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Abstract: Data-intensive e-science collaborations often require the transfer of large files with predictable 

performance. To meet this need, we design novel admission control and scheduling algorithms for bulk data 

transfer in research networks for e-science. Due to their small sizes, the research networks can afford a 

centralized resource management platform. In our design, each bulk transfer job request, which can be made in 

advance to the central network controller, specifies a start time and an end time? If admitted, the network 

guarantees to complete the transfer before the end time. However, there is flexibility in how the actual transfer 

is carried out, that is, in the bandwidth assignment on each allowed paths of the job on each time interval, and it 

is up to the scheduling algorithm to decide this. To improve the network resource utilization or lower the job 

rejection ratio, the network controller solves optimization problems in making admission control and scheduling 

decisions. Our design combines the following elements into a cohesive optimization-based framework: advance 

reservation, multi-path routing, and bandwidth reassignment via periodic re-optimization. We evaluate our 

algorithm in terms of both network efficiency and the performance level of individual transfer. We also evaluate 

the feasibility of our scheme by studying the algorithm execution time. 

Keywords: Admission control, Advance reservation, Bulk Data Transfer, E-Science, Grid Computing, 

Scheduling. 

 

I. INTRODUCTION 
The advance of communication and networking technologies together with the computing and storage 

technologies is dramatically changing the way show scientific research is conducted. A new term, e-science, has 

emerged to describe the “large-scale science carried out through distributed global collaborations enabled by 

networks, requiring access to very large scale data collections, computing resources, and high-performance 

visualization”[1]. Well-quoted e-science (and the related grid computing [2]) examples include high-energy 

nuclear physics (HEP), radio astronomy, geo science and climate studies. 
The need for transporting large volume of data in e-science has been well-argued [3],[4].For instance, 

the HEP data is expected to grow from the current peta bytes (PB)(1015) to exa bytes(1018) by 2012 to 2015.In 

particular, the Large Hadron Collider facility at CERN is expected to generate peta bytes of experimental data 

every year, To  meet the need of e-science, this paper studies admission control (AC) and scheduling algorithms 

for high-Band width data transfers (also known as jobs) in research networks .The results will not only advance 

the knowledge and techniques in that area, but also compliment the protocol, architecture and infrastructure 

projects currently under way in support of e-science and grid computing [9], [10], [11], by providing more 

efficient network resource reservation and management algorithms .Our AC and scheduling algorithms handle 

two classes of jobs, bulk data transfer and those that require a minimum band width guarantee (MBG).Bulk 

transfer is not sensitive to the network delay but may be sensitive to the delivery deadline. It is useful for 

distributing high volumes of scientific data, which currently often relies on ground transportation of the storage 

media .The MBG class is useful for real time rendering or visualization of data remotely. In our frame work, the 

algorithms for handling bulk transfer also contain 

The need for efficient network resource utilization is especially relevant in the context of advance 

reservation and large file sizes or long-lasting flows. As argued in [13], there is an undesirable phenomenon 

known as band width fragmentation. The simplest example of bandwidth fragmentation occurs when the interval 

between the end time of one job and the beginning of another job is not long enough for any other job request. 

Then, the network or relevant links will be idle on that interval. If there are too many of these un-usable intervals 

or if their durations are long, the job rejection ratio is likely to be high while the network utilization remain slow. 

Over-provisioning the network capacity may not be the right solution due to the high cost, time delay or other 

practical constraints. 

The solution advocated in this paper for reducing the job rejection ratio and increasing the network 

utilization Efficiency is to bring in more flexibilities in how the data are transferred. The process of determining 

the manner of data transfer is known as scheduling. For instance, one can take advantage of the elastic nature of 
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bulk data and have the network transferring the data at time-varying band width instead of a constant band 

width. Another example is to use multiple paths for each job. In order to achieve the greatest flexibilities, this 

paper formulate Recently, some authors have begun to study AC and scheduling for bulk transfer with advance 

reservations [14],[15],[16],[17],[18],[19],[13],[20],[21]. Compared with these earlier studies, our work 

distinguishes itself for its comprehensiveness in bringing several important ingredients together under a single 

optimization framework with well-defined objectives .These include (1) periodic admission control for handling 

continuous arrivals of job requests rather than ones hot admission control, (2) admission control and scheduling 

for the whole network rather than for each link separately ,(3) multi-path  routing, (4) time-varying band width 

assignment for each job, (5) dynamic band width re-assignment at each AC/scheduling instance, which leaves 

more room to accept new requests, and (6) a novel timed is cretization scheme (i.e., the congruent time-slice 

structures) that allows the  admission of new requests and band width re-allocation to existing jobs while not 

violating the end-time requirements of the existing jobs. As will be reviewed in Section 5, other studies in this 

area only in corporate a subset of the features from the above list. 

The rest of the paper is organized as follows. The main technical contribution of this paper is to 

describe a suite of algorithms for AC and scheduling (Section 2) and compare their performance (Section 4). A 

key methodology is the discretization of time into a time slice structure so that the problems can be put into the 

linear programming framework. A highlight of our scheme is the introduction of non-uniform time slices 

(Section 3) ,which can dramatically shorten the execution time of the AC and scheduling algorithms ,making 

them practical. The related work is shown in Section 5 and the conclusion is drawn in Section 6. 

 

II. ADMISSIONCONTROLANDSCHEDULINGALGORITHMS 
 

2.1) The Setup 

For easy reference, notations and definitions frequently used in this paper are summarized in Appendix 

I. The network is represented as a (directed) graph G=(V,E), where V is the set of nodes and E is the set of 

edges. The capacity of a link (edge) e∈ E is denoted by Ce. Job requests arrive at the network following a random 

process. Each bulk transfer request i is a 6-tuple (Ai,si,di,Di,Si,Ei), where Ai is the arrival time of the request, 

si and di are the source and destination nodes, respectively Di is the size of the file, Si and Ei are the requested 

start time and end time, where Ai≤Si≤Ei. In words, request i, which is made at time t=Ai, asks the network to 

transfer a file of size Di from nodes I to node di on the time interval [Si,Ei]. A bulk transfer request may 

optionally specify a minimum bandwidth and/or a maximum bandwidth. In practice, even more parameters can 

be added if needed, such as an estimated range for the demand size or for the end times when the precise 

information is unknown [22]. For ease of presentation, we will ignore these options. But, they usually can be 

incorporated into our optimization-based AC/scheduling framework by modifying the formulations of the 

optimization problems. The approach of using a centralized network controller has an advantage here for an 

evolving system, since to accommodate new types of parameters or functions, the only necessary changes are at 

the central controller’s software. The user-side software will be updated only if the user needs the new 

parameters or functions. 

 

2.1.1)  The Time Slice Structure: 

 At each scheduling instance t=kτ, the time line from t onward is partitioned into time slices i,e., 

closed intervals on the time line, which are not necessarily uniform in size. The significance of the time slice is 

that the bandwidth (rate) assignment to each job is done at the slice level. That is, the bandwidth assigned to a 

particular path of a job remains constant for the entire time slice, but it may change from slice to slice.A set of 

time slices, Gk, is said to be anchored at t=kτ if all slices in Gk are mutually disjoint and their union forms an 

interval [t, t
’′] for some t

’′. The set{Gk}
∞ is called a slice structure if each Gk is a set of slices anchored at 

t=kτ, for k=1,...,∞. 

