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Abstract:- In this paper, Schnackenberg model has been solved numerically for finding an approximate solution 

by Finite difference method and Adomain decomposition method. Example showed that ADM more accurate 

than FDM and more efficient for this kind of problems as shown in tables (1,2) and figures (1-4).     
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I.     INTRODUCTION 
Many physical, chemical and engineering problems mathematically can be modeled in the form of 

system of partial differential equations or system of ordinary differential equations. Finding the exact solution 

for the above problems which involve partial differential equations is difficult in some cases. Here we have to 

find the numerical solution of these problems using computers which came into existence [11]. 

For nonlinear partial differential equations, however, the linear superposition principle cannot be applied to 

generate a new solution. So, because most solution methods for linear equations cannot be applied to nonlinear 

equations, there is no general method of finding analytical solutions of nonlinear partial differential equation, 

and numerical techniques are usually required for their solution[6]. 

 

1.1 MATHEMATICAL MODEL: 

A general class of nonlinear-diffusion system is in the form  
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With homogenous dirchlet or neumann boundary condition on a bounded domain Ω , n≤3, with locally 

lipschitz continuous boundary. It is well known that reaction and diffusion of chemical or biochemical species 

can produce a variety of spatial patterns. This class of reaction diffusion systems includes some significant 

pattern formation equations arising from the modeling of kinetics of chemical or biochemical reactions and from 

the biological pattern formation theory. In this group, the following four systems are typically important and 

serve as mathematical models in physical chemistry and in biology:  

 Brusselator model:   

02,1,
2

,02,2,01),1(1  gagvufbbabba
 

where a and b are positive constants. 

 Gray-Scott model: 

 FggvufFbabkFa  2,01,
2

,2,02,01),(1  
where F and k are positive constants. 

 Glycolysis model: 

 2,1,
2

,2,02,1,11 gpgvufkbakba
 

where  k, p and  are positive constants. 

 Schnackenberg model: 

bgagvufbabka  2,1,
2

,0221,1  

Where k, a and b are positive constants [14]. 

Then one obtains the following system of two nonlinearly coupled reaction-diffusion equations,  
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With initial and boundary conditions: 

 𝑢 𝑡, 𝑥 = 𝑣 𝑡, 𝑥 = 0,       𝑡 > 0,       𝑥 ∈ 𝜕𝛺

𝑢 0, 𝑥 = 𝑢0 𝑥 ,   𝑣 0, 𝑥 = 𝑣0(𝑥)       𝑥 ∈ 𝜕𝛺
                                                                                          (3)  

And with Neumann boundary conditions:  
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Where Landbakdd ,,,2,1  are positive constants [14]. 

Reaction-diffusion (RD) systems arise frequently in the study of chemical and biological phenomena 

and are naturally modeled by parabolic partial differential equations (PDEs). The dynamics of RD systems has 

been the subject of intense research activity over the past decades. The reason is that RD system exhibit very 

rich dynamic behavior including periodic and quasi-periodic solutions [4, 13].  

Various orders are self-organized far from the chemical equilibrium. The theoretical procedures and 

notions to describe the dynamics of patterns formation have been developed for the last three decades [10].  

Attempts have also been made to understand morphological orders in biology [5]. Clarification of the 

mechanisms of the formation of orders and the relationship among them has been one of the fundamental 

problems in non-equilibrium statistical physics [9].  

Various finite difference algorithms or schemes have been presented for the solution of hyperbolic-

parabolic problem or its simpler derivatives, such as the classical diffusion equation. It is well-known that many 

of these schemes are partially unsatisfactory due to the formation of oscillations and numerical diffusion within 

the solution [12]. 

Solution by the finite difference method, although more general, will involve stability and convergence 

problems, may require special handling of boundary conditions, and may require large computer storage and 

execution time. The problem of numerical dispersion for finite difference solutions is also difficult to overcome 

[7].  

Adomian decomposition has been applied to solve many functional equations so far. In this article, we 

have used this method to solve the heat equation, which governs on numerous scientific and engineering 

experimentations. Some special cases of the equation are solved as examples to illustrate ability and reliability 

of the method. Restrictions on applying Adomian decomposition method for these equations are discussed [3].        

The decomposition method can be an inactive procedure for analytical solution of a wide class of dynamical 

systems without linearization or weak nonlinearity assumptions, closure approximations, perturbation theory, or 

restrictive assumptions on stochasticitiy [1].  

