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On the Zeros of Analytic Functions inside the Unit Disk
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Abstract: In this paper we find an upper bound for the number of zeros of an analytic function inside the unit
disk by restricting the coefficients of the function to certain conditions.
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. Introduction and Statement of Results
n
A well-known result due to Enestrom and Kakeya [5] states that a polynomial P(z) = Zaj Z' of degree n

i=0
with

has all its zeros in |Z| <1.
Q. G. Mohammad [6] initiated the problem of finding an upper bound for the number of zeros of P(z) satisfying

1
the above conditions in |Z| < E . Many generalizations and refinements were later given by researchers on the

bounds for the number of zeros of P(z) in |Z| < 0,0 <6 <1 (for reference see [1]),[2], [4]etc.).
In this paper we consider the same problem for analytic functions and prove the following results:

j=0
some p >0,
prayzo, z2a, ... ,

a,|

then the number of zeros of f(z) in v < |Z| <0,0< 0 <1, does not exceed

2,o+|ao|+a0 +2ji;‘ﬂj‘

a,|

log

log L
o

where
M =2p+a, +|ﬂo|+22\ﬂj\
i=1

Taking p = 0, the following result immediately follows from Theorem 1:

j=0
Qy20, 20, 2...... ,

a
then the number of zeros of f(z) in |I\/I_0| < |Z| <0,0< 0 <1, does not exceed
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loto |+t +2i\ﬁj\
log 120

1 2| |
| - 0
0g

where
M =a, +|B,] + 22| 3| -
j=1
If the coefficients a; are real i.e. ,Bj =0, Vj =0,1,...., n, we get the following result from Theorem 1:

Corollary 2 : Let f(2) = Z:ajzj # 0 Dbe analytic for |Z| <1, where
j=0
p+ta;za 2a, 2. ,

a
then the number of zeros of f(z) in u < |Z| <0,0< 0 <1, does not exceed
M
1 2p+a,|+a
- log P | o| 07
log = 2]
o
where
M=2p+a, .

Taking p = (K -1, k =1, we get the following result from Theorem 1:

Corollary 3: Let f(2) = Zaj 27 #0 be analytic for |Z| <1, where
=0

aj=aj+iﬂj,j=0,1, ...... ,Nn.Ifforsomek >1,

kay 2o, 2a, >......,

a,|

then the number of zeros of f(z) in v < |Z| <0,0< 0 <1, does not exceed

2k -1z, +|a0|+22\ﬂj\
j=0

log
1 2|
| - 0
og 5

where

M = (2K~ D)ary +[5,|+ 23 |5

Applying Theorem 1 to the function —if(z), we get the following result:

Theorem 2 : Let f(Z):ZOajZj # 0 be analytic for |Z|£l,where a; =a; +iﬁj, j=01.....,n.If for
J:

some p >0,

a,|

then the number of zeros of f(z) in v < |Z| <0,0< 0 <1, does not exceed
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2p +|Bs|+ By +2§6‘aj‘

a,|

1 log

M =2p+ﬂ0+|ao|+2i\aj\ .

Theorem 3 : Let f (2) :Zajzj # 0 be analytic for |Z| <1.If for some p >0,
-0

lp+ay| =]y =]a,|>......,

and for real some [,

‘argaj—ﬂ‘Sagg,jzo,l, ....... n,

a,|

then the number of zeros of f(z) in v < |Z| <0,0< 0 <1, does not exceed

(p +|a,|)(cos & +sina +1) + sin aZ‘aj‘
-1

log

1

1 [a|
o

log
where
M = p + (p +|a,|)(cos & +sin ) +sin aZ‘aj‘ .
j=1
Taking o =0, Theorem 3 reduces to the following result:

Corollary 4:Let f (z) = iaj 2" #0 be analytic for |Z| <1.1f,
=0
3| =], =[a,|>......,

and for some real [,

‘argaj—ﬂ‘s(xs%,jzo,l, ....... n,

a,|

then the number of zeros of f(z) in v < |Z| <0,0< 0 <1, does not exceed

. |a0|(c03a+sina+1)+sinag‘aj‘

log

log = 2|
0g

where

M =|a,|(cos & +sin &) +sin ai‘aj‘ .
-1

Taking o = (k —1)|a0| , K >1, we get the following result from Theorem 3:
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Corollary 5:Let f (2) = Zai 2" #0 be analytic for |Z| <1.If,
j=0

klag|>|ay| > a,|>.......

and for some real [,

‘argaj—ﬁ‘SaS%,j:O,l, ....... n,

la|

then the number of zeros of f(z) in M < |Z| < 6,0 <6 <1 does not exceed

. kla,|(cos @ + sin a +1) +sin ai‘aj‘
-1

log
log =
J o

a,|

where

M = 2k|ero|(cos & +sin a) - [a,| +sin ai‘aj .
=

2. Lemmas

For the proofs of the above results we need the following results:
Lemma 1 : Let f(z) be analytic for |Z| <1, f(0)#0 and | f (Z)| <M for |Z| <1,

Then the number of zeros of f(z) in |Z| <0,0< 6 <1, does not exceed
1

M
log (see [7], page 171).
0

T
Lemma 2 : If for some t>0, [ta.|>|a; ,| and |arga; — S| <a <—, ]=01,2,..., for some real 3, then
j j-1 ga; > J

‘taj - aj_l‘ < (‘taj‘ —‘aj_l‘) cos o + (‘taj ‘ +‘aj_1‘)sin a.