Definition1: A slice structure{Gk}
∞ is said to be congruent if the following property is satisfied for 

every pair of positive integers, k and k ′,where k ′>k≥1. For any slices′∈ Gk′, if s
’
 ′overlaps in time with a slices, 

s, s∈ Gk, then s
’′⊆ s. In words, any slice in a later anchored slice collection must be completely contained in a 

slice of any earlier collection, if it overlaps in time with the earlier collection. Alternatively speaking, if slice s 

∈ Gk overlaps in time with Gk′, the neither s∈ Gk′or s is partitioned into multiple slices all belonging to 

Gk′.sized time slices of duration τ (coinciding with the AC/scheduling interval length). The set of slices 

anchored at any t=kτ is all the slices after t. Figure1shows the US at two time instances t=τ and t=2τ. In this 

example, τ=4 time units. The arrows point to the scheduling instances. The two collections of rectangles are the 
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time slices anchored at t=τ and t=2τ, respectively. It is easy to check the congruent property of this slice 

structure. 

The AC and scheduling algorithms introduced in this paper apply to any congruent slice structure. 

When a non-uniform slice structure is used, the congruent property is the key to the existence of algorithms that 

allow the network to keep the commitment to the old jobs admitted earlier while admitting new jobs. There as on 

is that, in solving the admission control problem, the bandwidth allocation (on each allowed path of each job) on 

each time slice is assumed to be constant. When a time slice is divided into finer slices at a later time, the old 

jobs are still admissible since one can keep the bandwidth on the finer slices at the same constant. 2 This will be 

further explained in Section 3. For ease of presentation, we use the uniform slices as an example to explain the 

AC and scheduling algorithms. At any AC/scheduling time t=kτ, let the time slices anchored at t,i,e., those in 

Gk, be indexed 1,2,...in increasing order of time. Let the start and end times of slice I be denoted by STk(i) and 

ETk(i), respectively, and let its length be LENk(i). We say a time instance t′>t falls into slice i if STk 

(i)<t′≤ETk (i). The index of the slice that t ′falls inside noted by Ik(t′). At t=kτ, let the set of jobs in the system 

yet to be completed be denoted by Jk. Jk  contains two types of jobs ,those new requests (also known as new 

jobs) made on the interval ((k−1)τ,kτ], denoted by Jn, and those old jobs admitted at or before (k−1)τ, denoted 

by Jo. The old jobs have already been admitted and should not  2 However ,one can often do better by varying 

the bandwidth on the finer slices. 
 

Uniform Slices 

τ 
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0    1 4 8 12                16           20                24        28 

Fig.1.    Uniform time slice structure be rejected by the admission control conducted at t. But some of the new 

requests may be rejected. 

 

2.1.2) Rounding of the Start and End Times:  

With the time slice structure and the advancement of time, we adjust the start and end times of the 

requests. The main objective is to align the start and end times on the slice boundaries. After such rounding, the 

start and the end times will be denoted as ŜI and Êi, respectively. For a new request i, let the request e d 

response time be Ti=Ei−Si. We round the requested start time to be the maximum of the current time or the end 

time of the slice in which the requested start time Si  falls, i.e., 

Ŝi=max {t, ETk(Ik(Si))}.(1) For rounding of the requested end time, we allow two policy choices, the 

stringent policy and the relaxed policy. Which one is used in practice is a policy issue, left to the decision of the 

network manager. In the stringent policy, if the requested end time does not coincide with a slice boundary, it is 

rounded down, subject to the constraint that Êi>Ŝi
3.This constraint ensures that there is atleast one-slice 

separation between the rounded start time and the rounded end time. Otherwise, there is no way to schedule the 

job. In the relaxed policy, the end time is first shifted by Ti with respect to the rounded start time, and then 

rounded up. More specifically, 
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Figure 2 shows the effect of the two policies after three jobs are rounded. 3 In the more sophisticated 

non-uniform slice structure introduced in Section3, we allow the end time to be re-rounded at different 

scheduling instances. This way, the rounded end time can be come closer to the requested end time, as the slice 

sizes become finer over time. 
RelaxedPolicy 

 

Jobs 
 

 
JobsAfterRounding 

 
StringentPolicy 

 

Jobs 

 

 
JobsAfterRounding 

Fig.2. Two rounding policies. 

 

            The unshaded rectangles are time slices. The shaded rectangles represent jobs. The top ones show the 

requested start and end times. The bottom ones show the rounded start and end times. If a job i is an old one, its 

rounded start time Ŝi is replaced by the current time t. The remaining demand is updated by subtracting from it 

the total amount of data transferred for job i on the previous interval, ((k−1)τ, kτ]. By definition, the slice set 

anchored at each t=kτ, Gk, contains an infinite number of slices. In general, only a finite subset of Gk  is useful 

to us. Let Mk be the index of the last slice in which the rounded end time of some jobs falls. That is, Mk  =Ik 

(maxi∈ JkÊi). Let Lk ⊂ Gk be the collection of time slices 1,2,..., Mk. We call the slices in Lk as the active 

time slices. We will also think of Lk as an array (instead of a set) of slices when there is no ambiguity. Clearly, 

the collection {Lk}
∞ inherits the congruent property from {Gk}

∞. Therefore, it is sufficient to consider 

{Lk}
∞ for AC and scheduling.  

 
2.2) Admission Control 

For each pair of nodes s and d, let the collection of allowable paths from s to d be denoted by Pk(s,d). 

In general, the set may vary with k. For each job i, let the remaining demand at time t=kτ be denoted by Rk(i), 

which is equal to the total demand Di  minus the amount of data transferred until time t. At t=kτ, let J⊆ Jk  be a 

sub set of the jobs in the systems. Let fi(p,j) be the total flow (total data transfer) allocated to job I on path p, 

where p∈ Pk (si,di), on time slice j, where j∈ Lk. As part of the admission control algorithm, the solution to the 

following feasibility problem is used to determine whether the jobs in J can all be admitted. 

 

AC(k, j) 

-   ∑   ∑ fi(p,j) = Rk,   ¥ iЄ J                                                       (3) 
             J=1 pЄpk(si, di) 

-   ∑   ∑ fi(p,j) Є Ce(j)LENk(j), ¥ eЄE, ¥jЄLk                                       (4) 
          iЄJ pЄPk(si,di) 

               p:eЄP 

- fi(p,j)= 0, jЄIk( Єi) or j > Ik(Êi), 

                             ¥iЄJ, ¥Pk(si,di)                                                      (5) 

- fi(p,j) Є 0,  ¥iЄJ,¥jЄLk,¥pЄPk(si,di)                                         (6) 
  

(3) says that, for every job, the sum of all the flows assigned on all time slices for all paths must be 

equal to its remaining demand. (4) says that the capacity constraints must be satisfied for all edges on every time 

slice. Note that the allocated rate on path p for job i on slice j is fi (p, j)/LENk(j), where LENk(j) is the 

length of slice j. The rate is assumed to be constant on the entire slice. Here, Ce(j) is the remaining link 

capacity of link e on slice j. (5) is the start and end time constraint for every job on every path. The flow must be 

zero before the rounded start time and after the rounded end time.4 Recall that we are assuming every job to be a 

bulk transfer for simplicity. If job i is of the MBG class and requests a minimum bandwidth Bi between the start 
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and end times, then the remaining capacity constraint (3) will be replaced by the following minimum bandwidth 

guarantee condition. 

