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Abstract: In the framework of  the  Enestrom-Kakeya Theorem various results have  been proved on the 

location of zeros  of complex polynomials.  In this paper we give some new results on the  zeros  of complex 

polynomials by restricting the real and imaginary parts of their coefficients to certain conitions. 
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I. Introduction and Statement of Results 
 The following result known as the Enestrom-Kakeya Theorem [10] is well-known in the theory of  

distribution of zeros of polynomials: 

Theorem A: Let 
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)(  be a polynomial of degree n such that its coefficients satisfy 

                           0... 011   aaaa nn . 

Then all the zeros of P(z) lie in the closed unit disk 1z . 

In the literature [1-9, 12] there exist several generalisations and extensions of this  result . 

Recently Y. Choo [3] proved the following results: 
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Then P(z) has all its zeros in 21 RzR   where 
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M. H. Gulzar [8] made an improvement on the above result by proving the following result: 

Theorem C: Let 
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Then  P(z) has all its zeros in 43 RzR   where 

                      

3

0

3
M

a
R     and   

na

M
R 4

4   



On the Zeros of Complex Polynomials 

www.ijeijournal.com            Page | 55 

 with   
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The aim of this paper is to find a ring-shaped region between two concentric circles with centre not necessarily 

on the origin. More precisely, we prove the following results:  

Theorem 1: Let 
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njaa jjjj ,....,2,1,0,)Im(,)Re(   , such that for some   and  , and for some 1k  , 2k , 21,  ,  
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Then  P(z) has all its zeros in 615 RzR    where 
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Theorem 2: Let 
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njaa jjjj ,....,2,1,0,)Im(,)Re(   , such that for some   and  , and for some 1k  , 2k , 21,  ,  

                    011111 ......    nnk  
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Then  P(z) has all its zeros in 827 RzR    where 

             

n

n

a

ki 


)1( 2

2


 ,  

n

n

a

k

M

a
R

)1( 2

7

0

7


    and   

na

M
R 8

8   

 with   

           )()(2)1()1( 21217 nnnnn kkkkaM     

                     02020101 )1()1(    

and  

           nnn kkkM   )1()()(2 1218      

                      002020101 )1()1( a  .  

Remark 1: The bounds for the zeros of P(z) in both Theorem 1 and Theorem 2 are easily seen to be sharper 

than those of Theorems B and C. For different values of the parameters 2121 ,,, kk , we get many other 

interesting results. For example for   
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11 k , 12  , in Theorem 2 ,we get a result  due to B. L. Raina et al [11].  

For 1,1 21   , Theorem 1 reduces to Theorem B. 

For 11 k , 12 k ,, in Theorem 1, we get the following result: 

Corollary 1: Let 
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Then  P(z) has all its zeros in 109 RzR   where 
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II. Proofs of Theorems 
 

Proof of Theorem 1: Consider the polynomial 
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This shows that those zeros of  F(z) and hence P(z) whose modulus is greater than 1 lie in  
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Since  the zeros of P(z) of modulus less than or equal to 1 already satisfy the above inequality, it follows that all 

the zeros of P(z) lie in  

                            61 Rz  . 

 To prove the other half of the theorem, we have 
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Since Q(z) is analytic and Q(0)=0, it follows by Rouche’s theorem that 
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Hence, it follows that P(z) has all its zeros in  
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That completes the proof of Theorem 1. 

Proof of Theorem 2: Similar to that of Theorem 2. 
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