Simple Semirings

P. Sreenivasulu Reddy¹, Guesh Yfter tela²

Department of mathematics, Samara University, Samara, Afar Region, Ethiopia Post Box No.131

Abstract: Author determine different additive structures of simple semiring which was introduced by Golan [3]. We also proved some results based on the papers of Fitore Abdullahu [1].

I. Introduction

This paper reveals the additive structures of simple semirings by considering that the multiplicative semigroup is rectangular band.

1.1. Definition: A semigroup S is called medial if xyzu = xzyu, for every x, y, z, u in S.

1.2. Definition: A semigroup S is called left (right) semimedial if it satisfies the identity $x^2yz = xyxz$ ($zyx^2 = zxyx$), where $x,y,z \in S$ and x, y are idempotent elements.

1.3. Definition: A semigroup S is called a semimedial if it is both left and right semimedial.

Example: The semigroup S is given in the table is I-semimedial

*	а	b	с	
a	b	b	b	
b	b	b	b	
c	c	c	с	

1.4. Definition: A semigroup S is called I- left (right) commutative if it satisfies the identity xyz = yxz (zxy = zyx), where x, y are idempotent elements.

1.5. Definition: A semigroup S is called I-commutative if it satisfies the identity xy = yx, where $x, y \in S$ and x, y are idempotent elements.

Example: The semigroup S is given in the table is I-commutative.

*	а	b	с	
a	b	b	а	
b	b	b	b	
с	с	b	с	

1.6. Definition: A semigroup S is called I-left(right) distributive if it satisfies the identity xyz = xyxz (zyx = zxyx), where $x,y,z \in S$ and x, y are idempotent elements.

1.7. Definition: A semigroup S is called I-distributive if it is both left and right distributive

1.8. Definition: A semigroup S is said to be cancellative for any a, b, \in S, then ac = bc \Rightarrow a = b and ca = cb \Rightarrow a = b

1.9. Definition: A semigroup S is called diagonal if it satisfies the identities $x^2 = x$ and xyz = xz.

1.10. Definition: A regular semigroup S is said to be generalized inverse semigroup if all its idempotent elements form a normal band.

1.11. Definition: A regular semigroup S is said to be locally inverse semigroup if eSe is an inverse semigroup for any idempotent e in S.

1.12. Definition: A regular semigroup S is said to be orthodox semigroup if E(S) is subsemigroup of S.

1.14. Definition: An element "a" of S is called k-regular if a^k is regular element, for any positive integer k. If every element of S is k-regular then S is k-regular semigroup.

Examples:

(i) If \hat{S} is a zero semigroup on a set with zero, then S is 2-regular but not regular, has a unique idempotent namely, zero but is not a group.

(ii) A left (right) zero semigroup is k-regular for every positive integer k but not k-inverse unless it is trivial. It is to be noted that regular = 1- regular.

1.15. Definition: [3] A semiring S is called simple if a + 1 = 1 + a = 1 for any $a \in S$.

1.17. Definition: A semiring (S, +, .) is called an additive inverse semiring if (S, +) is an inverse semigroup, i.e., for each a in S there exists a unique element $a^1 \in S$ such that $a + a^1 + a = a$ and $a^1 + a + a^1 = a^1$

Example: Consider the set $S = \{0, a, b\}$ on S we define addition and multiplication by the following cayley tables then S is additive inverse semiring.

	0	а	b	•	0	а	b	
0	0	а	b	0	0	0	0	
a	a	0	b	а	0	0	0	
b	b	b	b	b	0	0	b	

1.18Definition: A semiring S is called a regular semiring if for each $a \in S$ there exist an element $x \in S$ such that a = axa.

Examples: (i) Every regular ring is a regular semiring

(ii) Every distributive lattice is regular semiring.

(iii) The direct product of regular ring and distributive lattice is regular semiring.

1.19. Definition: An additive idempotent semiring S is k-regular if for all a in S there is x in S for which a + axa = axa.

