)Up_1qn +ZU"M-19.nVM—1,q,n |

[@rom)  -my 0 o 0 . . : 0 V2,q.n+1
-m (+2m)  -my 0 0 0 0 0 0 V3,q,n+1
0 -m o (+2m)  -mg 0 0 0 0 0 V4,9,n+1
0 0 -m (+2m) -myg V5,q,n+1
0 0 7m1 . . .
0 0 P . =
0 0
: : : : S : : VM -3,q,n+1
0 0 0 0 0 0 -m (1+2m) -m VM 2,41
|0 0 0 000 0 em @]y

2
my (V2,q+1,n + V2,q—1,n) +(1-2my - ZK)Vz,q,n - 2,qvnV2,q,n

2
my (V3‘q+1yn + V3‘q71’n) +(@-2my - zK)v?,’q’n - 3,q,nV3’q‘n
2
mz(V41q+1'n +V4yq_1'n) +(1-2my - zK)V4’qyn - W4,9,nV4 qn

2
| M2 (VM -1,g+Ln +YM-L,g-Ln) + L =2My =Ky g .qn ~2U"M-1qnVM-1g,n |

And the tridiagonal matrices for the system in level n+1 advanced to level n+2 for both u and v are
given by AU=B.

@+2) - 0 o0 ... 0 Up2ni2
- (+2p) -, 0 0 0 0 0 0 Upane2
-n @+ - o
A IR
2 2 2 Up,5,n+2
0 0 -N
0 0 o =
0 0
e s
o 02 T Hup Mo nee
0 0 0 0 000 -np @m)]|,
L S LY pM-1n+2 |
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2

pr+mu p+1,2,n+1 T U p—1,2‘n+1) +(1-2n -2u p,2,n#l ~Wp2n T U p2nVp2n
2

P+ Upsggned +Up13n+) + (=20 - 2Up 31 ~WUp3n + 2 p3nVp3n
2

P+ Uyt ansl +Up1anst) + -2 - 2Upania —Wpan + 21 p4nVpan
2

P+ (Upaasned +Up-15n04) (=20 —2Up5 0 ~Wp5n + 2 p5NVp 5y

2
| P+ Ups Mned +UpLM-Lnet) + (=20 = 2Up Mg el ~ UpML2,n T 27 P21V pM L4t |

Also for AV=B the tridiagonal is in the form

[@+omy)  —my 0 o0 . . . 0o || VYp2n+2
-my  (l+2my) -my 0 0 0 0 0 0 Vp,3,n+2
0 -my  (+2mp) -my 0 0 0 0 0 Vp,4,n+2
0 0 -My (1+2m2) -my Vp,5,n+2
0 0 —ml . .
0 0 S _ =
0 0
- - : - R : : Vp,M-3n+2
0 0 0 0 0 0 -my (1+2my) -my VpM-2,1+2
| o 0 0 000 0 mmp )|y

2
M (Vp41,2,041 +Vp-1,2,n41) + L=2my = 2KV 5 pyg +2Up 2y =27 p,2nVp 2y

2

M (Vp13n41 +Vp1,3ns1) + (L=2my — 2KV 3 ng +2Up 30 —2U"p3nVp 3y
2

M (Vo140 +Vp-14n41) + (L=2my —ZKWVp g qq +2Up 40 —2U"p,4NnVp 4y

2
| ™M pst,M-1n41 +VpLM-1nst) + (A =2my —ZKWVp Mg gy + 2 p Mn — 27 pM-LnVp M1 |

2.2. Numerical Stability In Two Dimensional Spaces:
2.3.1 Numerical stability of ADE: The Von-Neumann method has been used to study the stability analysis of
Glycolysis model in two dimensions; we can apply this method by substituting the solution in finite difference

method at time t by w®e™ ™Y where 8, y >0 and m=+—1 . ToO apply Von-Neumann on the first

equation of Glycolysis model

aou 62u 2

u
_:dl[—2+—2]—u+Kv+u2v+p,
ot ox oy

ov azv 2v 2
—:dz[—2+—2]— Kv —u“v + del,
ot ox oy

For the first equation after linearizing it and for some values of p and K neglect the terms pz and
ZKv p q,n [31, will be in the form
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w(t+At)e™e™ = (1—4r — 2)p (t)e™e™ + 1 (p (t)e™ * eV 4
l//(t)emﬁ(x_AX)emyy + !//(t)emﬁ)xem}/(y*'Ay) + l//(t)emﬂxem}/(y_AY) .
Now dividing both sides of the above equation by /(t)e™ €™ to obtain

