
International Journal of Engineering Inventions

e-ISSN: 2278-7461, p-ISSN: 2319-6491

Volume 2, Issue 9 (May 2013) PP: 55-68

www.ijeijournal.com Page | 55

Comparison of available Methods to Estimate Effort,

Performance and Cost with the Proposed Method

M. Pauline
1
, Dr. P. Aruna

2
, Dr. B. Shadaksharappa

3

Abstract: Reliable effort estimation remains an ongoing challenge to software engineers. Accurate effort

estimation is the state of art of software engineering, effort estimation of software is the preliminary phase. The

relationship between the client and the business enterprise begins with the estimation of the software. Accurate

effort estimation gives a good cost estimate.The authors have proposed an efficient effort and cost estimation

system based on quality assurance coverage.The paper also focuses on a problem with the current method for

measuring function points that constrains the effective use of function points and suggests a modification to the

approach that should enhance the accuracy. The idea of grouping is introduced to the adjustment factors to

simplify the process of adjustment and to ensure more consistency in the adjustments. The proposed method uses

fuzzy logic for quantifying the quality of requirements and this quality factor is added as one of the adjustment

factor. Effort/cost estimation is calculated using the author’s proposed model taking hospital desktop

application and HR application as case studies. Performance measurement is a fundamental building block of

TQM and a total quality organisation. It is an measurement indicator for software development projects to

define, understand, collect and analyze data, then see the priority through valid comparisons and make

appropriate improvement action. One of the indicators is Effort Estimation which helps in managing overall

budgeting and planning.A comparative study of the performance measurement of the software project is done

between the existing model and the proposed model.Cost estimation of software projects is an important

management activity. Despite research efforts the accuracy of estimates does not seem to improve. The

calculated function point from the author’s method is taken as input and it is given to the static single variable

model (Intermediate COCOMO and COCOMO II) for cost estimation whose cost factors are tailored in

intermediate COCOMO and both, cost and scale factors are tailored in COCOMO II to suite to the individual

development environment, which is very important for the accuracy of the cost estimates.Thus author’s model is

for the improvement of software effort/cost estimation research through a series of quality attributes along with

constructive cost model (COCOMO). For quality assurance ISO 9126 quality factors are used and for the

weighing factors the function point metric is used as an estimation approach. Estimated Effort and Cost using

author’s proposed function pointare compared with the existing models.

I. Introduction
Software effort estimation is one of the most critical and complex, but an inevitable activity in the

software development processes. Over the last three decades, a growing trend has been observed in using variety

of software effort estimation models in diversified software development processes. There are many estimation

models have been proposed and can be categorized based on their basic formulation schemes;
An accurate effort prediction can benefit project planning, management and better guarantee the service

quality of software development. The importance of software effort modeling is obvious and people have spent

considerable effort in collecting project development data in large quantities. To estimate software development

effort the use of the neural networks has been viewed with skepticism bythe best part of the cost estimation

community. Despite the complexity of the software estimation, sometimes it is onlyperformed by an estimation

expert himself. In the last few decades, some techniques have been developed to estimate the effort of complete

software projects such as FPsSoftware effort estimation models divided into two main categories: algorithmic

and non-algorithmic.The primary factoraffecting software cost estimation is the size of the project;however,

estimating software size is a difficult problem thatrequires specific knowledge of the system functions in terms

ofscope, complexity, and interactions.A number of softwaresize metrics are identified in the literature; the most

frequentlycited measures are lines of code and Function point analysis.

This paper presents a model that presents the fundamentalsof LOC, Different methods available to

estimate effort using LOC is presented with its setbacks, then the authors quotes with the existing literature the

drawbacks and tells how Function points overcomes the drawbacks of LOC.Function Point is presented as

primarily a measurement technique for quantifying the size of a software product. Function points as an indirect

measure of software size based on external and internal application characteristics. Once determined, function

points can be input into empirical statistical parametric software cost estimation equations and models in order

to estimate software costs. Person month metric are used to express the effort a personnel devotes to a specific

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 56

project.Software size estimates are converted to software effort estimations to arrive at effort, and then the total

cost of the whole software project is calculated. Estimating size and effort are the most important topics in the

area of software project management. Next while discussing a proposed model for effort estimation, a number

of enhancements to adjustment factors is introduced. One of the enhancements proposed in this model is

grouping the available 14 GSCs into three groups. They are “System complexity”, “I/O complexity” and

“Application complexity”. Another important enhancement in this proposed Effort Estimation model is the

consideration of the quality of requirements as an adjustment factor and this “Quality complexity” is added as

the fourth group to the adjustment factor. There are several approaches for estimating such efforts, this work

proposes a fuzzy logic based approach using Mat lab for quality selection.The obtained function point is given

as input to the top layer, the top layer consist of Intermediate COCOMO and COCOMO II model, former

computes effort as a function of program size and analysis has been done to define rating for the cost drivers and

by adding the new rating the developmental effort is obtained while for the latter, it gets function point as input

and computes effort as a function of program size, set of cost drivers, scale factors, Baseline Effort Constants

and Baseline Schedule Constants. Cost estimation must be done more diligently throughout the project life cycle

so that there are fewer surprises and delays in the release of a product.Performance of the software projects are

also measured. By adding the new rating the developmental effort obtained is very much nearer to the planned

effort and also a comparative study is done between the existing and our proposed method [41]

II. Related work
Estimation by expert [1][2], analogy based estimation schemes [3], algorithmic methods including

empirical methods [4], rule induction methods [5], artificial neural network based approaches [6] [7] [8],

Bayesian network approaches [9], decision tree based methods [10] and fuzzy logic based estimation schemes

[11][12]. Among these diversified models, empirical estimation models are found to be possibly accurate

compared to other estimation schemes and COCOMO, SLIM, SEER-SEM and FP analysis schemes are popular

in practice in the empirical category [13] [14]. In case of empirical estimation models, the estimation parameters

are commonly derived from empirical data that are usually collected from various sources of historical or passed

projects. Accurate effort and cost estimation of software applications continues to be a critical issue for software

project managers [15].Although expert judgment remains widely used, there is also increasing interest in

applying statistics and machine learning techniques to predict software project effort [16][17]. Although, neural

networks have shown their strengths in solving complex problems, their limitation of being „black boxes‟ has

forbidden them to be accepted as a common practice for cost estimation [18]. Hardware costs, travel and

training costs and effort costs are the three principal components of cost of which the effort cost is dominant

[19][20]. Although many research papers appear since 1960 providing numerous models to help in computing

the effort/cost for software projects, being able to provide accurate effort/cost estimation is still a challenge for

many reasons. They include: (i) the uncertainty in collected measurement, (ii) the estimation methods used

which might have many drawbacks and (iii) the cost drivers to be considered along with the development

environment which might not be clearly specified [21]. The most popular algorithmic estimation models include

Boehm‟s constructive cost model (COCOMO) [22]. Thus, accurate estimation methods, for example, the FP

method, have gained increasing importance [23]. . The size is determined by identifying the components of the

system as seen [23] by the end-user: the inputs, outputs, inquiries, interfaces [24] to other systems and logical

internal files [25]. The components are classified as simple, average or complex. All these values are then

scored and the total is expressed in unadjusted FPs (UFPs). Complexity factors described by 14 general systems

characteristics, such as reusability [26, 27], performance and complexity of processing can be used to weigh the

UFP. Factors are also weighed on a scale of 0 – not present 1 – minor influence, to 5 – strong influence [28][29].

