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ABSTRACT: An attempt has been made using the approach formulated by Adlassnig [1] and Adlassnig and 

Kolarz [2] in the design of CADIAG-2, to find the possible marks obtained by a student in the final exam using 

his capacity or intelligence and the knowledge obtained using fuzzy relations, interval data and the comparison 

of intervals. 
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I. INTRODUCTION 

Education today is based on the information – collection and information- giving. In this state, it is 

difficult to analyze the end purpose of education itself. Levels of grasping, absorbing and then expressing vary 

according to individuals. The output by the students depends on the student’s capacity and the knowledge 

obtained by them. Hence by using fuzzy relations it is possible to confirm the possible marks obtained by the 

students in the final examinations. 

Moreover, the linguistic terms high, very high, low, very low are ambiguous. Hence we use the interval 

data for the corresponding terms. 

 

The model proposes two types of relations to exist between capacity and the knowledge obtained. 

(1) Existence relation 

(2) Assurance relation 

 

The first relation gives information about how much a student has basic intelligence or capacity. The second 

relation assures the presence of intelligence and the knowledge obtained by the student in certain topics. 

 

II. PRELIMINARIES 
The distinction between assurance and existence is important and is useful because a student may be 

quite intelligent but may not have obtained the knowledge about one subject. On the other hand, a student with 

less I.Q but with the knowledge obtained might get good marks. 

Let C denote the crisp universal set of all capacities, K be the crisp universal setoff all knowledge 

obtained by the students and S be the crisp universal set of all students. 

Let us define a fuzzy relation cR on the set SC in which membership grades wherecsRc )(,(  

), CcSs   indicates degree to which the capacity c is present in student in S. For instance, if c represents 

the capacity level in Calculus and the test marks is roughly 3.6 to 5.1, then a test result of 5.1 for a student S 

could lead to a membership grade ),( csRc = 0.5 

Let us further define a fuzzy relation eR on the universal set where ),( kcRe  (where KkCc  , ) indicates 

the existence of capacity with the knowledge K. Let aR  also be a fuzzy relation in the same universal set (C, K) 

where ),( kcRa corresponds to the degree to which the capacity together with the knowledge assures the 

maximum marks.  

We assign membership grades of 1, 0.9, 0.6, 0.3, and 0 in fuzzy sets eR  and  aR  for the linguistic terms very 

high, high, medium, low, and very low respectively. We use a concentration operation to model the linguistic 

modifier very such that ).()( 2 XAxAvery   

Assume that the following documentation exists concerning the relations of capacities 1 2 3, ,C C C  to the 

Knowledge obtained .,, 321 KKK  

 Capacity 1C  is very high in Calculus and the knowledge obtained in Calculus 1K is low. 



Analysis and Performance Prediction of Students Using Fuzzy Relations and Interval Data 

www.ijeijournal.com                      Page | 2 

 Capacity 1C  is high and 2K  the knowledge obtained in Algebra is very high. 

 Capacity 2C  is very low in Algebra 2K  is high. 

 Capacity 3C  in Differential equations is medium and  3K  the knowledge obtained in the same is very 

high. 

 Capacity 3C  is very low and 1K is low. 

All missing relational pairs of capacities and the knowledge obtained are assumed to be unspecified and are 

given a membership grade of 0.5. 

 

2.1 Interval Arithmetic: 

Interval arithmetic is the arithmetic of quantities that lie within specified ranges (ie intervals) instead of 

having definite known values. Interval arithmetic can be especially useful when working with data that is 

subject to measurement errors or uncertainties. It can be considered a rigorous version of significance 

arithmetic. Refer [ 11]. 

 

Definition: 2.1 

Let R be the set of all real numbers. The set of all real compact intervals I = {A: A = [a, b], a, b R} 

and we identify the set of point intervals [a, a]I with R. Let A, BI. Then the interval arithmetic operations 

are defined by  

           A*B = {α*β: αA, βB} 

where *{+, -, ., /}. Here / is undefined when 0B. 

Let A = [a, b], B = [c, d]. It can be shown that  

(i) A + B = [a+c, b + d] 

(ii) A - B = [a - d, b - c] 

(iii) A.B = [min{ac, ad, bc, bd}, max{ ac, ad, bc, bd}] 

(iv) A/B = [a, b].[1/d, 1/c] if 0  [c, d] 

Moreover A < B   iff  b < c 

                 A = B  iff a = c and b = d. 

                 A > B  iff  b > c.  

 

Definition 2.2 

Comparison of intervals:   

Comparison of intervals is very important problem in interval analysis. In
 
this section we consider the 

order relation (  and ) between intervals.  

Let  a  = [ RL aa , ] and  b = [ RL bb , ] and if Ra < Lb  then a < b crisply which is similar to the definition of 

comparison used in [11 ]. 