-           ∑ fi(p,j) ЄBi ,   ¥j Є Lk.                                 (7) 
                               pЄPk(si,di) 
 

The AC/scheduling algorithms are triggered every τ time units with the AC part be for e the scheduling 

part. AC examines the newly arrived jobs and determines their admissibility. In doing so, we need to ensure that 

the earlier commitments to the old jobs are not broken. This can be achieved by adopting one of the following 

AC procedures. 

 
2.2.1) Subtract-Resource (SR): 

An updated (remaining) network is obtained by subtracting the bandwidth assigned to old jobs on 

future time slices, from the link capacity. Then, we determine an sub set of the new jobs that can be 

accommodated in this remaining network. This method is helpful to perform quick admission tests5. However, it 

runs the risk of rejecting new jobs that can actually be accommodated by reassigning the flows to the old jobs on 

different paths and time slices. 

 

2.2.2) Reassign-Resource (RR): 

This method attempts to reassign flows to the old jobs. First, we cancel the existing flow assignment to the old 

jobs on the future time slices and rest or e the network to its original capacity. Then, we determine a sub set of 

the new jobs that can be admitted along with all the old jobs under the original network capacity. This method is 

expected to have a better acceptance ratio than SR. However, it is computationally more expensive because the 

flow assignment is computed for all the jobs in the system, both the old and the new. 

The actual admission control is as follows. In the SR scheme, the remaining capacity of link e on slice 

j, Ce(j), is computed by subtracting from Ce  (the original link capacity), the total bandwidth allocated on slice 

j for all paths crossing e, during the previous run of the AC/scheduling algorithms (att=(k−1)τ). In the RR 

scheme, simply let Ce(j)=Ce, for all e an dj. In the SR scheme, we list the new jobs, Jn, in a sequence,1,2,..., 

m. The particular order of the sequence is flexible, possibly dependent on some customizable policy. For 

instance, the order may be arbitrary, or based on the priority the jobs, or based on increasing order of the request 

times. In a more sophisticated, price-based scheme, the network controller can order the jobs based on the 

amount of payment per unit of data transferred that a job requester is willing to pay. We apply a binary search to 

the sequence to find the last job j,1≤j≤m, in the sequence such that all jobs before and including it are 

admissible. That is, j is the largest index for which the subset of the new jobs J={1,2,...,j} is feasible for 

AC(k, J). All the jobs after j are rejected.In the RR scheme at time t=kt, all the jobs are listed in a sequence 

where the old jobs J
o

k ahead of the new jobs J
n
k in the sequence. The order among the old jobs is arbitrary. The 

order among the new jobs is again flexible. Denote this sequence as 1,2,..., m, in which jobs 1 through l are the 

old ones. We then apply a binary search to the sequence of new jobs, l+1,l+2,..., m, to find the last job j, 

l<j≤m, such that all jobs before and including it are admissible. That is, j is the largest index for which the 

resulting subset of the jobs J={1,2,...,l,l +1,...,j} is feasible for AC(k, J) under the original network 

capacity. 

 

III. Discussion 
The binary search technique assumes a pre-defined list of jobs and identifies the first j jobs that can be 

admitted into the system without violating the deadline constraints. The presence of an exceptionally large job 

with unsatisfiable demand will cause other jobs following it to be rejected, even though it may be possible to 

accommodate them after removing the large job. The rejection ratio tends to be higher when the large job lies 

closer to the head of the list. An interesting problem is how to admit as many new jobs as possible, after all the 

old jobs are admitted. This combinatorial problem appears to be quite difficult. One can always  use a standard 

integer programming formulation and solution for it. We do not know any solution techniques that run faster 

than the integer programming techniques. But, a solution to this problem is orthogonal to the main issues 

addressed in this paper and, once found, can always be incorporated into our general AC/scheduling frame work. 

We now comment on the computation complexity for the admission control, AC(k, J). If standard linear 

programming techniques are used, such as the Simplex method, the practical computation time depends on the 

number of variables and the number of constraints. In AC(k,J), the number of variables is no more than 

|J|×M×P. Here, P is the maximum number of paths allowed for any job. M is the maximum number of (future) 

time slices that need to be considered. It depends on how far into the future advance reservations can be allowed, 

e.g., three months, and on the type of the congruent slice structure used. The value of |J| depends on whether SR 

or RR is used. In the former case, it is equal to the number of new job requests that have arrived on an interval of 
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length τ; in the latter case, it is equal to all the jobs in the system, including both the old jobs and the new 

requests. The number of non-trivial constraints is no more than |J|+|E|×M, where |E |is the number of edges in 

the network. To reduce the execution time of the admission control algorithm, we need to limit the number of 

paths allowed per job, the number of time slices and the number of jobs that need to be considered. In Section 

4.3, we show by experimental results that having 4 to 10 paths per job is generally sufficient to achieve near-

optimal performance for research networks. If ever needed, SR is a way of reducing the number of jobs that need 

to be considered. What remains is how to reduce the number of time slices while not sacrificing performance by 

much .Section 3 is dedicated to that purpose. Section 4 will continue to address the complexity issue in terms of 

the algorithm execution time obtained experimentally. 
 

2.3) Scheduling Algorithm 

Given the set of admitted jobs, Ja, which always includes the old jobs, the scheduling algorithm 

allocates flows to these jobs to optimize a certain objective. We consider two objectives, Quick-Finish (QF) and 

Load-Balancing (LB). Given a set of admissible jobs J, the problem associated with the former is subject to 

(3)-(6).  
 
Quick-Finish(k,J) 

- Min          ∑ γ(j) ∑   ∑  fi(p,j)                (8)     
         jЄLk           iЄJ pЄPk(si,di)                 

 

In the above, γ(j) is a weight function increasing in j, which is chosen to be γ(j)=j+1in our 

experiments. In this problem, the cost increases as time increases. The intention is to finish a job early rather 

than later, when it is possible. The solution tend stop ack more flows in the earlier slices but leaves the load light 

in later slices. The problem associated with the LB objective is, 
 

Load-Balancing(k.J) 

- Max       Z                                                                        (9) 

- Subject to  Mk 

                             ∑   ∑ fi(p,j) = ZRk(i), ¥ iЄ J              (10)   

                            j=1 pЄpk(si, di) 

                                 (4)−(6). 

 
Let the optimal solution be Z

*
 and f

*
i(p, j) for all i, j and p. The actual flows assigned are f

*
i(p, j)/ Z

*. 

Note that (10)ensures that f
*

i(p, j)/ Z
* 

satisfices
 
(3). Also, Z

* 
≥ 1 must be true since J is admissible. Hence, f

*
i(p, 

j)/ Z
*’s 

are feasible solution to the AC(k,J) problem.
 