The result of these computations is a number that correlates to system size. Although the FP metric does not

correspond to any actual physical attribute of a software system [30, 31] (such as lines of code or the number of

subroutines) it is useful as a relative measure for comparing projects, measuring productivity, and estimating the

amount a development effort and time needed for a project [32, 33]. The total number of FPs depends on the

counts of distinct (in terms of format or processing logic) types in the following five classes [34]. It is well

documented that the software industry suffers from frequent cost overruns [35]. A contributing factor is, we

believe, the imprecise estimation terminology in use. A lack of clarity and precision [36] in the use of estimation

terms reduces the interpretability of estimation [37] accuracy results, makes the communication of estimates

difficult and lowers the learning possibilities [38]. Number of enhancements to adjustment factors is introduced.

One of the enhancements proposed in this model is grouping the available 14 GSCs into three groups. They are

“System complexity”, “I/O complexity” and “Application complexity”. Another important enhancement in this

proposed Effort Estimation model is the consideration of the quality of requirements as an adjustment factor and

this “Quality complexity” is added as the fourth group to the adjustment factor. There are several approaches for

estimating such efforts, this work proposes a fuzzy logic based approach using Mat lab for quality selection. The

obtained function point is given as input to the top layer, the top layer consist of Intermediate COCOMO and

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 57

COCOMO II model.Performance of the software projects are also measured in the top layer. By adding the new

rating the developmental effort obtained is very much nearer to the planned effort and also a comparative study

is done between the existing and our proposed method.[39][40][41][42]. The inputs are the Size ofsoftware

development, a constant, A, and a scale factor, B. The size is in units of thousands of source lines of code

(KSLOC) [43].

III. System Overview
To investigate how the cost and effort estimation task is concentrated on the development of software

systems and not much on the quality coverage, our paper focus on the Quality assurance for effort estimation

work. The questions we raise are as follows:

1. Why grouping of General System characteristic for software estimation as a collaborative activity is

needed?

2. What types of Quality assurance are needed to accomplish the estimation task?

3. What type of techniques can be considered for building our quality models?

4. Which type will overcome all the potential problems?

5. Does trimming of scale factors and cost drivers improve the estimation and how our model benefits by

trimming?

6. What are the problems that the traditional size metric face, and how it is overcome with Function point.

7. Drawbackof Existing Function point models and how it is overcome with the enhanced Function point and

the author‟s inclusion of quality models.

8. What does Performance measurement focuses on, andwhat does success really mean?

The grouping of the 14 GSC into groups is needed to simplify the counting process and reduces the

probability of errors while counting; this enhanced system focuses on minimizing the effort by enhancing the

adjustments made to the functional sizing techniques.

In the existing systems, the effort and cost estimation are more concentrated on the development of

software systems and not much on the quality coverage. Hence, the proposed model ensures the quality

assurance for the effort estimation.

This paper presents fuzzy classification techniques as a basis for constructing quality models that can

identify outlying software components that might cause potential quality problems and this “Quality

complexity” is added as the fourth group in the enhancement process. From the four groups, proposed value

adjustment factor is calculated. The total adjustment function point is the product of unadjusted function point

and the proposed value adjustment factor.

COCOMO II model computes effort as a function of program size (function point got from our model

is converted to Lines of code), set of trimmed cost drivers, trimmed scale factors, Baseline Effort Constants and

Baseline Schedule Constants. Empirical validation for software development effort multipliers of COCOMO II

model is analyzed and the ratings for the cost drivers are defined. By adding new ratings to the cost drivers and

scale factors and seeing that the characteristic behaviour is not altered, the developmental person month of our

proposed model is obtained, and Intermediate COCOMO model computes effort as a function of program size

(got from author‟s proposed model)and a set of trimmed cost drivers, also the effort multipliers of Intermediate

COCOMO model is analyzed and the ratings for the cost drivers are defined. By adding new ratings to the cost

drivers and seeing that the characteristic behaviour is not altered, the developmental person month of our

proposed model is obtained. It is observed that the effort estimated with COCOMO II and Intermediate

COCOMO are very much nearer to their respective planned efforts; with our proposed cost model minimal

effort variance can be achieved by predicting the cost drivers for computing the EAF. Thus our proposed model

computes Effort, Cost and measures the performance of the software projects, also a comparative study is done

between the existing model and our model taking samples data‟s of HR application and Hospital application.

The software size is the most important factor that affects the software cost. There are mainly two types

of software size metrics: source lines of code (SLOC) and FPs. SLOC is a natural artefact that measures

software physical size but it is usually not available until the coding phase and difficult to have the same

definition across different programming languages. FPs is an ideal software size metric to estimate cost since it

can be obtained in the early development phase. function points are independent of the language, tools, or

methodologies used for implementation; i.e., they do not take into consideration programming languages, data

base management systems, processing hardware, or any other data processing technology. Second, function

points can be estimated from requirements specifications or design specifications, thus making it possible to

estimate development effort in the early phases of development.

The grouping of the 14 GSC into groups simplifies the counting process and reduces the probability of

errors while counting; this enhanced system focuses on minimizing the effort by enhancing the adjustments

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 58

made to the functional sizing techniques. In the existing systems, the effort and cost estimation are more

concentrated on the development of software systems and not much on the quality coverage. Hence the quality

assurance for the effort estimation is proposed in this paper. This paper discusses fuzzy classification techniques

as a basis for constructing quality models that can identify the quality problems.

Performance measurement is a process of assessing the results of a company, organization, project, or

individual to (a) determine how effective the operations are, and (b) make changes to address performance gaps,

shortfalls, and other problems.

IV. Modeling Procedure
The proposed modeling procedure clearly describes the steps to build the effort/cost models. The tasks

and their importance are also explained in detail in their respective sections.