 

II.    MATERIALS AND METHODS 
2.1 FINITE DIFFERENCE APPROXIMATIONS 

The finite difference Scheme, generally reduces a linear, nonlinear partial differential equations into 

system of linear, nonlinear equations and various methods were developed to find the numerical solution and 

acceleration the convergence [8]. Assume that the rectangle }0,0:),{( btaxtxR  is subdivided 

into n-1 by m-1 rectangle with sides  hx   and kt  . Start at the bottom row, where 𝑡 = 𝑡1 = 0, and the 

solution is )()1,( ixftixu  . The grid spacing is uniform in every row: 𝑥𝑖+1 = 𝑥𝑖 + ℎ and (𝑥𝑖−1 = 𝑥𝑖 − ℎ), and 

it is uniform in every column: 𝑡𝑗+1 = 𝑡𝑗 + 𝑘 and (𝑡𝑗−1 = 𝑡𝑗 − 𝑘). And use the approximation jiu ,  for ),( ji txu  

to obtain [8].  

 
𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆𝑡
                                                                                                                       (5)   

𝜕𝑣

𝜕𝑡
=

𝑣𝑖,𝑗+1−𝑣𝑖,𝑗

∆𝑡
                                                                                                                        (6)  

 
𝜕2𝑢

𝜕𝑥2 =
𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗 +𝑢𝑖+1,𝑗

(∆𝑥)2                                                                                                         (7)   

𝜕2𝑣

𝜕𝑥2 =
𝑣𝑖−1,𝑗−2𝑣𝑖,𝑗+𝑣𝑖+1,𝑗

(∆𝑥)2                                                                                                            (8)  

 

Substitute (5) – (8) in the Schnackenberg model (1) to get  
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From the boundary conditions (4) we have  
𝜕𝑢

𝜕𝑥
=

𝑢𝑖,𝑗−𝑢𝑖−1,𝑗

2∆𝑥
= 0 ,   𝑠𝑜  𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗      𝑎𝑛𝑑    𝑢1,𝑗 =  𝑢2,𝑗      

And 
𝜕𝑢

𝜕𝑥
=

𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

2∆𝑥
= 0 ,   𝑠𝑜  𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗      𝑎𝑛𝑑    𝑢11,𝑗 =  𝑢10,𝑗      

And also for v  
𝜕𝑣

𝜕𝑥
=

𝑣𝑖,𝑗−𝑣𝑖−1,𝑗

2∆𝑥
= 0 ,   𝑠𝑜  𝑣𝑖−1,𝑗 = 𝑣𝑖 ,𝑗      𝑎𝑛𝑑    𝑣1,𝑗 =  𝑣2,𝑗      

And 
𝜕𝑣

𝜕𝑥
=

𝑣𝑖+1,𝑗−𝑣𝑖,𝑗

2∆𝑥
= 0 ,   𝑠𝑜  𝑣𝑖+1,𝑗 = 𝑣𝑖 ,𝑗      𝑎𝑛𝑑    𝑣11,𝑗 =  𝑣10,𝑗      

 

And from the initial condition: 

)(01,111,101,91,81,71,61,51,41,31,21,1

)(01,111,101,91,81,71,61,51,41,31,21,1

xvvvvvvvvvvvv

xuuuuuuuuuuuu
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The result equation (8) is the finite difference method for the Schnackenber model. 

 

2.2 ADOMIAN DECOMPOSITION METHOD 

Nonlinear differential equations are usually arising from mathematical modeling of many frontier 

physical systems. In most cases, analytic solutions of these differential equations are very difficult to achieve. 

Common analytic procedures linearize the system or assume the nonlinearities are relatively insignificant. Such 

procedures change the actual problem to make it tractable by the conventional methods. This changes, some 

times seriously, the solution. The above drawbacks of linearization and numerical methods arise the need to 

search for alternative techniques to solve the nonlinear differential equations, namely, the analytic solution 

methods, such as the perturbation method, the iteration variational method [11–14] and the Adomian 

decomposition method. 