The Load-Balancing(k, J) problem above is written in the 

maximizing concurrent throughput form. It reveals its load-balancing nature when written in the equivalent 

minimizing congestion form. For that, make a substitution of variables, fi(p, j) ← fi(p, j)/Z, and let µ= 1/Z 

We have, 

Load –balancing-1(k, J) 

-  Min        µ                                                                       (11) 

- Subject to   ∑   ∑ fi(p,j) Є µCe(j)LENk(j), 
                            iЄJ pЄPk(si,di) 

                                                   p:eЄP                     ¥ eЄE, ¥jЄLk                  (12) 

(3), (5) and (6). 
Hence, the solution minimizes the worst link congestion across all time slices in Lk. 

The scheduling algorithm is to apply J=Ja to Quick-Finish (k,J) or Load-Balancing (k,J). This 

determines an optimal flow assignment to all jobs on all allowed paths and on all time slices. Given the flow 

assignment fi(p,j), the allocated rate on each time slice is denoted by xi(p,j)=fi(p,j)/LENk(j) for al lj∈ Lk. 

The remaining capacity of each link on each time slice is given by, 

 Ce(j) =  ce -ЄiЄJ
o
kЄpЄPk(si, di) xi(p, j)      if  SR                

                                   ce                                                                              if  RR                  (13)  
 

Finally, the complexity of the scheduling algorithms can be analyzed similarly as for the admission control 

algorithm. The general conclusion is also similar. 
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2.4) Putting It Together: The AC and Scheduling Algorithms 

In this section, we integrate various algorithmic components and present the complete AC and  

scheduling algorithms. On the interval ((k−1)τ,kτ], the system keeps track of the new requests arriving on that 

interval. It also keeps track of the status of the old jobs. If an old job is completed, it is removed from the 

system. If an old job is serviced on the interval, the amount of data transferred for that job is recorded. At t=kτ, 

the steps described in Algorithm1are taken. Finally, in Figure 3, we show a very simple example of the AC and 

scheduling algorithms at work. The network has only one link with a capacity of 10 Gbps. The US is used and 

the AC/scheduling interval length is τ=100s. QF is used for scheduling. The top figure shows the job requests. 

The sizes of job 1and2 are 3 terabits and 500 gigabits, respectively. The requested start and end times are 100s 

and 700s for job 1 and 200s and 300s for job 2. In this case, job 1 is admitted at t=100s. The middle figure 

shows the schedule at t=100s.At t=200s, job 2 is also admitted. The bottom figure shows the schedule at 

t=200s. Note that, by t=200s, 1 terabits of data have already been transferred for job 1. Note also how the 

bandwidth assignment for job 1 is changed t=200s, 

 

Algorithm1 Admission Control and Scheduling 

1: Construct the anchored slice set at t=kτ,Gk. 

2: Construct the job sets Jk , J o  and J n , which are the collection of all jobs, the collection of old jobs, and      

the collection of new jobs in the system, respectively. 

3: For each old job i, update the remaining demand Rk(i) by subtracting from it the amount of data transferred 

for I on the interval((k−1)τ, kτ]. Round the start time s as Ŝi=t. 

4: For each new job l, let Rk(l)=Dl. Round the requested start and end time according to (1) and (2), depending 

on whether the stringent or relaxed rounding policy is used. This produces the rounded start and end times, Ŝl 

and E   ̂ l. 

5: Derive Mk =Ik (maxi∈ JkÊi). This determines the finite collection of slices Lk={1,2,..., Mk}, the first 

Mk Slices of  Gk. 

6: Perform admission control as in Algorithm 2. This produces the list of admitted jobs Ja. 

 

7: Schedule the admitted jobs as in Algorithm 3.This yields the flow amount fi(p,j) for each admitted job 

i∈ Ja,over all paths for job i, and all time slices j∈ Lk. 

 

8: Compute the remaining network capacity by (13). 

 

 

Algorithm 2 AC-Step 6 of Algorithm1 

1: if Subtract-Resource is used then 

2: Sequence the new jobs(Jn) in the system. Denote the sequence by(1,2,...,m). 

3: Find the last job j in the sequences that the set of jobs J={1,2,...,j} is admissible by AC(k, J). 

4: else if Reassign-Resource is used then 

5: Apply binary search to the subsequence of new jobs(l+1,l+2,..., m).Find the last job j in the 

subsequences  that the set of jobs J={1,2,...,j} is admissible by AC(k, J). 

6: end if 

7: Return the admissible set,Ja=J. 
 

 

 

Algorithm 3 Scheduling-Step 7 of Algorithm 1 

1: if Quick-Finish is preferred then 

2: Solve Quick-Finish (k,Ja) 
 

3: else 

4: Solve Load-Balancing (k,Ja) 
 

5: end if 
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When compared to that at t=100s. This is in response to the admission of job 2, which has a stringent 

end time requirement. Furthermore, it can be seen that the bandwidth assignment for job1 is time-varying. 

 
Fig.3.An AC and scheduling example for a network with one link with a capacity 10 Gbps 

 

IV. NON-UNIFORM SLICE STRUCTURE 
As discussed in Section 2.1.1 and Section 2.2, the number of time slices directly affects the number of 

variables in our AC and scheduling linear programs, and in turn the execution time of our algorithms. We face a 

problem of covering a large enough segment of the time line for advance reservations with a small number of 

slices, say about 100. In this section, we will design a new slice structure with non-uniform slice sizes. They 

contain a geometrically (exponentially) increasing subsequence, and therefore, are able to cover a large time line 

with a small number of slices. The key is that, as time progresses, coarse time slices will be further divided into 

finer slices. The challenge is that the slice structure must remain congruent. 

Recall that the congruent property means that, if a slice in an earlier anchored slice set overlaps in time 

with a later anchored slice set, it either remains as aslice, or is partitioned into smaller slices in the later slice set. 

The definition is motivated by the need form a intaining consistency in bandwidth assignment a cross time. As 

an example,Suppose at time (k−1)τ, a job is assigned a bandwidth x on a path on the slice jk−1. At the next 

scheduling instance t=kτ, suppose the slice jk−1 is partitioned into two slices. Then, we understand that a 

bandwidth x has been assigned on both slices. Without the congruent property, it is likely that a slice, say jk, in 

the slice set anchored at kτ cuts across several slices in the slice set anchored at (k−1)τ. If the bandwidth 

assignments at (k−1)τ are different for these latter slices, the bandwidth assignment for slice jk  is not well 

defined just before the AC/scheduling run at time kτ. 

 

3.1) Nested Slice Structure 

In the nested slice structure, there are l types of slices, known as level-I slices, i=1,2,...,l. Each level-l 

slice has a duration ∆i, with the property that ∆i =κi∆i+1, where κi>1 is an integer, for i=1,..., l−1. Hence, 

the slice size increases atleast geometrically as I decreases. For practical applications, a small number of levels 

suffices. We also require that, for I such that ∆i+1≤τ <∆i,τ is an integer multiple of ∆i+1 and ∆i is an 

integer multiple of τ. This ensures that each scheduling interval contains an integral number of slices and that the 

sequence of scheduling instances does not skip any level-j slice boundaries, for 1≤j≤i. 