Fig 1 Block diagram of the Proposed Model

V. Lines of Code
The traditional size metric for estimating software developmenteffort and for measuring productivity

has been lines ofcode (LOC). A large number of cost estimation models havebeen proposed, most of which are a

function of lines of code,or thousands of lines of code (KLOC). Generally, the effortestimation model consists

of two parts. One part provides abase estimate as a function of software size and is of thefollowing form:

E = A + B x (KLOC)
C

Where E is the estimated effort in man-months; A. B. andC are constants; and KLOC is the estimated

number ofthousands of line of code in the final system. The secondpart modifies the base estimate to account for

the influence ofenvironmental factors [33]. As an example, Boehm‟s COCOMO model uses lines of coderaised

to a power between 1.05 and 1.20 to determine thebase estimate. The specific exponent depends on whether

theproject is simple, average, or complex. The model then uses15 cost influence factors as independent

multipliers to adjustthe base estimate. Conte, Dunsmore, and Shenidentifiedsome typical models including the

following:

Method to calculate Lines of code, Function point and person

month are discussed with the existing method

Fuzzy based proposed model for effort estimation is proposed

Intermediate COCOMO and COCOMO II model are discussed to

calculate effort and cost with the proposed function point and

trimmed drivers and also the performance of s/w projects are

measured.

Albrecht’s FP and Author’s proposed FP are taken and each

is converted to its LOC using the language factor, the LOC

is applied to different cost and effort estimation methods

available and a comparison is done.

Albrecht’s FP and Author’s proposed FP are taken and

each FP is applied to the different Effort and Cost

estimation model available and a comparison is done.

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 59

5.1) Walston-Felix is a model developed by C.E. Walston and C.P. Felix in 1977, is a method of programming

measurement and estimation. Walston& Felix, is one of the static single variable models

E = 5.2 x (KLOC)
0.91

 (Walston-Felix model)

5.2)Nanus& Farr

PM = aL
1.5

 ,where L = estimated KLOC

5.3) Bailey-Basili model [5] is based on data collected by organization which captures its environmental

factors and the differences among given projects

E = 5.5 + 0.73 x (KLOC)
1.16

 (Bailey-Basili model)

5.4) E = 3.2 x (KLOC)
1.05

 (Boehm simple model)

5.5) E = 3.0 x (KLOC)
l.l2

(Boehm average model)

5.6) E = 2.8 x (KLOC)
1.20

(Boehm complex model)

5.7) Doty model, published in 1977, is used to estimate efforts for Kilo lines of code (KLOC).

E = 5.288 x (KLOC)1.047 (Doty model).

The definition of KLOC is important when comparing thesemodels. Some models include comment

lines, and others donot. Similarly, the definition of what effort (E) is beingestimated is equally important. Effort

may represent onlycoding at one extreme or the total analysis, design, coding, andtesting effort at the other

extreme. As a result, it is difficultto compare these models.There are a number of problems with using LOC as

the unitof measure for software size. The primary problem is the lackof a universally accepted definition for

exactly what a line ofcode really is. Another difficulty with lines of code as a measure of systemsize is its

language dependence. It is not possible to directlycompare projects developed by using different languages.Still

another problem with the lines of code measure is thefact that it is difficult to estimate the number of lines of

codethat will be needed to develop a system from the information available at requirements or design phases of

development If cost models based on size are to be useful, it is necessaryto be able to predict the size of the final

product as early andaccurately as possible. Finally, the lines of codemeasure places undue emphasis on coding,

which is only onepart of the implementation phase of a software developmentproject.

VI. Theoretical background for effort and cost estimation based on function points[33]
Software cost estimation is the process of predicting theeffort to be required to develop a software

system. Most cost estimation models attempt to generate an effort estimate, which can then be converted into the

project duration and cost. Effort is often measured in person months of the programmers, analysts and project

managers. The software size is the most important factor that affects the software cost. There are mainly two

types of software size metrics: source lines of code (SLOC) and FPs. SLOC is a natural artefact that measures

software physical size but it is usually not available until the coding phase and difficult to have the same

definition across different programming languages. FPs is an ideal software size metric to estimate cost since it

can be obtained in the early development phase, such as requirement, measures the software functional size and

is programming language independent. Calibrating FPs incorporates

6.1 Function Point

The function point metric (FP) proposed by Albrecht can be used effectively as a means for measuring the

functionality delivered by a system using historical data. FP can then be used to Estimate the cost or effort

required to design, code and test the software, Predict the number of errors that will be encountered during

testing and Forecast the number of components and/or the number of projected source lines in the implemented

system.

The steps for Calculating Function point metric is:

 Count total is calculated using Information domain and the weighting factor.

 The Value added factor is based on the responses to the following 14 characteristics, each involving

a scale from 0 to 5 and the empirical constants

 Function point is the product of Count total and the Value added factor.

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 60

Thus Function points (FP) provide a measure of the functionality of a software product and is obtained

using the following equation:

FP = count-total X [0.65 + 0.01 X Σ Fi]

Where the count-total is a summation of weighted input/output characteristics, and Fi is the summation of

fourteen ranked factors.

Function point analysis is a method of quantifying the sizeand complexity of a software system in terms of the

functionsthat the system delivers to the user [33][39]. The function point approach has features that overcome

themajor problems with using lines of code as a measure of systemsize. First, function points are independent of

the language,tools, or methodologies used for implementation. Second, function pointscan be estimated from

requirements specifications or designspecifications, thus making it possible to estimate developmenteffort in the

early phases of development. Since functionpoints are directly linked to the statement of requirements,any

change of requirements can easily be followed by areestimate.Third, since function points are based on

thesystem user‟s extemal view of the system, nontechnical usersof the software system have a better

understanding of whatfunction points are measuring .The method resolves manyof the inconsistencies that arise

when using lines of code asa software size measure.FPs can be used to estimate the relative size and complexity

ofsoftware in the early stages of development – analysis and designthe historical information and gives a more

accurate view of software size. Number of external inputs (Els): Each El originates from a user or is transmitted

from another application and providesdistinct application-oriented data or control information.Inputs are often

used to update internal logical files (ILFs).Inputs should be distinguished from enquiries, which arecounted

separately.Number of external outputs (EOs): Each EO is derivedwithin the application and provides

information to the user.In this context EO refers to reports, screens, error messages,and so on. Individual data

items within a report are notcounted separately.Number of external enquiries (EQs): An EQ is defined asan

online input that results in the generation of someimmediate software response in the form of an onlineoutput

(often retrieved from an ILF).Number of ILFs: Each ILF is a logical grouping of data thatresides within the

application‟s boundary and is maintainedviaEls.Number of external interface files (EIFs): Each EIF is alogical

grouping of data that resides external to theapplication but provides data that may be of use to

theapplication.Organisations that use FP methods can develop criteria fordetermining whether a particular entry

is simple, average orcomplex. Nonetheless, the determination of complexity is somewhat subjective.The

function point metric (FP), first proposed by Albrecht [ALB79] can be used to

 Estimate the cost or effort required to design, code and test the software.

