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Abstract:- In this paper we investigate the existence and approximation of the construction of periodic solutions
for nonlinear systems of integro-differential equation of operators with impulsive action, by using the
numerical-analytic method for periodic solutions which is given by Samoilenko. This investigation leads us to
the improving and extending to the above method and expands the results gained by Butris.
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l. INTRODUCTION
They are many subjects in mechanics, physics, biology, and other subjects in science and engineering
requires the investigation of periodic solution of integro-differential equations with impulsive action of various
types and their systems in particular, they are many works devoted to problems of the existence of periodic
solutions of integro-differential equations with impulsive action . samoilenko[5,6] assumed a numerical analytic
method to study to periodic solution for ordinary differential equation and this method include uniformly
sequences of periodic functions’ as Intel studies [2,3,4,7,8].
The present work continues the investigations in this direction. These investigations lead us to the
improving and extending the above method and expand the results gained by Butris [1].
t
% = f(t, x, Ax, Bx, J g(t,x(s), Ax(s), Bx(s))ds), t # t;
t-T
t

Axltzti = I;(x, Ax, Bx, jg(s,x(s),Ax(s),Bx(s))ds)
t=T
- (1.1)
Where x € D < R™, D is closed bounded domain.
The vector functions f(t, x,y,z,w) and g(t, x,y, z) are defined on the domain
(t,x,y,z,w) € R' X D X D; X Dy X D3 = (—00,00) X D X Dy X Dy X D3 -+~ (1.2)
Which are piecewise continuous functions in t, x, y, z, w and periodic in t of period T, where D,, D, and D5 are
bounded domain subset of Euclidean spaces R™.
Let I;(x,y, z,w) be continuous vector functions, defined on the domain (1.2) and
Liyp Gy, z,w) =1;(x,v, 2, W),tl-+p =t;+T -+ (1.3)
Foralli € zt,x € D,y € D,z € D,,w € D5 and for some number p .
Let the operators A and B transform any piecewise continuous functions from the domain D to the piecewise
contiuous function in the domain D; and D, respectively. Moreover Ax(t + T) = Ax(t) and Bx(t +T) =
Bx(t).
Suppose that f(t,x,y,z,w),g(t x,v,2),I;(t,x,y,z,w) and the operators A, B satisfy the following
inequalities:
||f(t:x:Y:Z: W)” <M, ||Ii(t'x'y'z' W) ” <N\, (14)
f (& 21, p1, 20, w1) = f(& %2, Y2, 22, w2 )l < K(lloxy — 221l + llyy — y2ll +
llzy = z; Il + [lwy —wyll)
gt x1,y1,20) — (&, %2, 2,2l < Qllxy — 22|l + Hlyy — y2ll + llzy — 2 11)
- (1.5)
And
W1:Ce, 31, y1, 21, wy) = 1(6, X2, ¥, 2o, wo)ll < L(llxy — 3211 + Mlyy = w2l +
lzy — z; Il + [lwy — wyll) -+ (1.6)
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ll4x; (£) — Ax, (Dl < Gllx; () —xz(f)”} (L)
1Bx1 (t) — Bz (Ol < Hllx, (8) — x, (Ol '
Forallt € RY, x,x,,x, €D,y,v1,y, € Dy,2,2,,2, € D, and w,w;,w, € D; where M,N,K,Q,L and G, H are a

positive constants.
Consider the matrix
T
A=<K1§ K ) -+ (1.8)
pTK, 2pK,

Where
Ki=K[1+G+H+Q(1+G+H)],K,=L[1+G+H+Q(1+G +H)]
We define the non-empty sets as follows
T 4p
Df=D-M=(1+-)
2 T - (1.9)
Dy =Dy —GM r 1+ v .
1 =Dy = GM 5 (1+-7)
and
T 4p
2 T - (1.10)
T? 4p '
Furthermore, we suppose that the greatest Eigen-value 1,,,, of the matrix A does not exceed unity, i.e.
T T
A=KiZ+pK2+K ) <1 - (1.11)
Lemma 2.1. Letf(t) be a contlnuous (piecewise contlnuous) vector function in the interval 0 < t < T. Then

J(f(s) ——Jf(s)ds)ds <a(t) max IIf(t)II

Where a(t) = 2t(1 — ;) . (For the proof see [3]) .

