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I. Introduction and Statement of Results 

A well-known result due to Enestrom and Kakeya [5] states that a polynomial 
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has all its zeros in .1z  

Q. G. Mohammad [6] initiated the problem of finding an upper bound for the number of zeros of P(z) satisfying 

the above conditions in 
2

1
z  . Many generalizations and refinements were later given by researchers on the 

bounds for the number of zeros of P(z) in 10,  z  (for reference see [1]),[2], [4]etc.). 

In this paper we consider the same problem for analytic functions and prove the following results: 
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Taking 0 , the following result immediately follows from Theorem 1: 

Corollary 1: Let 0)(
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If the coefficients ja  are real i.e. njj ,....,1,0,0  , we get the following result from Theorem 1: 

Corollary 2 : Let 0)(
0
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Taking 0)1(   k , 1k , we get the following result from Theorem 1: 

Corollary 3 : Let 0)(
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Applying Theorem 1 to the function –if(z), we get the following result: 

Theorem 2 : Let 0)(
0
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Theorem 3 : Let 0)(
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Taking  0 , Theorem 3 reduces to the following result: 

Corollary 4:Let 0)(
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Taking 0)1( ak  , 1k , we get the following result from Theorem 3: 
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2. Lemmas 

 

For the proofs of the above results we need the following results: 

Lemma 1 : Let f(z) be analytic for 1z , 0)0( f  and Mzf )( for 1z , 

Then the number of zeros of f(z) in 10,  z , does not exceed 

)0(
log

1
log

1

f

M



(see [7] , page 171 ). 

Lemma 2 : If for some t>0, 1 jj ata  and ,...2,1,0,
2

arg  ja j


 , for some real  , then 

                 sin)(cos)( 111   jjjjjj ataataata . 

The proof of Lemma 2 follows from a lemma of Govil and Rahman [3]. 

 

3. Proofs of Theorems: 

Proof of Theorem 1: Consider the function 
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Since F(z) is analytic for 1z , 0)0( 0  aF , it follows , by using  Lemma 1, that the number of zeros of 
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Since q(z ) is analytic for 1z , q(0)=0, it follows , by Schwarz’s lemma , that 
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Proof of Theorem 2: Consider the function 
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For  1z , we have, by using the hypothesis and  Lemma 2, 
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Since F(z) is analytic for 1z , 0)0( 0  aF , it follows , by using the lemma 1, that the number of zeros 

of F(z) in 10,  z , does not exceed  
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Again ,  Consider the function 
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