 Predict the number of errors that will be encountered during testing.

 Forecast the number of components and /or the number of projected source lines in the implemented

system.

Existing FP-oriented Estimation/Cost models From the Literature (33):

6.1.1 SEER-SEM ESTIMATION MODEL

SEER (System Evaluation and Estimation of Resources) is a proprietary model owned by Galorath

Associates, Inc. SEER (SEER-SEM) is an algorithmic project management software application designed

specifically to estimate, plan and monitor the effort and resources required for any type of software development

and/or maintenance project. SEER, referring to one having the ability to foresee the future, relies on parametric

algorithms, knowledge bases, simulation-based probability, and historical precedents to allow project managers,

engineers, and cost analysts to accurately estimate a project's cost schedule, risk and effort before the project is

started. This model is based upon the initial work of Dr. Randall Jensen. The mathematical equations used in

SEER are not available to the public, but the writings of Dr. Jensen make the basic equations available for

review. The basic equation, Dr.Jensen calls it the "software equation" is:

Se =Cte(Ktd)
0.5

where, „S‟ is the effective lines of code, „ct‟ is the effective developer technology constant, „k‟ is the total life

cycle cost in man-years, and „td‟ is the development time in years

6.1.2) Albrecht and Gaffney model

The Alhrechtand Gaffney Model Albrecht-Gaffney model established by IBM DP

ServicesOrganization uses function point to estimate efforts. Albrecht and Gaffney give the function point

counts and the resulting work-hours, which we call effort, for each project.

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 61

E = 12.39 + 0.0545 FP Albrecht and Gaffney model (3)

6.1.3)Kemerer model

Kemerer model is a cost estimation model using function points and linear regression. Kemmerer also

developed a cost estimation model using function points and linear regression. The dependent variable, Effort,

is measured in man-months where one man-month is 152 work-hours.

E = −37 + 0.96 FP Kemerer model (4)

6.1.4). SLIM ESTIAMTION MODEL

The Putnam model is an empirical software effort estimation model.
[1]

 The original paper by

Lawrence H. Putnam published in 1978 is seen as pioneering work in the field of software process

modelling.The SLIM estimating method was developed in the late 1970s by Larry Putnam of Quantitative

Software Management [34,35, 36]. SLIM Software Life-Cycle Model was developed by Larry. Putnam [37].

SLIM hires the probabilistic principle calledRayleigh distribution between personnel level and time. It is one of

the earliest of these types of models developed, and is among the most widely used. Closely related software

parametric models are Constructive Cost Model (COCOMO), Parametric Review of Information for Costing

and Evaluation – Software (PRICE-S), and Software Evaluation and Estimation of Resources – Software

Estimating Model (SEER-SEM).

Putnam used his observations about productivity levels to derive the software equation:

where:

 Size is the product size (whatever size estimate is used by your organization is appropriate). Putnam

uses ESLOC (Effective Source Lines of Code) throughout his books.

 B is a scaling factor and is a function of the project size.

 Productivity is the Process Productivity, the ability of a particular software organization to produce

software of a given size at a particular defect rate.

 Effort is the total effort applied to the project in person-years.

 Time is the total schedule of the project in years.

In practical use, when making an estimate for a software task the software equation is solved for effort:

LOC = c K
0.3

T
1.3

6.1.5)SMPEEM

Software maintenance size is discussed and the software maintenance project effort estimation model

(SMPEEM) is proposed. The SMPEEM uses function points to calculate the volume of the maintenance

function

E = 0.054 × FP
1.353

SMPEEM (5)

6.1.6)Matson, Barnett and Mellichamp model

A scatter-plot of the data (Fig. 5(a)) suggests that a linearrelationship is present and we fit our initial model,

E = 585.7 + 15.12 FP (2)

where the developmental effort is given in work-hours. Matson, Barrett and Mellichamp model [8] develop a

software cost estimation model using function points

E = 585.7 + 15.12 FP Matson, Barnett and Mellichamp model (6)

.

6.1.7)COCOMO ESTIMATION MODEL

The COCOMO is the most complete and thoroughlydocumented model used in effort estimation. The

modelprovides detailed formulae for determining the developmenttime schedule, overall development effort,

effort breakdownby phase and activity, as well as maintenance effort. Themodel is developed in three versions

of different levels ofdetail: basic, intermediate and detailed. The overallmodelling process has three classes of

systems:Embedded: This class of systems is characterised by tightconstraints, changing environment and

unfamiliarsurroundings. Eg: aerospace,medicineetc.Organic: This category includes all the systems that

aresmall relative to project size and team size, and have astable environment, familiar surroundings and

relaxedinterfaces. These are simple business systems, dataprocessing systems and small libraries.Semi-detached:

The software systems under this categoryare a mix of those of organic and embedded nature. Someexamples of

software of this class are operating systems,database management systems and inventory

managementsystems.B. The Constructive Cost Model (COCOMO)The Constructive Cost Model (COCOMO) is

the well-knownsoftware effort estimation model based on regressiontechniques. The COCOMO model was

http://en.wikipedia.org/wiki/Putnam_model#cite_note-putnam-1
http://en.wikipedia.org/wiki/Software_parametric_models
http://en.wikipedia.org/wiki/Software_parametric_models
http://en.wikipedia.org/wiki/Software_parametric_models
http://en.wikipedia.org/wiki/COCOMO
http://en.wikipedia.org/wiki/SEER-SEM
http://en.wikipedia.org/wiki/Source_lines_of_code

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 62

proposed by BarryBoehm in 1981[2] and it is one of the most cited, best known,widely used and the most

plausible of all proposed effortestimation methods. The COCOMO model uses to calculate theamount of effort

then based on the calculated effort it makestime, cost and number of staff estimates for software

projects.COCOMO 81 was the first and stable model on that time.COCOMO II, was proposed and developed to

solve most of theCOCOMO 81 problems. The Post-Architecture Level ofCOCOMO II uses 17 cost drivers that

they presents projectattributes, programmer abilities, developments tools. The cost drivers and scale factors for

COCOMO II arerated on a scale from Very Low to Extra High in the same wayas in COCOMO 81.