The nested slice structure can be defined by construction. At t=0, the time line is partitioned into level-

1 slices. The first j1 level-1 slices, where j1≥1, are each partitioned into level-2 slices. This removes j1 level-1 

slices but adds j1κ1 level-2 slices. Next, the first j2 level-2 slices, where j2≤j1κ1, are each partitioned into 

level-3 slices. This removes j2 level-2 slices but adds j2κ2 level-3 slices. This process continues until, in the last 

step, the first jl−1level-(l−1) slices are partitioned into jl−1κl−1 level-l slices. Then, the first jl−1level-(l−1) 

slices are removed and jl−1κl−1 level-l slices are added at the beginning. In the end, the collection of slices at 

t=0 contains σl,jl−1κl−1  (,means “defined as”) level-l slices, σl−1,jl−2κl−2−jl−1 level-(l−1) slices,..., 

σ2,j1κ1−j2 level-2 slices, and followed by an infinite number of level-1 slices. The sequence of ji’s must 

satisfy j2≤j1κ1, j3≤j2κ2,...,jl−1≤jl−2κl−2. This collection of slices is denoted by G0. 
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As an example, to cover a maximum of 30-day period, we can take ∆1=1day, ∆2=1hour, and ∆3=10 

minutes. Hence, κ1=24 and κ2=6. The first two days are first divided into a total 48 one-hour slices, out of 

which the first 8 hours are further divided into 48 10-minute slices. The final slice structure has 48 level-3 (10-

minute) slices, 40 level-2 (one-hour) slices, and as many level-1(one-day) slices as needed, in this case 28. The 

total number of slices is 116. 

1) At-Least-σ: For j from l down to 2, if the number of slices at level j,zj, is less than σj, bring in (and 

remove) then extlevel-(j−1) slice and partition it into κj−1 level-j slices. This scheme maintains atleast σj and 

atmost σj+κj−1−1 level-j slices for j=2,...,l. 

2) At-Most-σ: In this scheme, we try to bring the current number of slices at level j, zj, to σj, for j=2,..., l, 

subject to the constraint that new slices at level j can only be create d if t is an integer multiple of ∆j−1.  More 

specifically, at t=kτ, the following is repeated for j from l down to 2. If t is not an integer multiple of ∆j−1, 

then nothing is done. Otherwise, if zj<σj, we try to create level-j slices out of a level-(j−1) slice. In the 

creation process, if a level-(j−1) slice exists, then bring in the first one and partition it. Other wise, we try to 

create more level-(j−1) slices, provided t is an integer multiple of ∆j−2. Hence, are cursive slice-creation 

process may be involved. 
Fig. 4 and 5 show a two-level and three-level nested slice structure, respectively under the At-Most-σ 

design. In the special but typical case of σj>κj−1, for j=2,..., l, the At-Most-σ algorithm can be simplified as 

follows. For j from l down to 2, if zj≤σj−κj−1, bring in (and remove) then extlevel-(j−1) slice and partitionit 

into κj−1 level-j slices This scheme maintains atleast σj−κj−1 and atmost σj level-j slices for j=2,...,l. 

 

 
Fig.4. Two-level nested time-slice structure. τ =2, ∆1=4 and ∆2=1.The anchored slice sets shown are for 

t=τ, 2τ and 3τ, respectively. At-Most-σ Design.σ2 =8. 

 

 
Fig.5.Three-level nested time-slice structure .τ =2, ∆1=16, ∆2=4 and ∆3 =1. The anchored slice sets shown 

are for t=τ, 2τ and 8τ, respectively. At-Most-σ Design.σ3=8, σ2 =2. 

 

3.2)   Variant of Nested Slice Structure 

When some κj is large, it may be unappealing that the number of level-j slices varies by κj−1(some 

times more than κj−1). To solve this problem, we next introduce another congruence slice structure related to 

the nested slice structure. We will called it the Almost-σ Variant of the nested slice structure, because it 

maintains atleast σj and atmost σj+1 level-j slices for j=2,...,l. 

The Almost-σ Variant starts the same way as the nested slice structure at t=0. As time progresses 
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from (k−1)τ to kτ, for k=1,2,...,the collection of slices anchored at t=kτ, i.e., Gk, is updated from 

Gk−1 as in algorithm 4. The price to pay is that the Almost-σ Variant introduces new slice types different from 

the pre-defined level-I slices, for i=1,...,l. Fig.6 shows a three-level Almost-σ Variant. 

 
Algorithm 4 Almost-σ-Variant 

1: for j=l down to 2 do 
 

2: if zj<σj then 

3: Bring in (and remove) the next available slice of a larger size and create additional σj−zjlevel-j 

slices. 

4: zj←σj. 

5: The remaining portion of the removed level-(j−1) slice forms another slice. 
 

6: endif 
 

7: endfor 

 

 
Fig.6.Three-level nested slice structure Almost-σ Variant. τ=2, ∆1=16, ∆2=4 and ∆3=1.The anchored slice 

sets shown are for t=τ, 2τ and 3τ, respectively. σ3=8, σ2=2.The shaded are as a real so slices, but are different 

in size from any level-j slice, j=1,2or3. 

 

V. EVALUATION 
This section describes the performance results of different variations of our AC/scheduling algorithms. 

We also evaluate the required computation time to determine the scalability of our algorithms. Most of the 

experiments are conducted on the Abilene network, which consists of 11 back bone nodes connected by 10 Gbps 

links. Each back bone node is connected to a randomly generated stub network. The link speed between each 

stub network and the back bone node is 1 Gbps. The entire network has 121 nodes and 490 links. For the 

scalability study of the algorithms, we use random networks with the number of nodes ranging from 100 to 

1000. The random network generator takes the number of nodes and the average node degree as arguments, from 

which it computes the total number of links in the network. Then, it repeatedly picks a node pair uniformly at 

random from those unconnected node pairs, and connects them with a pair of links in both directions. This 

process is repeated until a ll links are assigned. We use the commercial CPLEX package for solving linear 

programs on Intel-based. The plots and tables use acronyms to denote the algorithms used in the 

experiments. Recall that SR stands for Subtract-Resource and RR stands for Reassign-Resource in 

admission control; LB stands for Load-Balancing as the scheduling objective and QF stands for 

Quick-Finish.                 

 
The performance measures are: 

•Rejection ratio: This is the ratio between the number of jobs rejected and total number of job requests. From 

the network’s perspective, it is desirable to admit as many jobs as possible. 

•Response time: This is the difference between the completion time of a job and the time when it is first being 

transmitted. From an individual job’s perspective, it is desirable to have shorter response time. 
 

4.1) Comparison of Algorithm Execution Time 

Before comparing the performance of the algorithms, we first compare their execution time. Short execution 

time is important for the practicality of our centralized network control strategy. The results on the execution 
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time put the performance comparison (Section 4.2) in perspective: Better performance often comes with longer 

execution time. Table I shows the execution time of different schemes under two representative traffic 

conditions. 6We ignore the connection setup (path setup) time because, due to the small network size, we can 

pre-compute and store the allowed paths for every possible source-destination pair. 
 