—W(;J&)At) = (L—4r, —2) + (M 4 e M gMAN | g MANY)
= (1-4r, — z) + r;(2cos(SAX) + 2cos(yAy)

= (1—-4r, — 2) + (1 - 2sin® (BAX/ 2) +1— 2sin? (yAy / 2)).
For some values of B and ¥, sin®(BAx/2) and sin®(yAy/2) are unity [4], so

YAHAY 0 ae —gy42n(-2)
w(t)
=(1-4n-2)-4n=(01-8n-2)=¢
For stable situation, we need |&|<1,50 -1<(1-8r -12)<1,

Casel: -1<(1-87-2) =>n<

-z
Case2: 1-8n-2)<l=mnp 2 ? = neglectthis case because > 0.

For the second (Linearized) equation of Glycolysis model which is in the form

Vp,gnid = (1—-4ry) — Kz)vp’q’n +ry (Vp+1,q,n +Vp-1q,n +Vp,g+ln +Vp,q71,n)-
Let Vpqn = o(t)e™e™Y and substituting it in the above equation to obtain

ot +Ae™*e™Y _ (1 ary — Ka)p(t)e™P MY 1 (o(t)e MM

o(t)e MM (Y+AY) mAx My (y-4y)

+p(t)e
Dividing both sides of the above equation by ot)e™>e™ to obtain
pltran =&=1-4rp -Kz) + mz[em'gAX + e—m,BAx e e—myAy]
o(t)

= (1-4my — Kz) + rp[2cos(SAX) + 2cos(yAy)]

= (- 4ry — K2) + 2y [1 - 2sin 2 (fAX/ 2) +1- 2sin 2 (yAy 12)]

= (U- 4rysin2 (BAX/2) - 4ry sin 2 Ay /2) — Kz

= (1-8r) - Kz).
For some values of g and y, we can assume that sinz(ﬁAXIZ) and sinz(;/AyIZ) are unity [4], so
plt+At)

o(t)
|1-8r) - Kz|<1= -1< (L-8r, — Kz) <1, Which are located in two cases

&=(1-8ry - Kz) the equation is stable if || <1 which implies that

Casel: -1<(1-8r)-Kz)=8rp <2-Kz=rp <—— and
Case2: (1-8rp-Kz)<1=8rp >-Kz=ry>-Kz/8 .

. - 2-12 2-Kz
So the system is stable under the conditions 1 < and r, <

2.3.2 Numerical stability of ADI: The ADI finite difference form for the first equation of Glycolysis model is
given in the form

(@+2m)up gt = 1Upiagned +Up-1gna) +2WUpgan +Upg-1n) +
2
(1-2rp —2)u p.g.n-+ ZKVp,q,n +2Up qnVp,gn T A2
By linearization the term zu%’q’n vanishes, and for the same values of K and p the terms zkv, g n, oz vanishes.
Then the equation take the form
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@+2n)up qnit = A Upsagned T Up-1gna) F2Up gisn +Up,g-1,n) +
(1-2r) —z)u p,a,n-
In order to study the stability of the above equation, after letting up o, = p®)e™e™Y wherem=+-1, we
obtain
(L+2r)p(t +At)emﬁxem}'y =n(p(t +At)(em/3(x+Ax)emyy + emﬂ(x—Ax)emyy) +

r (y/(t)(emﬁxemy(erAY) + emﬁ‘xemy(yfAy)) +(1-2n - z)y/(t)em'gxemw.

Dividing both sides of the above equation by ¢™*e™Y to get
W+ 2t + A1) = 1 (e + a0E™™ 1 e ™) L e
Rearranging, we get
= Ry (t + At))(2cos(BAX) + s (t)(2cos(yAy) + (L + 2ry — 2)y (t)

MAY ™M) (12 - 2y ).

= ry(t+ AY[20L - 2sin % (BAX/ 2)] + Ty ([2(1 - 25in 2 (BAY 12)] + L - 27 — k(b + D) (D).