A is the Multiplicative Constant, Size is the Size of the software measures in terms of KSLOC

(thousands of Source Lines of Code, Function Points or Object Points).The scale factors (SF) are based on a

significant source of exponential variation on a project‟s effort or productivity variation.

6.1.8) COCOMO 81(Intermediate COCOMO)

COCOMO 81 (Constructive Cost Model) is an empirical estimation scheme proposed in 1981 [29] as a

model forestimating effort, cost, and schedule for software projects. These formulae link the size of the system

and Effort Multipliers (EM) to find the effort to develop a software system. In COCOMO 81, effort is expressed

as Person Months (PM) and it can be calculated as

PM = a * Sizeb * ∑EMi

where,“a” and “b” are the domain constants in the model. It contains 15 effort multipliers. This estimation

scheme accounts the experience and data of the past projects, which is extremely complex to understand and

apply the same.

Cost drives have a rating level that expresses the impact ofthe driver on development effort, PM. These

rating can rangefrom Extra Low to Extra High. For the purpose of quantitative analysis, each rating level of

each cost driver has a weight associated with it. The weight is called Effort Multiplier. The average EM

assigned to a cost driver is 1.0 and the rating level associated with that weight is called Nominal.

6.1.9) COCOMO II

In 1997, an enhanced scheme for estimating the effort for software development activities, which is

called as COCOMOII. In COCOMO II, the effort requirement can be calculated as:

Effort = A * [SIZE]

B
* ∏ EFFORT Multiplier

I=1 to 17

Where B = 1.01 + 0.01 * ∑ SCALE FACTOR

J= 1 to 5

Cost drives are used to capture characteristics of the software development that affect the effort to

complete the project.COCOMO II used to predict effort and time and this larger number of parameters resulted

in having strong co-linearity and highly variable prediction accuracy. This model uses LOC (Lines of Code) as

one of the estimation variables. The COCOMO also uses FP (Function Point) as one of the estimationvariables.

COCOMO II models are still influencing in the effortestimation activities due to their better accuracy compared

to other estimation schemes.

7.Proposed effort and cost estimation process in the author‟s new approach

To compute Albrecht‟s FPs, the following relationship is used

FP = count-total X [0.65 + 0.01 X Σ Fi]

where count total is the sum of all FP entries as shown above,The Fi (i= 1 to14) have VAF. The 0.65 and 0.01

are empirically derived constants. The constant values in (1) and the weighing factors that areapplied to

information domain counts are determined empirically.

The proposed method presents a set of primary metrics and the mode to calculate the Lines of code,

Function point and Person month are also discussed in the first layer. In the middle layer a fuzzy based

proposed model for effort estimation is discussed, the enhancements proposed is grouping the fourteen GSCs

into groups, first group is “System complexity” which consist of Data communication Complexity, Distributed

Data Processing Complexity, Performance Complexity and Heavily used configuration Complexity, the average

of the four weighted scores together gives the System complexity. Second group is “I/O complexity” which

consist of Transaction rate Complexity, Online data entry Complexity, End user efficiency Complexity and

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 63

Online update Complexity , and the third group is “Application complexity” which consist of Complex

processing Complexity , Reusability Complexity , Installation Ease Complexity, Operational Ease Complexity,

Multiple Sites Complexity, Facilitate Change Complexity . The grouping of the 14 GSC into groups simplifies

the counting process and reduces the probability of errors while counting; this enhanced system focuses on

minimizing the effort by enhancing the adjustments made to the functional sizing techniques. In the existing

systems, the effort and cost estimation are more concentrated on the development of software systems and not

much on the quality coverage. Hence the quality assurance for the effort estimation is proposed in this paper.

This paper discusses fuzzy classification techniques as a basis for constructing quality models that can

identify the quality problems and this “Quality complexity” is added as the fourth group in the enhancement

process. From the four groups, proposed value adjustment factor is calculated. The total adjustment function

point is the product of unadjusted function point and the proposed value adjustment factor. In the Upper layer

COCOMO II model computes effort as a function of program size, got from the middle layer, set of cost drivers,

scale factors, Baseline Effort Constants and Baseline Schedule Constants. Empirical validation for software

development effort multipliers of COCOMO II model is analyzed and the ratings for the cost drivers are

defined. By adding new ratings to the cost drivers and scale factors and seeing that the characteristic behaviour

is not altered, the developmental person month of our proposed model is obtained, also in the upper layer

Intermediate COCOMO model computes effort as a function of program size, got from the middle layer and a

set of cost drivers, also the effort multipliers of Intermediate COCOMO model is analyzed and the ratings for

the cost drivers are defined. By adding new ratings to the cost drivers the developmental person month of our

proposed model is obtained. It is observed that the effort estimated with COCOMO II and with Intermediate

COCOMO is very much nearer to their respective planned efforts and the last component of the upper layer is

the measures of the performance of software projects with its measurement indicators. The last component of

this phase in our proposed model measures the performance of software projects with its measurement

indicators Thus our proposed model predicts the Effort and Cost of the software to be developed and

performance of the software projects is measured for the software developed, also a comparative study is done

between the existing (with the different models available for effort /cost Estimation from the literature) and

proposed model taking HR and Hospital application as case studies.

VII. Experimental Research Setup And Results
1. Effort Estimation:

 Function Points and the effort in person-months are computed for the HR application and Hospital

application.

Table 1: Count total for Hospital and HR application

 Hospital Application data HR Application data

InformationDomain

Value

Count Weighing

factor
 Count Weighing factor

External Inputs (EIs) 33 03(Simple) 99 11 3(simple) 33

External Outputs

(EOs)

03 04(Simple) 12 01 7(Complex) 07

External Inquiries

(EQs)
- - - 04 03(Simple) 12

Internal Logical Files

(ILFs)

02 07(Simple) 14 03 07(Simple) 21

External Interface

Files (EIFs)
- - - 03 05(Simple) 15

Count Total …………> 125 Count Total …> 88

Table 2 :Below is our proposed model Factor Value for Hospital application and HR application are

given

System Complexity:

Data Communication 0 3

Distributed Data

Processing
0 1

Performance 1 3

Heavily used configuration 0 2

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 64

I/O Complexity

Transaction rate 2 3

On-line data entry 5 3

End User Efficiency 3 4

On-line update 0 3

Application Complexity

Complex Processing 0 2

Reusability 0 3

Installation Ease 2 3

Operational Ease 5 3

Multiple sites 0 3

Facilitate Change 0 4

Quality Complexity

Quality of requirements

(for our model)
1 0.5

FP Estimated = Count total x [0.65 + 0.01 x Σ(Fi)]