Example:

Let D be a distributive lattice. Consider S = M₂(D) the semiring of 2×2 matrices on D. Now consider $\begin{bmatrix} a & b \end{bmatrix}$ $\begin{bmatrix} a & c \end{bmatrix}$

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad . \text{ Then for. } X = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$

A + AXA = AXA and this shows that S is k-regular.

1.20. Theorem: A simple semiring is additive idempotent semiring. **Proof:** Let (S, +, .) be a simple semiring. Since (S, +, .) is simple, for any $a \in S$, a + 1 = 1. (Where 1 is the

multiplicative identity element of S. $S^1 = SU \{1\}$.)

Now $a = a \cdot 1 = a(1 + 1) = a + a \Rightarrow a = a + a \Rightarrow S$ is additive idempotent semiring.

1.21. Theorem: Every singular semigroup (S, +) is (i) semilattice (ii) Rectangular band.

1.22. Theorem: Let (S, +, .) be a simple semiring. Then S is regular semiring if and only if it is k-regular semiring.

Proof: Let (S, +, .) be a simple semiring.Since (S, +, .) is a simple, for any $a \in S$, a + 1 = 1. Consider $a = a \cdot 1 = a(1 + b) = a + ab \implies a = a + ab$ Similarly, a = a + ba

Assume that S be a regular semiring. Then for any $a \in S$ there exist an element x in S such that axa = a. Now consider $axa = a = a.1 = a(1 + x) = a + ax = a + a (x + xa) = a + ax + axa = a + axa \Rightarrow axa = a + axa$. Hence (S, +, .) is k-regular semiring.

Conversely, assume that (S, +, .) be a k-regular semiring then for any $a \in S$ there exist $x \in S$ such that axa = a + axa. Now consider a + axa = a(1 + xa) = a. $1 = a \implies axa = a \implies S$ is a regular semiring

1.23. Theorem: Let (S, +, .) be a simple semiring. If (S, +, .) is k- regular semiring then S is additively regular semiring.

Proof: Let (S, +, .) be a simple semiring.Since (S, +, .) is simple, for any $a \in S$, a + 1 = 1. Since S be a k-regular semiring, for any $a \in S$ there exist an element x in S such that axa = a + axa. To Prove that S is additively regular semiring, consider $axa = a + axa \Rightarrow a = a + a$ (by Theorem 4.2.1.) $\Rightarrow (S, +)$ is a band Since (S, +) is a band then clearly (S, +) is regular. Therefore S is additively regular semiring.

1.24. Theorem: If the idempotent elements of a regular semigroup are commutes then S is generalized inverse semigroup.

Proof: Let S be a regular semigroup whose idempotent elements are commutes. Let x, y, $z \in S$ and are idempotent elements then $xyz = xzy \Rightarrow xxyz = xxzy \Rightarrow xyxz = xzxy \Rightarrow xyzx = xzyx$. Hence idempotent elements form a normal band. Therefore S is generalized inverse semigroup.

1.25. Theorem: Let S be a regular semigroup and E(S) is an E-inversive semigroup of S then i) E(S) is subsemigroup ii) S is an orthodox semigroup iii) E(S) is locally inverse semigroup.

Proof: (i) Let S be a regular semigroup and E(S) is an E-inversive semigroup. If $a, b \in S$ then there exist some x, y in S such that

 $(ax)^2 = (ax)$ and $(by)^2 = (by)$, $(xa)^2 = (xa)$ and $(yb)^2 = (yb)$ Let $(axby)^2 = (ax)^2 (by)^2 = (ax)(by) \Rightarrow (axby)^2 = (ax) (by)$. (axby) is an idempotent of E(S). Hence E(S) is subsemigroup of S and its elements are idempotents. (ii) Since E(S) is a sub semigroup of S \Rightarrow S is an orthodox semigroup. (iii) To prove that eE(S)e is regular for some $e \in S$. Let $f \in E(S)$ then $(efe)(efe)(efe) = efeefeefe = efeefeefe = efe \Rightarrow (efe)(efe)(efe) = efe$ Similarly $(fef)(fef)(fef) = feffeffef = feefeeff = feef \Rightarrow (fef)(fef)(feef) = feef \Rightarrow efe is an inverse element of E(S) <math>\Rightarrow$ E(S) is locally inverse semigroup.

