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Abstract: In this paper an initial value investigation has been made for a two dimensional MHD flow of  a 
second order Rivlin-Ericksen type visco-elastic fluid through a porous medium in a parallel plate channel under 

externally applied boundary acceleration. Ihe exact solutions for the velocity, accelerations and shear stress 

have been obtained using separations of variables method.  Their behaviour for different governing parameters 

has been discussed computationally based on the available physiological data. 
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I. INTRODUCTION 
External acceleration of  large  amplitudes  imparted  to the human  body cause serious problems in the  

cardiovascular  system,  causing  the   impairment of  certain  physiological  functions. Head ache, increase of 
pulse rate, loss  of vision, venous pooling of blood in the lower extremities, congestion of liver and lungs  

hemorrhages in the face and neck, eyes,  lungs  and brain are some  of  the   complications  as a result  of  

external  accelerations [1, 3 & 4].  On the other hand, sudden accelerations are deliberately imparted to the body 

to obtain some beneficial effects.  For  example,  body accelerations synchronous with heart beat, a proposed 

new method for  assisting the failing  heart,  has  been  employed by Verdouw et.al [8] to  reactive  the failing  

heart.  Experimental results obtained by Arntzentus et.al [2] on heart action in pigs indicate that blood pressure 

and cardiac output are raised when body accelerations synchronous with heart beat was applied in the forward 

direction in early systole. One of the channel walls in subjected to externally applied boundary acceleration. 

Against from this, blood is in constant circulation with in the blood vessels throughout the body. This 

circulatory system is the transport system of the body consisting of four type‟s viz., systematic circulation, the 

pulmonary circulation, the portal circulation and the coronary circulation. In these circulatory systems, the blood 

ultimately flows through a network of capillaries with porous wall having distinct functions. These capillaries 
act as loading or unloading stations in a transportation system with main function of nourishing the tissues in 

general. The flow through such net work of capillaries may be idealized as a two dimensional flow through a 

porous medium. The interaction of body accelerations with blood flow is desirable for controlling the ill effects 

of such body acceleration over blood circulation Lachlan [6]. Krishna and Rao [5]  studied an initial value 

investigation has been made for a two dimensional  flow of a second order Rivlin-Ericksen type visco-elastic 

fluid and the exact solutions for the velocity, acceleration, shear stress and volume flow rate have been obtained 

using transform method. Numerical computations have been carried out to discuss their behaviour for different 

parameters based on the available physiological data. Sud. V.K., et al [7] analyzed the blood flow in large and 

small arteries under the influence of externally applied periodic oscillations. The solutions for the blood 

velocity, fluid acceleration and shear stress are obtained. It has been show that high blood velocity and large 

shear stress are produced in large arteries. However, in the case of small arteries the flow is not disturbed. 
Recently Veera Krishna et.al [9] studied an initial value investigation and has been made for a two dimensional 

flow of a second order Rivlin-Ericksen type visco-elastic fluid in a parallel plate channel under externally 

applied boundary acceleration. Suneetha et.al [10] discussed the steady hydro magnetic flow of a couple stress 

fluid in a parallel plate channel bounded on one side by a porous bed under the influence of a transverse 

magnetic field and periodic body acceleration. In this paper an initial value investigation has been made for a 

two dimensional MHD flow of a second order Rivlin-Ericksen type visco-elastic fluid through a porous medium 

in a parallel plate channel under externally applied boundary acceleration. 

 

II. FORMULATION AND SOLUTION OF THE PROBLEM 
We consider an incompressible viscous and electrically conducting two dimensional flow of a second 

order Rivlin-Ericksen type visco-elastic fluid in a parallel plate channel bounded by a loosely packed porous 

medium. The fluid is driven by a uniform pressure gradient parallel to the channel plates and the entire flow 

field is subjected to a uniform inclined magnetic field. Choose a Cartesian system (t, y) with boundary walls      
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y = 0 and h. The flow is uni-directional in view of the fact the pressure gradient and body acceleration are in the 

same direction. The governing equation of the motion in the non-dimensional flow with respect to the frame of 
reference is, 
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With boundary conditions 

integ
dt
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.        at     hy                                     (2.2) 

0u              at        0y                                               (2.3) 