 FP Estimated for Existing (Hospital application) = 125 x [0.65 + 0.01*103.75] = 103.75

FP

 FP Estimated for Existing (HR) = 88 x [0.65 + 0.01 * 40] = 92.4 FP

 FP for the Proposed model (Hospital application) = 125 x [0.65 + 0.01*4.91] = 87.39 FP

 FP for the Proposed model (HR) = 88 x [0.65 + 0.01 * 9.0] = 65.12

Assuming Productivity for VB/Oracle is 15hrs/Function Point

 Effort for the Existing model (Using Hospital application) is 1556.25 person hours

 Effort for the Existing model (HR) is 1386 person hours

 Effort for the proposed model (Hospital application) is 1310 person hours

 Effort for the proposed model (HR) is 976.8 person hours

Assuming a person works for 8.5hrs/day and 22 days a month, the effort obtained for the existing and

proposed are:

 Effort for Hospital application in person month is 8 approximately.

 Effort for HR in person month is 8 approximately.

 Effort from the proposed model for Hospital application in person month is 7 approximately.

 Effort from the proposed model for HR in person month is 7 approximately.

3. Cost Estimation for HR application using Intermediate COCOMO:

Table 3:Planned effort for HR application
Table of planned effort for HR application

Analysis Phase 3 3.648

Design Phase 9 10.944

Construction Phase 39 47.424

Testing 27 32.832

Project Planning 4 4.864

Project tracking 4 4.864

Software Quality

Assurance

1 1.216

Configuration

Management
3 3.648

Project Documentation 2 2.432

Reviews 6 7.296

Training 1 1.216

Inter group coordinal 1 1.216

 100 121.6

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 65

COST ESTIMATION USING INTERMEDIATE COCOMO FOR HR Application:

KSLOC = FP * Multiplication Language Factor

 KSLOC (Using Albrecht method) = 92.4 * 29 = 2679.6/1000 = 2.6 KSLOC

 KSOLC (Our proposed model) = 65.12 * 29 = 1888.48/1000 = 1.8 KSLOC

Nominal Person Month = Effort Factor * KSLOC ^ Effort Exponent (project belong to Semi-detached Mode)

Nominal Person Month = 3 * KSLOC ^ 1.12

 Nominal Person Month (Existing) = 3 * 2.6 ^ 1.12 = 8.7 PM

 Nominal Person Month (our proposed model) = 3 * 1.8 ^ 1.12 = 5.7 PM

Total Planned Efforts, interms of Person Month for HR application is 121.6/170 = 0.72

By selecting minimal ratings for product and computer attributes and maximum ratings for Personnel and

Project attributes, Effort Multilieris (selecting values from cost drivers)0.75 * 0.7 * 0.7 * 1 * 1 * 0.87 * 0.87 *

0.71 * 0.82 * 0.7 * 0.9 * 0.95 * 0.82 * 0.83 * 1.1

Developmental PM = Nominal Person Month * TEM

 Developmental PM (Albrecht) = 8.7 * 0.2 = 1.74

 Developmental PM (our Proposed model) = 5.7 * 0.2 = 1.14

After trimming the cost drivers of Intermediate COCOMO for existing and proposed, TEM is 0.025, hence

 Developmental PM = 8.7 * 0.025 = 0.5

 Developmental PM = 5.7 * 0.025 = 0.6

From the above result it shows with the trimming of cost drivers, the developmental person for both

existing and proposed is nearer to planned effort than the Nominal person month. Also we find that our

proposed model value is much nearer to planned effort than the existing method.

COST ESTIMATION USING COCOMO II FOR HR APPLICATION:

KSLOC = FP * Multiplication Language Factor

 KSLOC (Using Albrecht method) = 92.4 * 29 = 2679.6/1000 = 2.6 KSLOC

 KSOLC (Our proposed model) = 65.12 * 29 = 1888.48/1000 = 1.8 KSLOC

Nominal Person Month = A (Size)
B
(43)

Nominal Person Month (Existing) = 2.94* (2.6) ^ 0.91= 7.01 PM

Nominal Person Month (our proposed model) = 2.94 * (1.8) ^ 0.91 = 5.02 PM

Total Planned Efforts, interms of Person Month for HR application is 121.6/170 = 0.72

By selecting the Effort Multiplier for existing and proposed(0.82 * 0.90 * 0.87 * 1.0 * 1.0 * 1.0*1.0*0.87 * 0.85

* 0.88 * 0.90 * 0.88 * 0.91 * 0.91 * 0.90 * 0.80 * 1.0)

 PM (Albrecht)= 2.94(2.6)
0.97

*0.1843 = 1.34

 PM (our Proposed model) = 2.94(1.8)
0.97

*0.1843 = 0.94

After trimming the Effort Multiplier for existing and

proposed(0.8*0.9*0.8*1.0*1.0*1.0*1.0*0.8*0.8*0.8*0.9*0.8*0.8*0.9*0.7*0.8*1.0)

 PM = 2.94(2.6)
0.97

*0.1 = 0.74

 PM = 2.94(1.8.)
0.97

*0.1 = 0.52

From the above result it shows with the trimming of the effort multiplier, the effort in person monthfor

both existing and proposed is nearer to planned effort than the Nominal person month.

 E = 5.2 x (KLOC)
0.91

 (Walston-Felix model)

 PM = a L
1.5

 (Nanus& Farr)

 E = 5.5 + 0.73 x (KLOC)
1.16

 (Bailey-Basili model)

 E = 3.2 x (KLOC)
1.05

(Boehm simple model)

 E = 3.0 x (KLOC)
l.l2

(Boehm average model)

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 66

 E = 2.8 x (KLOC)
1.20

(Boehm complex model)

 E = 5.288 x (KLOC)
1.047

(Doty model).