Assume that

Axm (t' xO) = ym (t' xO) ’ me (t! xO) = Zm (t! xO) and
t

w,, (t, %) = J. 9(s, x,, (s, x0), Ax,, (s, %), Bx,, (5, x0))ds

¢=T
m=20,12,--

1. APPROXIMATE SOLUTION

The investigation of a periodic approximate solution of the system (1.1) makes essential use of the
statements and estimates given below.
Theorem 2.1. If the system of integro-differential equations with impulsive action(1.1) satisfy the inequalities
(1.3) to (1.7) and the conditions (1.8), (1.10) has a periodic solution x = x(t, x,), passing through the point
(0,%), %0 € Dy,
Axy € Diy and Bx, € D,f , then the sequence of functions:

t

Xm (t' xO) =Xy + f[f(si Xm (S! X()), Ym (S, Xo),Zm (S, xO)' Win (S, xO)) -

0
T

1
_Tf g(S,Xm (S' Xo), Ym (S' xO)' Zm (S, xO)' Wi (S, xO)) dS]dS +
0

+ Z L (% (i, %0), Vi (61, X0), Z (85, X)), Wiy (81, X)) —

0<t;<t
t
- TZ L (o (5, 0D, Vi (E1, X0 Zi (1, X0), Wiy, (81, %0))
i=1
- (2.1)

With
x0(t, x0) = X, m=0,1,2,--
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is periodic in ¢t of period T, and uniformly convergent as m — oo in
(t,xy) € Rt x Dy = (—0,0) X Dy -+ (2.2)
To the vector function x°(t, x,) defined on the domain (1.2), which is periodic in t of period T and satisfying
the system of integral equation
t

x(6, %) = %o + f L (5, (5, XD, ¥ (5, %0), 205, %), w(s, %)) —

0
T

1
_Tf g(s'x(s'xo)' y(S; xO),Z(S,XO), W(S, XO)) dS]dS +

0
+ Z I; (x(t;, x0), y(t;, x0), 2(t;, x0), w(t;, X)) —

0<t;<t

p
t
- TZ Ii (x(til xO)' y(ti; xO); Z(ti; xO); W(ti; xo))
i=1

- (2.3)
Which a unique solution of the system (1.1) provided that
MT 4p
106, x0) = %ol < == (147 - (24)
and
T 4p
10 (t, x0) — x,, (£, x|l <A™ (1 — A)‘lME(l + T) - (2.5)

forallm > 1,t € R, where the eigen-value A of the matrix A is a positive fraction less than one.
Proof. Consider the sequence of functions x; (t, x,), x5 (t, xo), =+, % (£, %), =+,
defined by recurrence relation (2.1). Each of the functions of the sequence is periodic in t of period T.

Now, by Lemma 1.1, we have
t

[lxc,,, (&, x0) — x0 1l = llxg +J[f(s,xm (5, %0), Vi (5, %0, 21, (5, X0), Wiy, (5, %)) —
0
T

1
_T'[ g(S, Xm (S' xO): Ym (S! xO)!Zm (S! xO)! Wi (S! xO)) dS]dS +
0

£ G (620D i 61 0, 2 () Wi 1 00)) —

0<t;<t

14
t
_?Z I; (o (61, 0D, Vi (i X0), Zim (1, X0), Wi (£, X%0)) — Xoll <
i=1 .
t
=< (1 - ?) f”f(si Xm (S! X()), Ym (S! Xo),Zm (S, Xo), Wi (S, xO))” ds +
0

T
t
+Tf”f(si Xm (S! xO)!ym (S!xO)!Zm (S, Xo), Wi (S,XO))”dS +
t

+ z Ii ”(xm(tilxo)!ym(tilxo)lzm(tinO)JWm(tinO))” +
0<t;<t

p
llell
+ TZ”L (xm (i %0), Yin (ti, X0), Zpy (1) X0), Wiy (85, xo)) ” <
i=1
< a(t)M + 2pM
T 4
SME(1+TP) -+ (2.6)
From (1.7) and (2.4), we have

T 4p
|Ax,, (t,x0) — Ax,ll < QME(l +T)
2 ip - (2.7)
|Bx,, (t, x,) — Bx,ll < HM = (1 +-5)
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forall x, € Dy.
Also