TABLE I 

AVERAGEAC/SCHEDULINGALGORITHMEXECUTIONTIME(S) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1) SR vs RR and LB vs QF:  

The results show that, for admission control, SR can have much shorter average execution time than 

RR. This is because, in SR, AC works only on the new jobs, where as in RR, AC works on all the jobs currently 

in the system. Hence, for SR the AC (k, J) feasibility problem usually has much fewer variables. 

When the AC algorithm is fixed, the choice of the scheduling algorithm, LB or QF, also affects the 

execution time for AC. For instance, the RR+LB combination has much longer execution time for AC than the 

RR+QF combination. This is because, in LB, each job tends to be stretched over time in an effort to reduce the 

network load on each time slice. This results in more jobs and more active slices (slices in Lk) in the system at 

any moment, which means more variables for the linear program.For scheduling, since LB and QF are very 

different linear programs, it is difficult to explain the differences in their execution time. But, we do observe that 

LB has longer execution time, agai possibly due to more variables for the reason stated in the previous 

paragraph. 

 

4.1.2) US vs NS:  

Depending on the number of levels for the NS, the number of slices at each level and the slice sizes, the 

NS can be configured to achieve different objectives: improving the algorithm performance, reducing the 

execution time, or doing both simultaneously. Our experimental results in Table I correspond to the third case. 

Since the two-level NS structure has ∆1=60 minutes and the US has the uniform slice size ∆=21.17 minutes, 

the NS typically has fewer slices than the US. For instance, under heavy load, US+RR+QF uses 150.5 active 

slices on average for AC, while NS+RR+QF uses 129.6 active slices on average. The number of variables, which 

directly affect the computation time of the linear programs, is generally proportional to the number of slices. 

Part of the performance advantage of the NS (to be shown in Section 4-2) is attributed to the smaller 

scheduling interval τ. To reduce the scheduling interval for the US, we must reduce the slice size ∆, since ∆=τ 

in the US. In the next experiment, we set the US slice size to be 5 minutes, which is equal to the size of the finer 

slice in the NS. Table II shows the performance and execution time compare is on between the US and NS. 

Here, we use RR for admission control and QF for Scheduling. The US and NS have nearly identical 

performance in terms of the response time and job rejection ratio. But the NS is far superior in execution times 

for both AC and scheduling. Up on closer inspection (Table III), the NS requires far fewer active time slices than 

the US on average. 
 

 

 

 

 

 

 

 

 

Algorithm HeavyLoad 

AC Scheduling 
LightLoad 

AC Scheduling 

US+SR+LB 

US+SR+QF 

US+RR+LB 

US+RR+QF 

13.13 5.70 

12.03 1.86 

80.89 5.89 

34.36 4.74 

0.40 0.61 

0.32 0.23 

1.05 0.65 

0.36 0.21 

NS+SR+LB 

NS+SR+QF 

NS+RR+LB 

NS+RR+QF 

1.54 4.50 

1.57 1.60 

25.16 4.30 

17.43 3.54 

0.14 0.60 

0.13 0.07 

1.07 0.61 

0.17 0.06 
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TABLEII 

COMPARISON OF US AND NS (τ=5 MINUTES) 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLEIII 

AVERAGE NUMBER OF SLICES  OF US AND NS (τ=5 MINUTES) 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, 

•SR is much faster than RR for admission control. 

•LB tends to be slower than QF for both AC and scheduling. 

•The NS requires much shorter execution time than the US, or achieves better performance or has both 

properties. 

The advantage of the NS can be extended by increasing the number of slice levels. In practice, it is likely that the 

US is too time consuming and the NS is a must. 

 

4.2) Performance Comparison of the Algorithms 

In this subsection, the experimental parameters are as stated in the introduction for Section 4. In 

particular, we fix the number of paths per job (K) to be 8. Table IV shows the response time and rejection ratio 

of different algorithms. 

 
TABLEIV 

PERFORMANCECOMPARISONOFDIFFERENTALGORITHMS 
 

Algorithm 
Light Load 

Response Time(s)    Rejection Ratio 
Medium Load 

Response Time(s)  Rejection Ratio 
Heavy Load 

Response Time(s) Rejection Ratio 

US+SR+LB 

US+SR+QF 

US+RR+LB 

US+RR+QF 

     46.55                         0 

21.51 0.014 

46.55 0 

21.55 0 

42.35 0.056 

22.21 0.100 

40.73 0.026 

23.36 0.021 

35.56 0.423 

23.56 0.477 

35.73 0.313 

25.16 0.312 

NS+SR+LB 

NS+SR+QF 

NS+RR+LB 

NS+RR+QF 

49.60 0 

5.73 0.006 

49.60 0 

5.82 0 

43.83 0.021 

7.56 0.052 

43.88 0.011 

9.35 0.006 

28.74 0.237 

11.06 0.403 

30.16 0.168 

17.11 0.173 

 

 Response 

Time(min) 
Rejection 

Ratio 
ExecutionTime(s) 

AC Scheduling 

LIGHTLOAD 

US 

NS 
6.064 

5.821 
0 

0 
0.469 0.309 

0.162 0.062 

MEDIUMLOAD 

US 

NS 
9.767 

9.354 
0.006 

0.006 
3.177 2.694 

0.587 0.387 

HEAVYLOAD 

US 

NS 
16.486 

17.107 
0.183 

0.173 
131.958 26.453 

17.428 3.539 

  AverageNumberofSlices 

AC Scheduling 

LightLoad US 

NS 
299.0 299.9 

68.9 69.0 

MediumLoad US 

NS 
421.6 462.9 

79.1 82.1 

HeavyLoad US 

NS 
975.1 799.8 

129.6 113.4 
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4.2.1) US vs NS: 

In Table IV, the algorithms with the NS have a comparable to much better performance than those with 

the US. Furthermore, it has already been established in Section 4- 1 that the NS has much shorter algorithm 

execution time. 

 

4.2.2) Best Performance:  
The best performance in terms of both response time and the rejection ratio is achieved by the RR+QF 

combination. Suppose we fix the slice structure and the scheduling algorithm. Then, SR has worse rejection 

ratio than RR because SR does not allow flow reassignment for the old jobs during the admission control. Since 

response time increases with the admitted traffic load, an algorithm that leads to lower rejection ratio can have 

higher response time. This explains why RR often has higher response time than the corresponding SR 

algorithm. Note that a lower rejection ratio does not always lead to higher traffic load since some algorithms 

such as RR use the network capacity more efficiently. 

Suppose we fix the slice structure and the AC algorithm. Then, LB does much worse than QF interms 

of response time, because LB tends to stretch a job until its requested end time while QF tries to complete a job 

early if possible. If RR is used for admission control, then under high load, the different scheduling algorithms 

have a similar effect on the rejection ratio of the next admission control operation. However, for medium load 

we notice that the work conserving nature of QF contributes to a lower rejection ratio than LB, which tends to 

waste some bandwidth. 