1.26. Theorem: Let (S, +, .) be a semiring. Then the following statements are equivalent: (i) a + 1 = 1 (ii) $a^n + 1 = 1$ (iii) $(ab)^n + 1 = 1$ For all $a, b \in S$. Proof is by mathematical induction

1.27. Theorem: Let (s,+,.) be simple semiring. Then for any $a,b \in S$ the following holds: (i) a+b+1 = 1 (ii) ab+1 = 1.

1.28. Theorem: Let (S, +, .) be a simple semiring in which (S, .) is rectangular band then (S, .) is singular. **Proof:** Let (S, +.) be a simple semiring and (S.) be a rectangualr band i.e, for any $a, b \in S$ aba = a. Since S is simple, 1 + a = a + 1 = 1, for all $a \in S$. To prove that (S, .) is singular, consider $(1 + a)b = 1.b \implies b + ab + b = a \implies (b + ab)a = ba \implies ba + aba = ba \implies ba + a = ba \implies (b + 1)a = ba \implies 1.a = ba \implies a = ba \implies ba = a \implies (S, .)$ is a right singular.

Again $b(1+a) = b.1 \Rightarrow b + ba = b \Rightarrow a(b + ba) = ab \Rightarrow ab + aba = ab \Rightarrow ab + a = ab \Rightarrow a(b + 1) = ab \Rightarrow a.1 = ab \Rightarrow a = ab \Rightarrow ab = a \Rightarrow (S, .)$ is left a singular. Therefore (S.) is singular.

1.29. Theorem: Let (S, +.) be a simple semiring in which (S, .) is rectangular band then (S, +) is one of the following:

(i) I-medial (ii) I-semimedial (iii) I-distributive (iv) L-commutative(v) R-commutative (vi) I-commutative (vii) external commutative(viii) Conditional commutative. (ix) digonal

Proof: Let (S, +.) be a semiring in which (S.) is a rectangular band. Assume that S satisfies the identity 1+a = 1 for any $a \in S$. Now for any $a, b, c, d \in S$.

(i) Consider a + b + c + d = a + (b + c) + b (by Theorem.1.21. (ii))

$$= a + c + b + c$$

$$(S, +)$$
 is I- medial.

(ii) Consider $a + a + b + c = a + (a + b) + c = a + (b + a) + c = a + b + a + c \Rightarrow a + a + b + c = a + b + a + c \Rightarrow (S, +)$ is I- left semi medial.

Again $b + c + a + a = b + (c + a) + a = b + (a + c) + a = b + a + c + a \Rightarrow b + c + a + a = b + a + c + a \Rightarrow (S, +)$ is I-right semi medial.

Therefore, (S, +) is I-semi-medial.

(iii) consider $a + b + c = (a) + b + c = a + a + b + c = a + (a + b) + c = a + (b + a) + c = a + b + a + c \Rightarrow (S, +)$ is I-left distributive.

Consider b + c + a = b + c + (a) = b + c + a + a = b + (c + a) + (c + a) + a = b + (c + a) + (c +

 $b + (a + c) + a = b + a + c + a \Rightarrow b + c + a = b + a + c + a \Rightarrow (S, +)$ is Iright-distributive. Hence (S, +) is I-distributive.

Similarly we can prove the remaining.

1.30. Theorem: Let (S, +) be a simple semiring and (S, .) is rectangular band then (S, +) is (i) quasi-seprative (ii) weakly-separative (iii) separative.