t

[lw,, (t, x0) — wy (t, x )l = f g(s, X (S, %0), Ax,, (S, x0), Bx,, (S, xo))ds —

t—T
t

- fg(s,xO,AxO,BxO)ds <

t-T
t

< f K (16 (5, x0) — %oll + |42 (5, X0) — Axoll + 1B (5, %) — Broll)ds

t-T
t

<fKMT14p GMT14p HMT14pd
< [ KMZQ+)+6MZ(1+0) + HMZ (L +)lds
t-T

T 4p
ZKME(1+T)(1+G+H) -+ (2.8)
Form =1, in (2.1), we get

t
t
lloc5 (£, x0) — x1 (£, x0)Il < (1 = ?) j K(llx1 (s, x0) = xo |l + lly1 (s, %0) = ¥ (s, x0) I
0
+|z, (sT, x0) — Zo (s, x| + llwy (s, x5) — wo (s, x0)IDds +
t
o f K (llx, s, %0) = xoll + 1y G5, %) = Yo (s, %0) 1| +

t
+llz, (s, x9) — 2o (s, x| + llwy (s, x0) — Wy (s, x0)IDds +
+ O Ll (6 x0) = xoll + llys (8, %0) = yolt o)l +

0<ti<t
+lz1 (£, x0) — 2o (ti, X)) | + llwy (£, x0) — wo (Ei, x0) D) +

p
el
+TZ L (Il (£, x0) — xoll + [ly1 (€, x0) — Yo (i, x0) Il +
i=1
+lz1 (£, x0) — 2o (Ei X)) | + llwy (£, x0) — wo (&, x0) D) +
t

t T 4p
S(1—F)J[K(1+G+H+Q(L+G+H))ME(1+T)]ds+
0
+£JT[K(1+G+H+Q(L+G+H))MZ(1 +4—p)]ds+
T) 2 T

+[LA+G+H+QUL+G +H))]M§(1 +47p) <
<a®)[KA+G+H+QUL+G +H))]M§(1 +47p) +
+LpMT(1+ G+ H + Q(L + G + H))(1 +47p) <

T

If the following inequality is true
Il (&, 260) = X1 (& 2| < N (t) + My

<N

— 'm

T
gt M - (2.11)

forallm=1,2,--- .

then, we shall to prove that
T T
126 41 (& x0) — 2 (& x0) Il < Ky (N4 5t My, _1)a(t) + 2pKy (N1 5t My, 1)
-+ (2.12)

forallm=10,1,2,--- .
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By mathematical induction, we have
T
12, 41t x0) — %, (&, Xl < Npax(t) + My, < ENm +M,,, -+ (2.13)
Where
T
Nm+1 =K1 ENm +K1Mm )
Mm+1 = pKZTNm + ZpKsz ’ No =M, MO = ZpM .

- (2.14)

m=20,12,--.

It is sufficient to show that all solutions of (2.14) approach zero as m — oo, i.e. it is necessary and sufficient that
the eigen values of the matrix A are assumed to be within a unit circle.

It is well-known that the characteristic equation of the matrix A is

T T
K1§+pK2(2+K15) <1 "'(2.15)
and this ensures that the sequence of functions (2.1) is convergent uniformly on the domain (2.2) asm — « .
Let
lim x,, (¢, x9) = x,,(t, x) -+ (2.13)
m—o0
Since the sequence of functions (2.2) is periodic in t of period T, then the limiting is also periodic in t of period

T

Moreover, B lemma 1.1 and (2.15) and the following inequality
k-1

(12,41 (&, X)) — % (8, )| < z 1, 1521 ( X0) — X1 (&, x0) 1l <
k—1 =0
T 4p
<) AMHM-(1+—
_Z; 1+

the inequalities (2.4) and (2.5) are satisfied for all m > 0.
Finally, we have to show that x(t, x,) is unique solution of (1.1). on the contrary, we suppose that there is at
least two different solutions x(t, x,) and r (¢, x,) of (1.1).
From (2.3), the following inequality holds:
t

lx(E, x0) —r(t, x)ll < (1 —%) J K |lx(s,xo) — r(s, x)lds +
0

T
t
+?J- Ky llx(s, xq) — (s, xo)ll ds + Z Ky |lx(t;, x0) — r(t;, x)Il +
t 0<t;<t
L
F2 K It 1) = o)l -+ (216)

i=1
Setting ||lx (¢, x) — r(t, xo)|l = h(t), the inequality (2.16) can be written as:
t T

14
h(t) < (1 —%)le h(s)ds+%f1(1h(s) ds + Z K, h(t,) +;Z K, h(t,)
0 i=1

t 0<t;<t

Let max;epry h(¢) = hy = 0. By iteration, we get:

h(t) < Nja(t) + M, - (2.17)
From (2.14), we have:

T
(Zm+1) _ <K1§ Ky )(Zm) -+ (2.18)
m+1 pTKz ZpKZ m
which satisfies the initial conditions N, = 0, M, = h, That is
T m
(Zm) = <K1§ K1 ) (ho ) (2_19)
" pTK, 2pK, "