 

4.2.3) Merits of SR and LB: 

Given the above discussion, one may quickly dismiss SR and LB. But, as we have noted in Section 4-1, 

SR can have considerably shorter execution time than RR. Furthermore, it is a candidate for conducting real 

time admission control at the instance when a request is made, which is not possible with RR. If SR is used, then 

LB often has a lower rejection ratio than QF. The reason is that QF tends to highly utilize the network on earlier 

time slices, making it more likely to reject small jobs requested for the near future. This is a legitimate concern 

because in practice it is more likely that small jobs are requested to be completed in the near future at her than 

the more distant future. 

There is indication that the more heavy-tailed is the file size distribution, the larger is the difference in 

rejection ratio between LB and QF. The evidence is shown in Fig.7 for the light traffic load. As the Pare to 

parameter α approaches1 while the average job size is held constant the chance of having very large files 

increases. Even if they are transmitted at the full network capacity as in QF such large files can still congest the 

network for a long time causing more future jobs to be rejected. The correct thing to do if SR is used is to spread 

out the transmission of a large file over its requested time interval. 

 
Fig.7 Rejection ratio for different α’s under SR 

 

To summarize the key points between the admission control methods RR is much more efficient in 

utilizing the network capacity which leads to fewer jobs being rejected while SR is suitable for fast or real time 

admission control if SR is used for admission control then the scheduling method LB is superior to QF in terms 

of the rejection ratio. 
 

4.3) Single vs Multi-path Scheme 

The effect of using multiple paths is shown in Fig.8 for the light, medium and heavy traffic loads. Here 

the NS is used along with the admission control scheme RR and the scheduling objective QF. For every source-

destination node pair the K shortest paths between the mare selected and used by every job between the node 

pair. We vary K from1to10 and find that multiple paths often produce better response time and always produce a 

lower rejection ratio. The amount of improvement depends on many factors such as the traffic load,the version 

of the algorithm and the network parameters. For the light load no job is rejected. As the number of paths per 

job increases from1to8 we get 35% reduction in the response time. No further improvement is gained with more 

than 8 paths. For the medium load the response time is almost halved as the number of paths varies from1to10. 
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The improvement in the rejection ratio is even more impressive from13.3% down to0.3%. For the heavy load 

there is no improvement in the response time due to the significant reduction in the rejection ratio with multiple 

paths many more jobs are admitted resulting in a large increase of the actual network load. 

Fig.9 and Fig.10 show the response time and the rejection ratio respectively under the medium traffic 

load for all algorithms. It is observed that the rejection ratio decreases significantly for all algorithms as K 

increases. All the algorithms that use LB for scheduling experience an increase in the response time due to the 

reduction in the rejection ratio. But this is not a disappointing result because it is not a goal of LB to reduce the 

response time. All the algorithms using QF for scheduling experience a decrease in the response time. Inspite of 

the increased load QF is able to pack more jobs in earlier slices by utilizing the additional paths. 

 
Fig.8 Single vs multiple paths under different traffic load (a) Response time(b)Rejection ratio. 

 
Fig.9 Single vs multiple paths under medium traffic load for different algorithms (a) Response time for QF (b) 

Response time for LB. 

 
Fig.10 Single vs multiple paths under medium traffic load for different algorithms (a) Rejection ratio for QF (b) 

Rejection ratio for LB 
 

4.4) Comparison against Typical AC/Scheduling Algorithm 

The next experiment compares our AC/scheduling algorithms with a simple incremental AC/scheduling 

algorithm which will be called the simple scheme. The simple schemed e couples AC from routing and assumes 

a single default path given by the routing protocol. AC is conducted in real time upon the arrival of a request. 

The requested resource is compared with the remaining resource in the network on the default path. If the latter 

is sufficient then the job is admitted. The remaining resource is updated by subtracting from it what is allocated 

to the new request by the scheduling step (See next). 

Compared to our AC/scheduling algorithms the simple scheme resembles our SR admission control 

algorithm but allows only one path for each job. For bulk transfer with start and end time constraints the simple 

scheme still requires a scheduling stage because bandwidth needs to be allocated to the newly admitted job over 

the time slices on its default path. We can apply the time slice structure and the scheduling objective of LB or 
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QF to the newly admitted job. However unlike our scheduling algorithm the scheduling algorithm in the simple 

scheme does not reschedule the old jobs that is it does not change the bandwidth allocation for the old jobs. 

The reason we use the simple scheme as the base line for comparison with our algorithms is that it is 

fairly general  The basic part of the simple scheme is really what most other systems or proposals use. If we 

remove the advance reservation par the AC in the simple scheme resembles a typical AC algorithm proposed for 

most traditional QoS architectures for large networks [23],[24],[25],[26]. With advance reservation it is similar 

to most proposals for AC in research networks [13],[22]. But compared with most other schemes the simple 

scheme has some thing extra. The bandwidth for a job can be different from slice to slice. Hence the 

performance of the simple scheme is atleast as good as and nearly always better than that of other exiting 

schemes. 

Table V shows the rejection ratio of the simple scheme with different slice structures and scheduling 

algorithms for different traffic loads. This should be compared with Table IV. The simple scheme leads to 

considerably higher rejection ratios than all of our algorithms involving SR which in turn have higher rejection 

ratios than the corresponding algorithms involving RR. 
 

TABLEV 

REJECTION RATIO OF THE SIMPLE SCHEME 

 LightLoad MediumLoad HeavyLoad 

US+SR+LB 

US+SR+QF 

NS+SR+LB 

NS+SR+QF 

0.010 

0.031 

0 

0.026 

0.345 

0.308 

0.225 

0.249 

0.781 

0.792 

0.596 

0.642 

 

4.5) Scalability of AC/Scheduling Algorithms 

For this experiment we assume that all job requests arrive at the same time and have the same start and 

end time requirement. Hence the AC/scheduling algorithms run only once. The objective is to determine how the 

execution time of the algorithms scales with the number of simultaneous jobs in the system the number of time 

slices used or the network size. In this case RR and SR are in distinguishable. In the following results we use the 

US+SR+QF scheme. 

Fig.11 shows the execution time of AC and scheduling as a function of the number of jobs. The interval 

between the start and end times is partitioned into 24 uniform time slices. It is observed that the increase in the 

execution time is linear or slightly faster than linear. Scaling upto thousands of simultaneous jobs appears to be 

possible.  

 
Fig.11 Scalability of the execution times with the number of jobs 

 

VI. RELATEDWORK 

Compared with the traditional QoS frame works such as InterServ[27], DiffServ[28] the ATM 

network[23] or MPLS[24] admission control and scheduling for research networks are recent concerns with 

much fewer published studies. 

 

5.1) Bulk Transfer 

Recent papers on AC and scheduling algorithms for bulk transfer with advance reservations include 

[14],[15], [16],[17],[18],[19],[13],[20],[21]. In [13] the AC and scheduling problem is considered only for the 

single link case. Network-level AC and scheduling are considered to be outside the scope of [13]. As a result 

multi-path routing and network-level bandwidth allocation and re-allocation have no counter-part in [13]. 