Table 4: Effort Estimation using Albrecht‟s FP and Proposed FP
Effort Estimation

Different model for Effort

Estimation using LOC

Using Albrecht’s FP Author’s Proposed FP

Walston-Felix 12.41 8.88

Nanus& Farr 8.38 5.80

Bailey-Basili 7.71 6.94

Boehm simple 8.73 5.93

Boehm average 8.75 5.56

Boehm complex 8.81 5.67

Doty model 14.38 9.79

Existing FP-oriented Estimation/Cost models From the Literature

 Se = Cte(Ktd)
0.5

SEER-SEM ESTIMATION MODEL

 E = 12.39 + 0.0545 FP Albrecht and Gaffney model

 E = −37 + 0.96 FP Kemerer model

 LOC = c K
0.3

T
1.3

Putnam model

 E = 0.054 × FP
1.353

SMPEEM

 E = 585.7 + 15.12 FP Matson, Barnett and Mellichamp model

 PM = a * Sizeb * ∑ EMi Intermediate COCOMO

 Effort = A * [SIZE]
B

* ∏ EFFORT Multiplier COCOMO II

I=1 to 17

Where B = 1.01 + 0.01 * ∑ SCALE FACTOR

J= 1 to 5

Table 5: Cost Estmation Using Albrecht‟s FP and Proposed FP
Cost Estimation

Different model for Cost

Estimation using FP

Using Albrecht’s FP Author’s Proposed FP

Albrecht and Gaffney model 17.37 15.91

Kemerer model 51.7 25.52

SMPEEM 24.66 15.36

Matson, Barnett and

Mellichamp

1982.788 1570.31

Intermediate COCOMO 1.74 (0.72is planned effort) 1.14 (0.72 is planned effort)

With trimmered cost drivers

of Intermediate COCOMO

0.5 (0.72is planned effort) 0.6 (0.72is planned effort)

COCOMO II 1.34(0.72is planned effort) 0.94(0.72is planned effort)

With trimmered Effort

Multiplier of COCOMO II

0.74(0.72is planned effort) 0.52(0.72is planned effort)

Performance Measurement Indicators for Hospital and HR Application(39)

Table 6: VAF and FP for the Existing and Proposed Applications

Performance

Indicators

Hospital Application HR Application

Existing Proposed Existing Proposed

VAF 18 06 1.05 0.735

FP 104FP 89FP 92.4FP 64.68FP

Effort Estimation 8.0 7.0 8.0 7.0

Project Duration 158days 136 days 163 days 141 days

Schedule

Predictability

-10.2%

(underrun)

-11.6%

(underrun)

-7.4%

(underrun)

-8.4%

(underrun)

Requirements

Completion Ratio

75% 75% 87.5% 87.5%

Post-Release

Defect Density

3.8 per 100 FP 3.3 per l00 FP 4.3 4.3 per 100 FP 3.1 per 100 FP

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 67

VIII. Conclusion & Future Scope
The grouping of the 14 GSC into groups is to simplify the counting process and reduces the probability

of errors while counting; this enhanced system focuses on minimizing the effort by enhancing the adjustments

made to the functional sizing techniques. In the existing systems, the effort and cost estimation are more

concentrated on the development of software systems and not much on the quality coverage. Hence, the

proposed model ensures the quality assurance for the effort estimation. This paper presents fuzzy classification

techniques as a basis for constructing quality models. Empirical validation for software development effort

multipliers of COCOMO II model is analyzed and the ratings for the cost drivers are defined. By adding new

ratings to the cost drivers and scale factors and seeing that the characteristic behaviour is not altered, the

developmental person month of our proposed model is obtained, and also the effort multipliers of Intermediate

COCOMO model is analyzed and the ratings for the cost drivers are defined. By adding new ratings to the cost

drivers and seeing that the characteristic behaviour is not altered, the developmental person month of our

proposed model is obtained. It is observed that the effort estimated with COCOMO II and Intermediate

COCOMO are very much nearer to their respective planned efforts; with our proposed cost model minimal

effort variance can be achieved by predicting the cost drivers for computing the EAF.

The software size is the most important factor that affects the software cost. There are mainly two types

of software size metrics they are LOC and FPs. LOC is a natural artefact that measures software physical size

but it is usually not available until the coding phase and difficult to have the same definition across different

programming languages and paper presents that FP is an ideal software size metric to estimate cost since it can

be obtained in the early development phase. Hence this type of Estimation may be recommended for the

software development. In this paper we have also altered the ratings of the cost drivers of the COCOMO II and

intermediate COCOMO and by adding the new rating the existing characteristic of the model is not altered. By

tailoring the value of the cost drivers, the total effort multiplier is obtained. From the enhanced adjustment

factor, the altered rating of the cost driver, Scale Factors, Effort and Schedule Constants, the effort of the

software project in person month is obtained. It is found that the obtained person month is very much nearer to

the planned effort. In this paper the obtained Albrecht‟s FP and Authors FP for HR application are given to the

available LOC and FP oriented models and comparative analysis is done.

References
[1]. SaleemBasha, Dhavachelvan.P. “Analysis of Empirical Software Effort Estimation Models” (IJCSIS) International Journal of

Computer Science and Information Security, Vol. 7, No. 3, 2010.

[2]. Jorgen MSjoberg D.I.K, “The Impact of Customer Expectation on Software Development Effort Estimates”International Journal
ofProject Management, Elsevier, pp 317-325, 2004.

[3]. Chiu NH, Huang SJ, “The Adjusted Analogy-Based Software Effort Estimation Based on Similarity Distances,” Journal of Systems

and Software, Volume 80, Issue 4, pp 628-640, 2007.
[4]. Kaczmarek J, Kucharski M, “Size and Effort Estimation for Applications Written in Java,” Journal of Information and Software

Technology, Volume 46, Issue 9, pp 589-60, 2004

[5]. Jeffery R, RuheM,Wieczorek I, “Using Public Domain Metrics to Estimate Software Development Effort,” In Proceedings of the 7 th
International Symposium on Software Metrics, IEEE Computer Society, Washington, DC, pp 16–27, 2001

[6]. Heiat A, “Comparison of Artificial Neural Network and Regression Models for Estimating Software Development Effort,” Journal

of Information and Software Technology, Volume 44, Issue 15, pp 911- 922, 2002.
[7]. K. Srinivasan and D. Fisher, "Machine learning approaches to estimating software development effort," IEEE Transactions on

Software Engineering, vol. 21, pp. 126-137, 1995.

[8]. A. R. Venkatachalam, "Software Cost Estimation Using Artificial Neural Networks," Presented at 1993 International Joint

Conference on Neural Networks, Nagoya, Japan, 1993.

[9]. G. H. Subramanian, P. C. Pendharkar, and M. Wallace, "An Empirical Study of the Effect of Complexity, Platform, and Program

Type on Software Development Effort of Business Applications,"Empirical Software Engineering, vol. 11, pp. 541-553, 2006.
[10]. R. W. Selby and A. A. Porter, "Learning from examples: generation and evaluation of decision trees for software resource analysis,"

IEEE Transactions on Software Engineering, vol. 14, pp. 1743-1757, 1988.

[11]. S. Kumar, B. A. Krishna, and P. S. Satsangi, "Fuzzy systems and neural networks in software engineering project
management,"Journal of Applied Intelligence, vol. 4, pp. 31-52, 1994.