The decomposition method was first introduced by Adomian since the beginning of the 1980s.The 

Adomian decomposition method (ADM) is used to solve a wide range of physical problems. This method 

provides a direct scheme for solving linear and nonlinear deterministic and stochastic equations without the need 

for linearization this yields convergent series  solutions rapidly. An advantage of this method is that, it can 

provide analytical approximation or an approximated solution to a rather wide class of nonlinear (and stochastic) 

equations without linearization, perturbation, closure approximation, or discretization methods. Unlike the 

common methods, i.e., weak nonlinearity and small perturbation which change the physics of the problem due 

to simplification, ADM gives the approximated solution of the problem without any simplification. Thus, its 

results are more realistic [1,2]. 

We define the operator   
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system (1) can be written as:  
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By using Adomian decomposition method : 
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Where nA  and nA  are Adomian polynomials. But nA = nB  because both non-linear terms are vu 2
 

Where  
00

)(
!

1





 











n

i
iu

i
F

n
d

n
d

n
nA  

But here 
00

)
0

,(
!

1








 











n

i

n

i
iv

i
iu

i
F

n
d

n
d

n
nA because non-linear term have two functions ),( xtu   and ),( xtv   

then by equation (12): 

0
111

)(
1

11

)(00

















katLkAtLkutkLkuxxLtLdku

xuu
   

By equation (13): 

0
11

)(
1

21

)(00














kbtLkBtLkvxxLtLdkv

xvv
 

)14(0
2
0)0,0(

0

0

0
)

0

0
,(

0

0

!0

1
0

BvuvuF

i i
iv

i
iu

i
F

d

d
A











 











  

0k  

)15(11

0
2
00011:

]0
2
0001[0

2
0001

1
)0

2
0(

1
0

1
)0(

1
1

1
0

1
0

1
)0(

1
11

tUu

avukuuxxLdULet

tavukuuxxLdattvutkutuxxLd

atLvutLutkLuxxLtLdatLAtLutkLuxxLtLdu































 

)16(11

0
2
0021:

]0
2
002[0

2
002

1
)0

2
0(

1
)0(

1
2

1
0

1
)0(

1
21

tVv

bvuvxxLdVLet

tbvuvxxLdbttvutvxxLd

btLvutLvxxLtLdbtLBtLvxxLtLdv

























 0)]10,10([

0

1

0
)

1

0
,(

1

1

!1

1
1 









 














vvuuF
d

d

i i
iv

i
iu

i
F

d

d
A

 

 

 



Some numerical methods for Schnackenberg model 

www.ijeijournal.com      P a g e  | 75 

0)]10)(
2
1

2
102

2
0[(0)]10(

2
)10[(  





vvuuuu

d

d
vvuu

d

d

 

0]1
2
1

3
110

2
21

2
00

2
1

2
01020

2
0[  


vuvuuvuvuvuuvu

d

d
 

tVuvtUuvuvuu 1
2
00)1(021

2
00102   

)17(1]1
2
01002[1 BtVuUvuA   

K=1 

)]1
2
01002([

1
)1(

1
)]1([

1
1

1
1

1
1

1
)1(

1
12 tVuUvutLtUtkLtUxxLtLdatLAtLutkLuxxLtLdu 




















  

at
t

VuUvukUUxxLd
t

VuUvu
t

kU
t

UxxLd 
2

2

]1
2
010021)1(1[

2

2

]1
2
01002[

2

2

1
2

2

)1(1  

1
2
010021)1(12: VuUvukUUxxLdULet   

)18(
2

2

22 at
t

Uu 
 

1
1

)11(
1

)1(
1

22 BtLvtFLvxxLtLdv








  

)]1
2
01002([

1
)11(

1
)]1([

1
2 tVuUvutLtVtFLtVxxLtLd 








  

2

2

]1
2
01002[)

2

2

1(
2

2

)1(2
t

VuUvu
t

VtF
t

VxxLd   

bt
t

VuUvuFVVxxLdFtv 
2

2

]1
2
010021)1(2[2  

)19(
2

2

22

1
2
010021)1(22:

bt
t

VFtv

VuUvuFVVxxLdVLet





 

0)]2
2

10,2
2

10([
2

2

!2

1

0

2

0
)

2

0
,(

2

2

!2

1
2 









 














vvvuuuF
d

d

i i
iv

i
iu

i
F

d

d
A  

0)]2
2

10(
2

)2
2

10[(
2

2

!2

1
 


vvvuuu

d

d

0)]2
2

10](
2

)2
2

1()2
2

1(02
2
0[[

2

2

!2

1
 


vvvuuuuuu

d

d
 

0)]2
2

10)(
2
2

4
21

3
2

2
1

2
20

2
2102

2
0[(

2

2

!2

1
 


vvvuuuuuuuuu

d

d
 

0
2
2

4
021

3
20

2
1

2
020

2
201020

2
0[

2

2

!2

1
vuvuuvuvuuvuuvu

d

d



  