Proof: Let (S,+, .) be a simple semiring and (S, .) is a rectangular band i.e, for any $a, b \in S$, aba = a. Since S is simple, 1+a = a+1 = 1, for all $a \in S$. Let $a + a = a + b \Rightarrow a + a + 1 = a + b + 1 \Rightarrow a + 1 = b + 1 \Rightarrow a = b$. Again, $a + b = b + b \Rightarrow a + b + 1 \Rightarrow b + 1 \Rightarrow a + 1 = b + 1 \Rightarrow a = b$. Hence $a + a = a + b = b + b \Rightarrow a = b \Rightarrow (S, +)$ is quasi-seperative.

(ii) Let $a + b = (a) + b = ba + b = b + ab = b + a \Rightarrow a + b = b + a \rightarrow (1)$

From (i) and (ii) $a + a = a + b = b + a = b + b \Rightarrow a = b \Rightarrow (S, +)$ is weakly separative

(iii) Let a + a = a + b

b + b = b + aFrom (1) a + b = b + a and from theorem 1.20 (S, +) is a band Therefore, $a = a + a = a + b = b + b = b \implies a = b$. Hence (S, +) is separative.

1.31. Theorem: Let (S, +, .) be a simple semiring in which (S, .) is rectangular band then (S, +) is cancellative in which case |S| = 1.

Proof: Let (S, +, .) be a simple semiring in which (S, .) is rectangular band. Since S is simple then for any $a \in S$, 1 + a = a + 1 = 1.

Let a,b,c, \in S. To prove that (S, +) is cancellative, for any a, b, c \in S, consider a + c = b + c. Then a + c.1 = b + c.1 \Rightarrow a + c(a + 1)

 $= b + c(b + 1) \Rightarrow a + ca + c = b + cb + c \Rightarrow a + ca + cac = b + cb + cbc \quad (\text{ since } (S, .) \text{ is rectangular }) \Rightarrow a + ca(1 + c) = b + cb(1 + c)$

 $\Rightarrow a + ca.1 = b + cb.1 \Rightarrow a + ca = b + cb.1 \Rightarrow a + ca = b + cb$

 $\Rightarrow (1+c)a = (1+c)b \Rightarrow 1.a = 1.b \Rightarrow a = b \Rightarrow a + c = b + c$

 \Rightarrow a = b. \Rightarrow (S. +) is right cancellative

Again $c + a = c + b \Rightarrow c.1 + a = c.1 + b \Rightarrow c(1 + a) + a = c(1 + b) + b \Rightarrow c + ca + a = c + cb + b \Rightarrow cac + c + a = cbc + cb + b \Rightarrow cac + ca + a = abc + cb + b \Rightarrow ca(c + 1) + a = cb(c + 1) + b \Rightarrow ca.1 + a = cb.1 + b$

 $\Rightarrow a + a = cb + b \Rightarrow (c + 1)a = (c + 1)b \Rightarrow 1.a = 1.b \Rightarrow a = b \Rightarrow c + a = c + b \Rightarrow a = b \Rightarrow (S, +) \text{ is left cancellative.}$

Therefore, (S, +) is cancellative semigroup. Since S is simple semiring we have $1 + a = 1 \Rightarrow 1 + a = 1 + 1$. But (S, +) is cancellative $\Rightarrow a = 1$ for all $a \in S$. Therefore |S| = 1.

Reference

- [1] Abdullah, F. "Idempotent in Semimedial Semigroups", International journal of Algebra, Vol.5, 2011, no.3, 129-134.
- [2] Abdullah, F. and Zejnullahu, A. "Notes on semimedial semigroups", Comment.Math.Univ.Carlin.50, 3(2009) 321-324.
- [3] Golan, J.S. "The theory of semirings with applications in mathematics and theoretical computer science", Pitman monographs and surveys in pure and applied mathematics, II. Series. (1992)