[12]. Huang SJ, Lin CY, Chiu NH, “Fuzzy Decision Tree Approach forEmbedding Risk Assessment Information into Software Cost

Estimation Model,” Journal of Information Science and Engineering,Volume 22, Number 2, pp 297–313, 2006.
[13]. M. van Genuchten and H. Koolen, "On the Use of Software Cost Models," Information & Management, vol. 21, pp. 37-44, 1991.

[14]. T. K. Abdel-Hamid, "Adapting, Correcting, and Perfecting softwareestimates: Amaintenance metaphor " in Computer, vol. 26, pp.

20-29, 1993
[15]. K. Maxwell, L. Van Wassenhove, and S. Dutta, "Performance Evaluation of General and Company Specific Models in

SoftwareDevelopment Effort Estimation," Management Science, vol. 45, pp. 787-803, 1999.

[16]. H. Azath,and R.S.D. Wahidabanu “Efficient effort estimation system viz. function pointsand quality assurance coverage”IETSoftw.,

2012, Vol. 6, Iss. 4, pp. 335–341 335, doi: 10.1049/iet-sen.2011.0146.

[17]. Deng, J.D., Purvis, M.K., Purvis, M.A.: „Software effort estimation: harmonizing algorithms and domain knowledge in an
integrated data mining approach‟, Inf. Sci. Discuss. Pap. Ser., 2009, 2009, (5), pp. 1–13

[18]. Idri, A., Khoshgoftaar, T.M., Abran, A.: „Can neural networks be easilyinterpreted in software cost estimation?‟. 2002 World

Congress on Computational Intelligence, Honolulu, Huwaii, 12–17May 2002, pp. 1–8.
[19]. Mittal, H., Bhatia, P.: „A comparative study of conventional effort estimation and fuzzy effort estimation based on triangular fuzzy

numbers‟, Int. J. Comput. Sci. Secur., 2002, 1, (4), pp. 36–47

Comparison Ofavailable Methods To Estimate Effort, Performance And Cost With The Proposed

www.ijeijournal.com Page | 68

[20]. Benton, A., Bradly, M.: „The International Function Point User Group(IFPUG)‟, in „Function point counting practices manual –

release 4.1‟(SA, 1999).

[21]. Aljahdali, S., Sheta,A.F.: „Software effort estimation by tuning COOCMOmodel parameters using differential evolution‟. Int. Conf.
on Computer Systems and Applications (AICCSA), 16–19 May 2010, pp.1-6.

[22]. Boehm, B.W.: „Software engineering economics‟ (Prentice Hall,Englewood Cliffs, NJ, 1981).

[23]. Peischl, B., Nica, M., Zanker, M., Schmid, W.: „Recommending effort estimation methods for software project management‟. Proc.
IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent AgentTechnology, Milano, Italy, 2009, vol. 3, pp. 77–80

[24]. B.W. Boehm, “Software Engineering Economics,” Prentice Hall, 1981.

[25]. B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B.Steece, A. W. Brown, S. Chulani, and C. Abts, “Software
CostEstimation with COCOMO II,” Prentice Hall, 2000.

[26]. F. J. Heemstra, "Software cost estimation," Information and Software Technology, vol. 34, pp. 627-639, 1992

[27]. N. Fenton, "Software Measurement: A necessary Scientific Basis,"IEEE Transactions on Software Engineering, vol. 20, pp. 199-
206, 1994.

[28]. Barry Boehma, Chris Abtsa andSunitaChulani, “Softwaredevelopment cost estimation approaches -A survey” Annals of Software

Engineering, pp 177-205, 2000.
[29]. James Nelson, H., Monarchi, D.E.: „Ensuring the quality of conceptual representations‟, Softw. Qual. J., 1997, 15, (2), pp. 213–233.

[30]. Khoshgoftaar, T.M., Allen, E.b., Naik, A., Jones, W.D., Hudepohl, J.P.:„Using classification trees for software quality models:

lessons learned‟,Int. J. Softw. Eng. Knowl. Eng., 1999, 9, (2), pp. 217–231
[31]. Kitchenham, B.A.: „Cross versus within-company cost estimation studies:a systematic review‟, IEEE Trans. Softw. Eng., 2007, 33,

(5), pp. 316–329

[32]. Hannay, J.E., Sjøberg, D.I.K., Dyba, T.: „A systematic review of theory use in software engineering experiments‟, Softw. – Pract.
Exper., 2007,33, (2), pp. 87–107

[33]. Jack E. Matson, Bruce E. Barrett, and Joseph M. Mellichamp, “Software Development Cost Estimation Using Function Points”

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 4, APRIL 1994
[34]. CHRIS F. KEMERER “An Empirical Validation of Software Cost Estimation Models”

[35]. Putnam. L.H. General empirical solution to the macro software sizing estimating problem. IEEE Trans. Soffw. Eng. SE 4, 4 (July

1978), 345-361.
[36]. Putnam. L.. and Fitzsimmons, A. Estimating software costs. Datamation 25, lo-12 (Sept.-Nov. 1979)

[37]. B Boehm, C Abts, and S Chulani. "Software Development Cost Estimation Approaches – A Survey”, Technical Report USC-CSE-

2000-505", University of Southern California – Center for Software Engineering, USA, (2000).
[38]. S. chulani, B. Boehm, and B. Steece, “Bayesian Analysis of Emperical Software Engineering Cost Models,‟ IEEE Trans. Software

Eng., vol.25, no. 4, pp.573-583, 1999.

[39]. M.Pauline, P.Aruna and B.Shadaksharappa “Fuzzy-Base Approach Using Enhanced Function Point to Evaluate the Performance of
Software Project”, The IUP Journal of Computer Sciences, Vol. VI, No. 2, 2012.

[40]. Pauline.M, Aruna.P, Shadaksharappa.B, “Software Cost Estimation Model based on Proposed Function Point and Trimmed Cost

Drivers Using Cocomo II” (IJERT) International Journal of Engineering Research & Technology, Vol. 1 Issue 5,July–2012.
[41]. Pauline.M, Aruna.P, Shadaksharappa.B, “Layered Model to Estimate Effort, Performance and Cost of the Software Projects”

International Journal of Computer Applications, Vol. 63, No. 13,2013.
[42]. YunsikAhn, JungseokSuh, Seungryeol Kim and Hyunsoo Kim, “The Software maintenance project effort estimation model based

on function points” J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71–85 (DOI: 10.1002/smr.269).

[43]. Barry Boehm, “COCOMO II Model Definition Manual”Version 1.4 - Copyright University of Southern California.