Hence it is clear that if the condition (2.15) is satisfied then N,, —» 0 and M,, - 0 asm — .
From the relation (2.17) we get h(t) = 0 or x(t, xy) = r(t, xy), i.e. x(t, xy) is a unique solution of (1.1). m

1. EXISTENCE OF SOLUTION
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The problem of the existence of periodic solution of period T of the system (1.1) is uniquely connected
with the existence of zeros of the function A(x,) which has the form
T

1
AG0) = 1 £ (300,76 x0),20(Cx0), wO 6 x0)) die +
0

+Zl (x (tuxo) y (tuxo) Zo(tuxo) Wo(tuxo))] (31)

since this functlon is approximately determlned from the sequence of functions

BnCe) = 3 f 0 6 200, i (200, 235, 0,300, (6 0) i+
0

P
+ Z I; (%, (t5, X0, Yim (1, X0, Z (81, X0), Wiy (1, X)) ] -+ (3.2)

where x°(t, x,) is the limiting of the seauence of functions (2.1). Also
yO(t, xy) = Ax°(t, x,), z°(t,xy) = Bx°(t,x,) and
t

wO(t, x,) = fg(s,xo(s,xo),AxO(s,xo),on(s,xo)) ds.

t-T
Now, we prove the following theorem taking in to ///// that the following inequality will be satisfied for all
m=1.

MT 4
1AGEo) = A Gl < A7 (1= )7y + 1K) = (14 20) - (33)

Theorem 3.1. If the system of equations (1.1) satisfies the following conditions:

(i) the sequence of functions (3.2) has an isolated singular point x, = x°, A, (x,) = 0, for all t € RY;

(ii) the index of this point is nonzero;

(iii) there exists a closed convex domain D, belonging to the domain D, and possessing a unique singular point
x° such that on it is boundary I'p, the following inequality holds

mf A, O < 2™ (1 =)' (K + Kz) (1 )
for all m > 1. Then the system (1 1) has a periodic solution x = x(t Xg) for which x(O) € D,.
Proof. By using the inequality (3.3) we can prove the theorem is a similar way to that of theorem 2.1.2 [2].

Remark 3.1. When R™ = R%, i.e. when x© is a scalar, theorem 3.1 can be proved by the following.
Theorem 3.2. Let the functions f(t,x,y,y,z,w) and I;(x,y,z,w) of system (1.1) are defined on the interval
[a, b] in RY. Then the function (3.2) satisfies the inequalities:

\
min A, <21 -2D)YK += K) |
1V;T(1+4T?)3x0$b—¥(1+4?) 1 2 ¥ -~ (3.4)
_ p '
max A, (x®) =21 - D)7NK, + =Ky) |
A A )
Then (1.1) has a periodic solutlon |n t of perlod T for which
4p
x%(0) € [a +—(1 + ) b ——(1 +—)]
Proof. Let x; and X, be any pomts of the mterval
[a+7-(1+),b == (1+ )] such that
Ap (x1) = min A, (x°) , )
ML )0 T 1 22) 35)
... (3.5
Ap (x3) = max A, (x°) : }
MT 4 MT 4
o HML(142P) 0 - (1) )
By using the inequalities (3.3) and (3.4) , we have
A (%) = A () + (A () — Ay (x1)) <0, } 3.6)
Ay () = A (32) + (A (x2) — A (x2)) > 0 .
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The continuity of A(x?) and by using (3.6), there exists a point x%,x% € [x;,x,], such that A(x°) = 0,
i.e. x = x(t,x,) is a periodic solution in t of period T for which x°(0) € [a +g(1 +47”),b —%(1 +
4p

). .

Similar results can be obtained for other class of integro-differential equations of operators with impulsive
action.
In particular, the system of integro-differential equations which has the form

b(t)
dx
e f(t,x,Ax, Bx, f g(s,x(s),Ax(s),Bx(s))ds,
a(t)
t
, fF(t, s) g(s, x(s), Ax(s), Bx(s)ds), t+t
b(t) -
Ax = |i—, I; (x, Ax, Bx, f g(s,x(s),Ax(s),Bx(s))ds,
a(t;)