The proof of Lemma 2 follows from a lemma of Govil and Rahman [3].

3. Proofs of Theorems:
Proof of Theorem 1: Consider the function

F(2)=Q0-2)f(2)
=(1-2)(a, +a,z+a,z° +......)
=a,-(@,—a,)z—(a, -a,)z° +.....
=a,+pr—(p+a,—a)z—(a —a,)z’ —....
+iB, —{(By = B2+ (B, = B,)z+....}.
For |Z|S1,
F@|<p+|a|+ptay—a+a,—a, +a, —ag +.. | By

+|ﬁo| +|ﬂl| +|,31| +|ﬂ2| e

=2,0+|0¢0|+050 +2ji;‘ﬂj‘.
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Since F(z) is analytic for |Z| <1, F(0)=a, =0, it follows , by using Lemma 1, that the number of zeros of

F(z) in |Z| <0,0< 6 <1, does not exceed
2p+|050| +a, + 22‘,81‘
j=0

2|

|
log 1 »
o
On the other hand, consider
F(2)=1-2)f(2)

=1-2)(a, +a,z+a,z° +......)
=3a, _(ao _al)z_(al _az)zz +

=a, +0(2).
where
a(2)=—(a, —a,)z2—(a, —a,)z% +......
=pr—(p+a, —a,))z—(a, —a,)z? —......
_i{(ﬂo _ﬂl)z +(ﬂ1 —,32)22 T }
For |Z|=1,

@) < p+p+ay—ay+a, —ay + o+ |Bo| + | B + | B+ |Bo] +
=2p+a, +|B|+2) |8 =M.
j=1
Since q(z ) is analytic for |Z| <1, q(0)=0, it follows , by Schwarz’s lemma , that
a(2) <Mz for|z|<1.

Hence for |Z|£1,
IF(2)|=|a, +a(2)|

= |ao| —|q(z)|

>[ao| - Mz

>0
if

o< o
M

This shows that all the zeros of F(z) lie in |Z| > aﬁo| . Since the zeros of f(z) are also the zeros of F(z), it
follows that all the zeros of f(z) lie in |Z| > % . Thus, the number of zeros of f(z) in
a|

VSM <6,0< 6 <1, does not exceed
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2p+|050|+050 +2§‘ﬂj‘

2|

log 1 o0
o

Proof of Theorem 2: Consider the function
F(2)=Q-2)f(2)
=(1-2)(a, +a,z+a,z° +......)
=a,—(a,—a,)z2—(a, —a,)z" +......
=a,+m—(p+a,—a,)z—(a, —a,)z° +......
For |Z| <1, we have, by using the hypothesis and Lemma 2,
IF(2)|< p+ag| +[(p+ay| —[ay)) cosa + (| p + &y | +|a) sinex
+(a,| —|a, ) cosa + (a,| +[a, ) sina +......

<(p +|ay|)(cosa +sina +1) +sin aZ‘aj‘.
i1

Since F(z) is analytic for |Z| <1, F(0)=a, =0, it follows , by using the lemma 1, that the number of zeros

of F(z) in |Z| <6,0< 6 <1, does not exceed

(p +|ap|)(cos & +sina +1) +sin ai‘aj‘
=

|
1 %9

log — 3|
0g

Again, Consider the function
F(2)=1-2)f(2)
=1-2)(a, +a,z+a,z° +......)
=a,—(a,—a)z—(a, —a,)z" +......
=a,+o—(p+a,-a,)z—(a, —a,)2° +.....
=3, +(2),

where
a2)=—(a, —a,)z—(a, —a,)z% +......

=pr—(p+a,—a,)z—(a, —a,)z" —.....
For |Z| =1, by using lemma 2, we have,
@) < p+(p+ao| —[a)) cosa + (|p + | +|ay) sin e
+(ja,|—|a, ) cos a + (|ay| +[a,) siner +.....

< p+(p +|ay|)(cos r +sin &) +sin ai‘aj‘ =M
j=1
Since q(z ) is analytic for || <1, q(0)=0, it follows , by Schwarz’s lemma, that
a(2) <M|z| for |z|<1.

Hence for |Z|Sl,
IF(2)|=|a, +a(2)|
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= |ao| —|q(z)|

>la,|—Mz|

>0
if

<o
M

This shows that all the zeros of F(z) lie in |Z| 2> |:/|—0| . Since the zeros of f(z) are also the zeros of F(2), it
follows that all the zeros of f(z) lie in |Z| > |i/|—0| . Thus, the number of zeros of f(z) in

a,|

VSM <6,0< 0 <1, does not exceed

(p +|a,|)(cos & +sina +1) + sin aZ‘aj‘
=L

log

log L
o

a,|
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