Equation (2.1) is to be solved subjected to the conditions (2.2) and (2.3), In view of Equation (2.2), we take 
inteyvu ).(                                    (2.4) 

 And the applied pressure gradient  
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Making use of (2.4) and (2.5) we solve (2.1) using the boundary conditions, 

Sinnt
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0v                  on        0y                                                                                                                              (2.7) 

         Where, u is the velocity of the fluid,   is the density of fluid,   is the coefficient of viscosity of the 

fluid, p is the pressure, A is an amplitude of pressure gradient, 
1

 the coefficient of visco-elasticity g is the 

body acceleration (or) amplitude of the applied acceleration and „n‟ its angular frequency in rad. sec-1 

From (2.1) and (2.4) we obtain 
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The general solution of Equation (2.8) is  
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Now we find the arbitrary constants C
1
 and C

2
 by using equations (2.6) and (2.7) we get   
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Equation (2.10) is substituted in equation (2.4) we get 
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Taking the real part of the equation (2.11) obtained as 
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where 
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Here, the non-dimensional parameters R, S, β , M, D-1 and G are given by 
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The shear stresses on the upper and lower walls at y = 0 and h in the non-dimensional form are calculated by  
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III. RESULTS AND DISCUSSION 

 The profiles (1-6) exhibit the nature of the velocity for variations in the governing parameters S, β , R, G, 

M and D-1. S the Visco-elastic parameter, R the Reynolds number, β  the Applied pressure gradient parameter, M 

the Hartmann number, D-1 the inverse Darcy parameter and G the body acceleration parameter. In all these 

profiles, we observe that the velocity rapidly increases from zero value on the lower boundary y = 0 to its 

maximum value on the upper boundary y = h. For fixed R and β  the velocity enhances with increase in the 

visco-elastic parameter and this enhancement in the velocity is plotted in the figure (1) for various values of β  

and R. For sufficiently large R the magnitude of the velocity is high comparable to smaller R and once again 

exhibits increase in trend with increase in S. The figure (2) correspond to decrease in β  for fixed R and S, we 

notice that an enhancement in the velocity for reduction in β . Also higher values of R the magnitude of the 

velocity relatively increases for all β  and S. The figure (3) correspond to behaviour of the velocity for variation 

in R fixing β  and S, we once again notice that an increase in R enhances the velocity for fixed β  and S while its 

magnitude exhibits a slight growth for increase in the visco-elastic parameter S at all corresponding values of β  

and R. Also the figure (4) correspond to behaviour of the velocity for variation in G fixing R, β  and S, we once 

again notice that the velocity enhances increase in for fixed values of R, β  and S.  From figures (5& 6), the 

behavior of the velocity always reduces to increase the intensity of the magnetic field M, while the magnitude of 
the velocity continuously decreases with increase in the inverse Darcy parameter D-1.  

   The shear stresses ( ) are evaluated for variations in R, S and β  at both the lower and upper 

boundaries. In general, the shear stress in the upper boundary is higher in magnitude compared to its value on 

the lower boundary at the corresponding sets of the parameters. From tables (1) and (2) we find on the lower and 

upper boundaries and increase in R slightly increases  for all fixed S, M, D-1 and β  Tables (3) and (4) 

represent the variation in  for increase  S fixing R and β . We notice that   enhances with S for all sets of R, 

M, D-1 and β . Likewise, the stress   reduces with increase in β  on the both boundaries for different sets R, M, 

D-1 and S as shown in tables (5&6). 

 

IV. FIGURES AND TABLES 

 
  Fig 1: the velocity profile for u against S with β =0.77135, R=257.8125, M=2, D

-1
 =1000 

 

 
Fig 2: the velocity profile for u against β  with S=0.01, R=257.8125, M=2, D

-1
 =1000 
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Fig 3: the velocity profile for u against R with β =0.77135, S=0.01, M=2, D

-1
 =1000 

 

 
Fig 4: the velocity profile for u against G with β =0.77135, R=257.8125, S=0.01, M=2, D

-1
 =1000 

 

 
Fig 5: the velocity profile for u against M with β =0.77135, R=257.8125, S=0.01, D

-1
 =1000 

 
Fig 6: the velocity profile for u against D

-1 
with β =0.77135, R=257.8125, S=0.01, M=2 

 