 

Definition 2.3 

Equal intervals: 

               a  =  b  iff  a  ≤ b  and  b ≤ a 

 

Definition 2.4 

Complement of an interval: 

             1 - [a, b] = [1 - b,1 - a] 

 

Definition 2.5 

Overlapping Intervals: 

If RRLL baba   then the intervals are overlapping. For any x in [ LL ba , ]  a < b. 

If x   [ RL ab , ], then every x is less than or equal to b. 

Therefore a ≤ b. (crisply) 

If y[ RR ba , ] then y in b ≥ a. 

That is b ≥ a (crisply). 

 

Definition 2.6 

Nested sub intervals: 

If RRLL baab   then the intervals are said to be nested. 
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In terms of fuzzy membership, we define, 

               a   b =  

LR

RR

bb

ab





. 

If  b   a then, 

                a    b  = 

LR

LL

aa

ab





.

 

Consolidating the above discussions we define the fuzzy operators  and   as follows. 

 

Definition 2.7 

The binary fuzzy operators   and  of two intervals a and b returns a real number between 0 and 1 as follows: 

       a   b = 





























RRLL

LR

RR

RRLL

LR

LL

RRLLLR

RRLLLR

baabif
ab

ab

abbaif
aa

ab

abababif

babaorbabaorbaif

,0

;,1

 

These values 

LR

LL

aa

ab




 and 

LR

RR

bb

ab




 moves to 0 when x moves from RRLL tobaandbtoa  left to right. 

Only when a = b, a  b takes the value 1.Using simple algebraic operations, it can be seen that the membership 

value for b a  = 1 - (a  b). 

 

Definition 2.8 

The binary fuzzy operator   of two intervals is defined as follows: 

                        ba 























LR

LL

LR

RR

bb

ba

aa

ba
0

1

 

The relations of two intervals can now be either crisp or fuzzy as described below. 

 

Definition 2.9 

If the values of a b is exactly 1 or 0 then we say that  a  and  b  are crisply related. Otherwise we say 

that they are fuzzily related. 

 

III. EVALUATION 

        We construct the following matrices of relations eR
, aR ),( KC  with interval data as the  

values are 

uncertain [3, 4, 5]. 

          
eR

 

















]1,8.0[]7.0,5.0[]8.0,6.0[

]65.0,34.0[]9.0,7.0[]8.0,5.0[

]4.0,1.0[]6.0,3.0[]9.0,8.0[

                        

         



















]1,9.0[]5.0,3.0[]25.0,0[

]7.0,5.0[]1,8.0[]8.0,6.0[

]1,0[]6.0,4.0[]9.0,7.0[

aR
 . 
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We assume that we are given a fuzzy relation cR   specifying the degree of capacities 1 2 3, ,C C C    for three 

students 1 2 3, ,S S S  as follows: 

         



















]75.0,6.0[]75.0,5.0[]9.0,7.0[

]6.0,4.0[]15.0,0[]1,8.0[

]25.0,0[]5.0,2.0[]5.0,3.0[

cR  

Using the relations   cea RRR ,,  
we can calculate four different indication relations defined on the set SXC of 

students and capacities. The first indication is defined as, 

         
1

[0.3,0.5] [0.3,0.5] [0.2,0.5]

[0.8,0.9] [0.4,0.6] [0.4,0.6]

[0.7,0.9] [0.5,0.75] [0.6,0.75]

c eR R R

 
 

 
 
   . 

The assurance indication  relation  is given by 

               acoRRR 2

 

           



















]9.0,7.0[]75.0,5.0[]9.0,7.0[

]1,8.0[]6.0,4.0[]9.0,7.0[

]5.0,3.0[]5.0,3.0[]5.0,3.0[

2R       

The non-existence relation    3R    is given by     3R    =  )1( ec RoR     . 

        3R  =

















]9.0,6.0[]7.0,4.0[]5.0,2.0[

]9.0,6.0[]7.0,4.0[]4.0,2.0[

]5.0,3.0[]5.0,3.0[]5.0,2.0[

. 

Finally the non-capacity indication 4R  is given by 

      4R = ec oRR )1(   

       4R  
= 

















]5.0,25.0[]5.0,25.0[]5.0,25.0[

]6.0,4.0[]9.0,7.0[]8.0,5.0[

]1,8.0[]8.0,5.0[]8.0,6.0[

. 

From these four indication relations, we may draw different types of conclusions.  If 2R (S, K)  = 1, we may 

make confirmed analysis of a student’s knowledge.  If 3R (S, K) = 1 or if 4R (S, K)  = 1 may make an excluded 

capacity K in student S.  In our example, we may exclude the capacity or knowledge for the student 3S .In our 

example 321 ,, KKK  are suitable knowledge hypotheses for students 321 ,, SSS .This system incorporates 

relations not only between knowledge and capacity but also between the knowledge themselves and capacities 

themselves and between combinations of knowledge and capacities. 