For some values of g and y, assume that sinz(ﬁAx/Z) and sinz(yAy/Z) are unity [4] , so the equation will take
the form
(L+2r)y (t + At) = R (t + At)(=2) + roy (1) (=2) + (1 - 2rp — Z)y (1)
(L+4n)p(t + At) = (L-4r - 2y (t)
w(t + At) B (1-4rp —2) B
p(t)  @Q+4n)

w(t + At) B 1-(4ry +2) B
l//(t) 1+ 41’1

So

&

Similarly, for the second equation of the Glycolysis model we assume that v, 4 5 = q)(t)emﬂxem”’ , Where

m = v-1 ,the finite difference form of this equation is
@+2r)Vp gt = 10V patgned TVp-1,g,n+0) + 2V patgned +Vp-Lgnet)
(1-Kz-2rp)vp g-1n41

Then
(1+2r))p(t + At)emﬁxemw =Ro(t+ At)(em'B(HAX)em})y + emﬁ(X_AX)emW) +

r2(<p(t)(emﬁxem7(y+AY) + emﬁxemy(y—Ay)) +(1-Kz - 2r2)¢(t)emﬁxem7y.
Dividing both sides of the above equation by ¢™*e™ | to get
(L+2rp)p(t + At)em'b)xem})y — o (p(t + At)em'B(XJFAX)em})y + ot + At)emﬁ(X_AX)emW) =

MMy (HAY) _ 54K M MAXeMy (Y=AY)y | it)e ™M

1o (p(t)e +p(t)e

Which implies that
1+ 2r)p(t + At) = no(t + At)[2cos(yAX)] + rpp(t)[2cos(Ay)] + (1 - Kz - 2r2)(p(t)

L+ 27)(t + At) = Re(t + AR(L - 2sin 2 (BAX/ 2)] + 1y (2(1 - 28in 2 (Y 2)p(t) + (1 — Kz — 2r,)o(t).

For some values of g and y, we have sinz(ﬂAxlz) and sinz(yAyIZ) are unity, so we have
(1+27)p(t + At) = Rt + AD(-2) + (1) + (1 - Kz - 2r,)o(1).
(L+4m)p(t + At) = (L- Kz — 4r,)o(t)
w(t+At)  (1-(4rp +Kz)
v (g 2
Where g and ¢, stand for the I-plane and I1-plane respectively, each of the above terms is conditionally

stable. However the combined two-levels has the form
. e o (L-(4ry + Kz)). (1-(4rp + Kz))
ADI = P1°2 =0 (14 4n) @Q+4n)
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Thus the above scheme is unconditionally stable, each individual equation is conditionally stable by itself, and
combined two-level is completely stable.

1. APPLICATION (NUMERICAL EXAMPLE)
We solved the following example numerically to illustrate the efficiency of the presented methods,

suppose we have the system

Z—I:zdlAu—u+kv+u2v+p,
z—’:zdzAv—kv—uzv+6

We the initial conditions
U(x,0) =Us +0.01sin(zx/L) f

or

0<x<L

V(x,0)=Vs—-0.12sin(zx/L) for 0<x<L
U@,t)=Us, UL, t)=Us and V(0,t)=Vs, V(L ,t)=Vs
We will take

d;=d,=0.01 , p=0.09 ,§6=-0.004 ,Us=0 , V=1

Then the results in more details are shown in following table and figure:

1.0003 1.0000

1.0017 1.0013 1.0045

1.0028 1.0024

1.0036 1.0032 1.004

1.0040 1.0038

1.0042 1.0041 Ry

1.0042 1.0043 Tl

1.0041 1.0044

1.0040 1.0044 100251

1.0038 1.0044

1.0038 1.0044 1.002+

1.0038 1.0044

1.0040 1.0044 TOME

1.0041 1.0044 il

1.0042 1.0043 :

1.0042 1.0041 -

1.0040 1.0038

1.0036 1.0032 1

1.0028 1.0024 2

1.0017 1.0013 *

1.0003 1.0000

V. CONCLUSION

We saw that alternating direction implicit is more accurate than alternating direction explicit method

2—Kz

for solving Glycolysis model and we found that ADE method is stable under condition r; < 2’%2 and r < P
while ADI is unconditionally stable.
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