1
2
2

5
121

4
21

2
1

3
120

3
2110

2
21

2
0 vuvuuvuvuuvuuvu    

0]2
2
2

6
221

5
22

2
1

4
220

4
2210

3
22

2
0

2
  vuvuuvuvuuvuuvu  

)20(0
2
12

2
011020202)2

2
0211040

2
120204(

2

1
vuvuvuuvuuvuvuuvuvuu   

0
2

)1()
2

2

2(
2
0)1)(1(020)

2

2

2(022 vattU
t

VFtubttVattUuvat
t

UuA   

taubtutvU
t

VutVUutUvuA )02
2
0(

2
0

2
)1(

2

2

2
2
0

2
1102

2
2002

(20) and (19) , (17) , (16) eqsBy 


 

)21(2)02
2
0(

2
]0

2
)1(2

2
0

2

1
1102200[2 BtaubtutvUVuVUuUvuA   



Some numerical methods for Schnackenberg model 

www.ijeijournal.com      P a g e  | 76 

atLAtLutkLuxxLtLdu

k

1
2

1
2

1
)2(

1
13

2















 

By equations (18) and (21) 

)22()
2

2

)02
2
0(

3

3

]0
2

)1(2
2
0

2

1
11022002

2

1
)2(1

2

1
[3

3

3

]0
2

)1(2
2
0

2

1
1102200[

3

3

2
2

1

3

3

)2(1
2

1

)
2

]0
2

)1(

2
2
0

2

1
1102200([

1
)

2

2

2(
1

)]
2

2

2([
1

13

at
t

aubua

t
vUVuVUuUvukUUxxLdu

t
vUVuVUuUvu

t
kU

t
UxxLd

tvU

VuVUuUvutL
t

UtkL
t

UxxLtLdu




















 

)23(
2

2

)02
2
0(

3

3

]0
2

)1(2
2
0

2

1
1102200)2(2

2

1
[3

2

2

)02
2
0(

3

3

]0
2

)1(2
2
0

2

1
1102200[

3

3

)2(2
2

1

))02
2
0)

2
]0

2
)1(2

2
0

2

1
1102200([

1
)]

2

2

2([
1

23

(21) and (19) eqsBy 

1
2

1
)2(

1
23

bt
t

aubu
t

vUVuVUuUvuVxxLdv

bt
t

aubu
t

vUVuVUuUvu
t

VxxLd

bttaubutvUVuVUuUvutL
t

VxxLtLdv

btLBtLvxxLtLdv






















 

III.      APPLICATION (NUMERICAL EXAMPLE) 
We solved the following example numerically to illustrate efficiency of the presented methods. 
∂u

∂t
= d1∆u − ku + u2v + a    , t > 0,         𝑥 ∈ 𝛺  

𝜕𝑣

𝜕𝑡
= 𝑑1∆𝑣 − 𝑢2𝑣 + 𝑏    , 𝑡 > 0,         𝑥 ∈ 𝛺  

We the initial conditions  

u(x, 0) = Us + 0.01 sin(x/ L)     for     0 ≤x ≤ L 

v (x, 0) = Vs – 0.12 sin(x/ L)     for   0 ≤x ≤ L 

u(0, t) = Us ,  u(L, t) = Us     and     v (0, t) = Vs,    v (L, t) = Vs 

We will take  

     d1=d2=0.01     ,   a=b= 0.09   , k=-0.004, Us=0, Vs=1 

 

IV.      FIGURES AND TABLES 
Table 1 Comparison between the FDM and ADM for the values of concentration V. 

 t = 1                        t=2                     t=3 

x ADM FDM ADM FDM ADM FDM 

0 1.0001 1.0000 1.0001 1.0000 1.0035 1.0000 

0.1 1.0014 1.0008 1.0022 0.9993 1.0048 0.9971 

0.2 1.0020 1.0010 1.0022 0.9976 1.0043 0.9864 

0.3 1.0021 1.0019 1.0012 0.9946 1.0021 0.9787 

0.4 1.0018 1.0012 0.9994 0.9906 0.9984 0.9704 

0.5 1.0011 1.0005 0.9971 0.9861 0.9936 0.9624 

0.6 1.0003 0.9996 0.9945 0.9817 0.9881 0.9553 

0.7 0.9995 0.9982 0.9921 0.9777 0.9826 0.9499 

0.8 0.9988 0.9968 0.9900 0.9746 0.9781 0.9464 

0.9 0.9984 0.9954 0.9887 0.9726 0.9750 0.9452 

1.0 0.9982 0.9942 0.9882 0.9719 0.9739 0.9464 

1.1 0.9984 0.9954 0.9887 0.9726 0.9750 0.9499 
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1.2 0.9988 0.9968 0.9900 0.9746 0.9781 0.9553 