t

[ 9919, 4x), Bx(s12s)
- (3.7)
In this system (3.7), let the vector functions f(¢t,x,y, z,w), g(t,x,y, z) and scalar functions a(t), b(t)
are periodic in t of period T, defined and continuous on the domain.
(t,x,y,Zw,h) ER' X G X G; X G, X G3 X G, =
= (—00,0) X G X Gy X Gy X G3 X G4 -+ (3.8)
Let I;(x,v,z,w, h) be a continuous vector function which are defined on the domain (3.8). A matrix F(t,s) is
defined and continuous in R! x R! and satisfies the condition F(t + T,s + T) = F(t,s) which ||[F(t,s)|| <
§er=s)
0<s<t<T, where §,y are a positive constants. Suppose that the functions f(t,x,y,z w,h) and
g(t,x,y,2),I;(x,v,z,w, h) are satisfying the following inequalities:
||f(t,x,y,z,w, h)” <M ’ ||g(t,x,y,z)|| < N; (39)

f (& x1,¥1, 20, Wi, he) = (&, %2, Y2, 22, W, BNl < K™ (lloeg — 2211 + [lyg =y, Il +
+||Z1 _Zzll + ”W1 - Wz” + ”h1 - hz”);
lg(t, x1,¥1,21) — g(t, %2, ¥2, 2|l < Q*(llxxy — 2211 + llyy — w21l + 2, — 2z, |D);
-+ (3.10)
7; Gey, y1, 21, Wi, hy) = 1;(xg, Y2, 22, wo, )L < L¥(lloxg — 211 + 1y — yoll +
+||Z1 _Zzll + ”W1 - Wz” + ”h1 - hz”);
- (3.11)
and
lAx; () — Ax, (O < G |l (&) — 2, (Ol }
1Bx; (t) — B (Ol < H*lx, (£) — x, (Ol -
forallt € R' ,x,x,,x, € G,v,v1,Y, € G1,2,21,2, € Gy, W, Wy, W, € Gs,
h,hq, h, € G, , Provided that
Ax(t +T) = Ax(t), Bx(t + T) = Bx(t), Liyp (x,y,z,w,h) = I;(x,y,z,w,h) and tigp =+ T.
Define a non-empty sets as follows:

- (3.12)

G=6-2Tq ¥ o Mg 2P
= > ( T)' 1 = Gy > ( T)' ]
M'T dp M'T_ 4p
2 T 2 T
Gy = 65— 2@ L (1 422
5p = G5 yQ 2 ( T)' )

Furthermore, the largest Eigen-value of y,,,, Of the matrix

T
pK,T 2pK,

is less than unity, i.e.
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4pK,K,T

<1, -+ (3.14)

1 T KT
—[Ky =+ 2pK, + |(—+ 2pK,)* +
2 3 3

where Ky = K*[1+G" + H +>Q" + Q" (1 +G" + )],

K,=L[1+G*"+H*+ gQ* +Q*(1+ G* + B)] and B = maxy|b(t) — a(t)l.

Theorem 3.2. If the system of integro-differential equations with impulsive action (3.7) satisfying the above
assumptions and conditions has a periodic solution x = (&, x,), then there exists a unique solution which is the

limit function of a uniformly convergent sequence which has the form
t

Xm (t: xO) =Xy + f[f(sﬂ Xm (S: xO):ym (5' xO)'Zm (5' xO)' Wi (S' xO)' hm (S' xO)) -
0

T
1
_Tff(sl Xm (S: xO)lym (S; x());Zm (S, xO)' Wi (S'XO)' hm (S, XO)) dS]dS +

0
+ Z I (e (E5 0D, Y (Ei) X0, 2y (€3, 20D, Wy (£, X0, oy (81, X)) —

0<t;<t

p
t
- ?Z Ii (xm (ti! xO): Ym (ti! xO)' Zm (ti' xO)' Wi (ti' xO)' hm (ti' xO))
i=1

---(3.15)
with
xo(t, x9) = x5, m=0,1,2,---.
The proof is a similar to that of theorem 1.1.
If we consider the following mapping

T
1
Am (xO) = T [J f(t' Xm (t! xO): Vm (t! xO)! Zm (t! xO)! Wi (t, xo), hm (t' xO)) dt +
0
+ 20 L O (€10 %), Vi (3 %), Zy (£, X0), Wi (€1, X0, B (B, %0))]-

-+ (3.16)
Then we can state a theorem similar to theorem 2.2, provided that Vinax = %[K1 g + 2pK, +

J@§+2mgy+ 1<1,

Remark 3.2. It is clear that when we put I, = 0, we get a periodic solution for the systems (1.1) and (3.7)
without introducing impulsive action.

4pK1K2T
3
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