 

IV. CLUSTER ANALYSIS 
 Another alternative approach to model the student’s performance analysis utilizes fuzzy cluster 

analysis.  This type of technique is used by Fordon and Bezdek [9]  and Esogbue and Elder [6, 7, 8].  Models 

that use cluster analysis usually perform a clustering algorithm on the set of students by examining the similarity 

of the existence and assurance of capacity patterns exhibited by each.  The level of capacity present can be 

designated with degrees of membership in fuzzy sets representing each capacity category.  Often the similarity 

measure is computed between the capacities of the student in question and the capacities of a student possessing 

the prototypical capacity pattern for each possible student.  The student to be analyzed is then clustered to 

varying degrees with the prototypical students whose capacities are most similar.  The most likely diagnostic 

candidates are those knowledge clusters in which the student’s degree of membership is the greatest.  
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 We describe a simplified adaptation of  the  method  employed  by  Esogbue and Elder [6, 7, 8]  to 

illustrate this technique. 

 Let us assume that we are given a student x who displays the capacities 4321 &,, cccc at the levels 

given by the fuzzy set 

 1 2 3 40.1/ 0.7 / 0.4 / 0.6 /xA s s s s     where )( ix sA [0, 1] denotes the grade of 

membership  in the fuzzy set characterizing student x and defined on the set  

          c = { 4321 ,,, cccc } 

This indicates the level of the capacity ic for the student. 

 We must determine an analysis for this student among three possible knowledge obtained in 3 areas as 

1 2 3,k k and k .  Each of these knowledge is described by a matrix giving the upper and lower bounds of the 

normal range of level of each of the four capacities that can be expected in a student with the knowledge.  The 

knowledge 321 &, kkk are described in this way by the matrices  

 

                    1

0 0.5 0.6 0.2

0.3 0.4 0.8 0.7

Lower
B

Upper

 
  

 
 

 

                     2

0 0.8 0.2 0.3

0 0.9 0.1 0.5

Lower
B

Upper

 
  

 
 

 

                  3

0.2 0.5 0.3 0.1

0.4 0.8 0.2 0.7

Lower
B

Upper

 
  

 
 

 

      For each j = 1, 2, 3 matrix jB  defines fuzzy sets ( ) ( )jl i ju iB c and B c  denote respectively the lower 

and upper bounds of capacity ic  for knowledge jk .  The relation W of these weight of relevance is given by 

                                                  1 2 3k k k  

                            

1

2

3

4

0.5 0.9 0.5

0.4 0.7 0.1
( , )

0.7 0.1 0.3

0.8 0.2 0.5

c

c
W C K

c

c

 
 
 
 
 
 

 

where  ( , )i iw c k  denote the weight of capacity for the knowledge obtained in subject jk .  In order to discuss 

the student’s condition performance, we use a clustering technique to determine to which performance cluster 

(as specified by matrices 1 2 3,B B and B ), the student is most similar.  The clustering is performed by 

computing a similarity measure between the student’s capacities and those typical of each knowledge jk . 

 To compute this similarity, we use a distance measure based on the Minkowski distance that 

is appropriately modified.   It is given by the formula 
1/

( , ) ( , )( ( ) ( ( )) ( , )( ( ) ( ))
l u

p

p p

p j i j jl i x i i j ju i x c

i I i I

D k x W c k B c A c W c k B c A c
 

 
    
 
 

  

    where          lI  = { )( ixm cANi < B iju c( )} 

                      {UI  )( ixm cANi > B iju c( )}, 
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 And m denotes the total number of student’s capacities.  Choosing, for example the Euclidean distance we 

use (1) with p = 2 to calculate the similarity between the student x and knowledge’s 321 ,, kkk in our example as 

follows:- 

 

1
2 2 2

2 1( , ) (0.7)(0.6 0.4) (0.4)(0.4 0.7) 0.18D k x      
 

 

 

1
2 2 2 2

2 2,( ) (0.7)(0.8 0.7) (0.9)(0 0.1) (0.2)(0.5 0.6) 0.12D k x        
 

 

 

1
2 2 2

3 3( , ) (0.5)(0.2 0.1) (0.3)(0.2 0.4) 0.032D k x      
 

 

  The most likely knowledgeable candidate is the one for which the similarity measure attains 

the minimum values.  In this case, the students’ capacities are most similar to those typical of knowledge 3k . 

 

V. CONCLUSION 
 Thus it can be inferred that the students can be identified to score a higher percentage by (1) the cardiac 

method and through (2) the cluster analysis method .Thus the groups of achievers can be clustered in order to 

train them for excellence. 
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