R I II III IV 

257.8125 0.2755 0.4623 0.6728 0.7228 

515.6250 0.4769 0.5145 0.7552 0.7899 

773.4375 0.5586 0.7668 0.8014 0.8846 

1031.2499 0.7742 0.8388 0.8871 0.9389 
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 I II III IV 

S 0.01 0.05 0.1 0.2 

β  0.771350 0.192817 0.085706 0.048209 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-1: The shear stress at y=0 level 
 

R I II III IV 

257.8125 0.3799 0.5225 0.6585 0.6795 

515.6250 0.5528 0.6715 0.7288 0.7874 

773.4375 0.6885 0.7481 0.8045 0.8455 

1031.2499 0.7885 0.8828 0.9118 0.9785 

 

 I II III IV 

S 0.01 0.05 0.1 0.2 

β  0.771350 0.192817 0.085706 0.048209 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-2: The shear stress at y=1 level 

 

S I II III IV 

0.01 0.2755 0.4735 0.6529 0.7334 

0.05 0.4883 0.5145 0.7652 0.8144 

0.1 0.5333 0.7625 0.8014 0.8715 

0.2 0.8028 0.8486 0.8898 0.9389 

 

 I II III IV 

R 257.8125 515.6250 773.4375 1031.2499 

β  0.771350 0.192817 0.085706 0.048209 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-3: The shear stress at y=0 level 

 

S I II III IV 

0.01 0.3799 0.5327 0.6672 0.7015 

0.05 0.5682 0.6715 0.7224 0.8124 

0.1 0.7225 0.7562 0.7562 0.8525 

0.2 0.7989 0.8878 0.9026 0.9785 

 

 I II III IV 

R 257.8125 515.6250 773.4375 1031.2499 

β  0.771350 0.192817 0.085706 0.048209 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-4: The shear stress at y=1 level 

 

β  I II III IV 

0.771350 0.2755 0.4866 0.6682 0.7535 

0.192817 0.4835 0.5145 0.7648 0.7986 

0.085706 0.6726 0.7825 0.8014 0.8852 

0.048209 0.8002 0.8746 0.9028 0.9389 

 I II III IV 

S 0.01 0.05 0.1 0.2 

R 257.8125 515.6250 773.4375 1031.2499 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-5: The shear stress at y=0 level 
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β  I II III IV 

0.771350 0.3799 0.5482 0.6882 0.7478 

0.192817 0.5788 0.6715 0.7525 0.8128 

0.085706 0.7583 0.7852 0.8045 0.8945 

0.048209 0.8235 0.8925 0.9396 0.9785 

 

 I II III IV 

S 0.01 0.05 0.1 0.2 

R 257.8125 515.6250 773.4375 1031.2499 

M 2 5 8 10 

D
-1

 1000 2000 3000 4000 

Table-6: The shear stress at y=1 level 

 

V. CONCLUSION 
Based on the results of the numerical calculations, it can be concluded that: 

[1]. For sufficiently large values of R, the magnitude of the velocity is high comparable to smaller R and once 

again exhibits increase in trend with increase in S.        

[2]. To decrease in β  for fixed R and S, an enhancement in the velocity for reduction in β . Also higher values 

of R the magnitude of the velocity relatively increases for all β  and S.  

[3]. The behaviour of the velocity for variation in R fixing β  and S, an increase in R enhances the velocity for 

fixed β  and S while its magnitude exhibits a slight growth for increase in the visco-elastic parameter S at all 

corresponding values of β  and R.  

[4]. The behaviour of the velocity for variation in G fixing R, β  and S, the velocity enhances increase in for 

fixed values of R, β  and S.  

[5]. The behavior of the velocity always reduces to increase the intensity of the magnetic field M, while the 

magnitude of the velocity continuously decreases with increase in the inverse Darcy parameter D-1.  

[6]. On the lower and upper boundaries and increase in R slightly increases   for all fixed S, M, D-1 and β . The 

variation in   for increase S fixing R, M, D-1 and β .    enhances with S for all sets of R, M, D-1 and β . 

The stress   reduces with increase in β  on the both boundaries for different sets of R, M, D-1 and S. 
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