1.3 0.9995 0.9982 0.9921 0.9777 0.9827 0.9624 

1.4 1.0003 0.9996 0.9945 0.9817 0.9881 0.9704 

1.5 1.0011 1.0005 0.9971 0.9861 0.9936 0.9787 

1.6 1.0018 1.0012 0.9994 0.9906 0.9984 0.9864 

1.7 1.0021 1.0019 1.0012 0.9946 1.0021 0.9927 

1.8 1.0020 1.0010 1.0022 0.9976 1.0043 0.9971 

1.9 1.0014 1.0008 1.0022 0.9993 1.0048 0.9993 

2.0 1.0001 1.0000 1.0010 1.0000 1.0035 1.0000 

 

Table 2 Comparison between the FDM and ADM for the values of concentration U. 

 t =1                                     t=2                                t=3 

x ADM FDM ADM FDM ADM FDM 

0   0.0015          0      0.0048    0 0.0081          0    

0.1  -0.0150  -0.0232   -0.0102 -0.0276 -0.0108  -0.0319   

0.2  -0.0306  -0.0456  -0.0241 -0.0539  -0.0221  -0.0623  

0.3  -0.0450  -0.0664  -0.0367 -0.0783   -0.0316   -0.0902  

0.4  -0.0579  -0.0851  -0.0476 -0.0999  -0.0390  -0.1149  

0.5  -0.0692  -0.1014  -0.0568 0.1185  -0.0444   -0.1359  

0.6  -0.0786  -0.1151   -0.0643 -0.1339   -0.0480   -0.1532  

0.7  -0.0861 -0.1258    -0.0700 -0.1459 -0.0502 -0.1666 

0.8  -0.0915 -0.1336   -0.0741 -0.1545    -0.0514 -0.1761   

0.9  -0.0948 -0.1383   -0.0766 -0.1596  -0.0520   -0.1818  

1.0  -0.0959  -0.1398   -0.0776 -0.1613 -0.0522 -0.1837   

1.1 -0.0949  -0.1383  -0.0770 -0.1596 -0.0523 -0.1818 

1.2 -0.0916 -0.1336 -0.0749 -0.1545    -0.0519 -0.1761   

1.3 -0.0863 -0.1258 -0.0710 -0.1459 -0.0509 -0.1666 

1.4 -0.0788 -0.1151 -0.0654 -0.1339   -0.0488  -0.1532 

1.5 -0.0693 --0.1014 -0.0578 0.1185 -0.0451 -0.1359 

1.6 -0.0580 -0.0851 -0.0484 0.1185 -0.0395  -0.1149 

1.7 -0.0450 -0.0664 -0.0372 -0.0999 -0.0319   -0.0902 

1.8 -0.0306 -0.0456 -0.0244 -0.0783   -0.0223  -0.0623 

1.9  -0.0150 -0.0232  -0.0103 -0.0539 -0.0108  -0.0319   

2.0   0.0015 -0.0000   0.0048 -0.0000  0.0023  -0.0000 

 

 

 

 

 

 

  

 

 

 

    Fig. 1   ADM for the values of concentration V                   Fig. 2   FDM for the values of concentration V 

with   0<x<2   and  0<t<3                                                with   0<x<2   and  0<t<3 

            

 

 

 

 

 

 

 

 

    Fig. 3   ADM for the values of concentration U                   Fig. 4   FDM for the values of concentration U 

with   0<x<2   and  0<t<3                                                with   0<x<2   and  0<t<3 
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V.       CONCLUSION 
The Schnackenberg model solved Numerically using finite difference method and Adomain 

decomposition method, and we found that’s finite difference method is earlier that ADM but ADM is more 

accurate than FDM and more efficient as show in tables ( 1-2 ) and figures (1-4 ). 
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