Moreover the solution is a heuristic one instead of an optimal one. Finally once a job is admitted permanently it 
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won’t be reconsidered in the future. In contrast we periodically re-optimize the bandwidth assignment for all the 

new and old jobs. 

The authors of [21] propose a malleable reservation scheme for bulk transfer which checks every 

possible interval between the requested start time and end time for the job and tries to find a path that can 

accommodate the entire job on that interval. The scheme favors intervals with earlier dead lines. In [20], the 

computational complexity of a related path-finding problem is studied and an approximation algorithm is 

suggested. [15] starts with an advance reservation problem for bulk transfer. Then the problem is converted into 

a constant bandwidth allocation problem at a single time instance to maximize the job acceptance rate. This is 

shown to be an NP-hard problem. Heuristic algorithms are then proposed. In [15], all the requests are known at 

the time of the admission control and no that the requests continue to arrive and the AC/scheduling must be done 

repeatedly. The concern for us is how to optimize and re-optimize the bandwidth assignment to the jobs as new 

job requests arrive, so that the early commitments are not violated and the network resource is used efficiently. 

In [15], the bandwidth constraints are at the ingress and egress links only. As a result, there is no routing issue. 

In our case, we have a full network and we use multiple paths for each job. We may alter the bandwidth 

assignment on the paths for each existing job in the system in order to accommodate later jobs. 
 

5.2) MBG Traffic 

Several earlier studies [29],[30],[31],[32] have considered admission control at an individual link for 

the MBG (minimum bandwidth guarantee) traffic class with start and end times. The concern is typically about 

designing efficient data structures, such as the segment tree [30], for keeping track of and querying bandwidth 

usage at the link on different time intervals. The admission of a new job is based on the availability of the 

requested bandwidth between the job’s start time and end time. [20],[33],[21],[34] and [31] go beyond single-

link advance reservation and tackle the more general path-finding problem for the MBG class, but typically only 

for new requests, one at a time. The routes and bandwidth of existing jobs are unchanged. [35] considers a 

network with known routing in which each admitted job derives a profit. It gives approximation algorithms for 

admitting a subset of the jobs so as to maximize the total profit. 

 

5.3) Other Related Work 

The authors of [36] also advocate periodic re-optimization to determine new bandwidth allocation in 

optical networks. However, they do not assume that users make advance reservations with requested end times. 

As a result,[36] does not have the admission control step. In the scheduling step it uses a multi-commodity flow 

formulation for bandwidth assignment, similar to our formulation but without the time dimension. That is the 

scheduling problem in [36] is for a single (large) time slice rather than over multiple time slices. Many papers 

study advance reservation, re-routing, or re-optimization of light paths, at the granularity of a wave length, in 

WDM optical networks [37],[38]. But they do not consider the start and end time constraint. 

 

5.4) Control Plane Protocols, Architectures and Tools 

This paper focuses on the AC and scheduling algorithms. A complete solution for the intended e-

science application will also need the control plane protocols, architectures and middleware tool kits, which are 

considered outside the scope of the paper. In the control plane, [22] presents an architecture for advance 

reservation of intra and inter domain light paths. The DRAGON project [11] develops control plane protocols 

for multi-domain traffic engineering and resource allocation on GMPLS-capable [39] optical networks. GARA 

[9], the reservation and allocation architecture for the grid computing tool kit Globus [10], supports advance 

reservation of network and computing resources. [40] adapts GARA to support advance reservation of light 

paths, MPLS paths and DiffServ paths. Grid JIT [41] is another signaling protocol for setting up and managing 

light paths in optical networks for grid-computing applications. ODIN [42] is a tool kit for optical network 

control and management for supporting grid computing. Another such tool kit is reported in [43]. [44] discusses 

the architectural and signaling-protocol issues for advance reservation of network resources. 

 

VII. CONCLUSION 
This study aims at contributing to the management and resource allocation of research networks for 

data-intensive e-science collaborations. The need for large file transfer and high-bandwidth, low-latency 

network paths is among the main requirements posed by such applications. The opportunities lie in the fact that 

research networks are generally much smaller in size than the public Internet, and hence afford a centralized 

resource management platform. This paper combines the following novel elements into a cohesive frame work 

of admission control and flow scheduling advance reservation for bulk transfer and minimum bandwidth 

guaranteed traffic ,multi-path routing, and bandwidth reassignment via periodic re-optimization. 

To handle the start and end time requirement of advance reservation, as well as the advancement of 

time, we identify a suitable family of discrete time-slice structures, namely, the congruent slice structures. With 
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such a structure, we avoid the combinatorial nature of the problem and are able to formulates ever all in ear 

programs as the core of our AC and scheduling algorithms. Moreover, we can develop simple algorithms that 

can retain the performance guarantee for the existing jobs in the system while admitting new jobs. Our main 

algorithms apply to all congruent slice structures, which are fairly rich. In particular, we describe the design of 

the nested slice structure and its variants. They allow the coverage of a long segment of time for advance 

reservation with a small number of slices without compromising performance. They lead to reduced execution 

time of the AC/scheduling algorithms, there by making it practical. The following inferences were drawn from 

our experiments. 

• The algorithms can handle upto several hundred time slices with in the time limit imposed by practicality 

concern. If the NS is used, this number can cover months, even years, of advance reservation with sufficient 

time slice resolution. If the US is used, either the duration of coverage must be significantly shortened or the 

time slice be kept very coarse. Either approach tends to degrade the algorithms utility or performance. 

• We have argued that between the admission control methods, RR is much more efficient than SR in utilizing 

the network capacity, thereby, leading to fewer jobs being rejected. On the other hand, SR is suitable for fast 

or real time admission control. If SR is used for admission control, then the scheduling method LB is 

superior to QF in terms of the rejection ratio. We have also observed that using multiple paths improves the 

network utilization dramatically. 

• The execution time of our AC/scheduling algorithms exhibits acceptable scaling behavior, i.e., linear or 

slightly faster than linear scaling, with respect to the network size, the number of simultaneous jobs, and the 

number of slices. We have high confidence that they can be practical. The execution time can be further 

shortened by using fast approximation algorithms, more powerful computers and better decomposition of 

the algorithms for parallel implementation. 

 

Even in the limited application context of e-science, admission control and scheduling are large and 

complex problems. In this paper, we have limited our attention to a set of issues that we think are unique and 

important. This work can be extended in many directions. To name just a few, one can develop and evaluate 

faster approximation algorithms as in [45],[46]; address additional policy constraints for the network usage 

incorporate the discrete light path scheduling problem develop a price-based bidding system for making 

admission request or address more carefully the needs of the MBG traffic class, such as minimizing the end-to-

end delay. 

The AC/scheduling algorithms presented in this paper are only part of a complete solution for the 

intendede- science applications. Control plane protocols and middleware are needed for settingup the network 

paths, controlling the bandwidth allocation, and for the end systems to take advantage of the new networking 

capabilities. The software tools should also automate the user-network interaction, such as the request 

submission and re-negotiation process. There are several projects in protocol, architecture and toolkit 

development, mainly in the grid computing community, as discussed in Section 5. Developing similar protocols 

and adding new components to the existing toolkits in support of our algorithms are among the future tasks. 
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