
International Journal of Engineering Inventions  

e-ISSN: 2278-7461, p-ISSN: 2319-6491  

Volume 4, Issue 11 [July 2015] PP: 21-35 

 

www.ijeijournal.com                      Page | 21 

Effect of viscous dissipation on falkner-skin boundary layer flow 

past a Wedge through a porous medium with slips boundary 

condition  
 

M. Bharathi Devi
1 
and K. Gangadhar

2
 

1
Dept. of Mathematics , RISE Group of Institutions , Ongole , A.P. 

2
Department of Mathematics, Acharya Nagarjuna University, Ongole, Andhra Pradesh -523001, India

 

 

Abstract: - The steady, two dimensional, Flakner-Skan boundary layer flow over a stationary Wedge with 

momentum and thermal slip boundary conditions and the temperature dependent thermal conductivity in the 

presence of porous medium and viscous dissipation. Using the similarity transformations, the governing 

equations have been transformed into a system of ordinary differential equations. These differential equations 

are highly nonlinear which cannot be solved analytically. Therefore, bvp4c MATLAB solver has been used for 

solving it. Numerical results are obtained for the skin-friction coefficient and the local Nusselt number as well 

as the velocity and temperature profiles for different values of the governing parameters, namely, Falkner-Skin 

parameter, thermal conductivity parameter, velocity slip parameter, thermal slip parameter and Eckert number.  
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I. INTRODUCTION 
Micropolar fluids are fluids of microstructure. They represent fluids consisting of rigid, randomly 

oriented, or spherical particles suspended in a viscous medium, where deformation of fluids particles is ignored. 

The dynamics of micropolar fluids, originated from the theory of Eringen [1-3], has been a popular area of 

research due to its application in a number of processes that occur in industry. Such applications include 

polymeric fluids, real fluids with suspensions, liquid crystal, animal blood, and exotic lubricants. Extensive 

reviews of theory of micropolar fluids and its applications can be found in review articles by Ariman et al. [4, 5] 

and recent books by Łukaszewicz [6] and Eringen [7]. 

According to most of the previous studies, the MHD flow has received the attention of many 

researchers due to its engineering applications. In metallurgy, for example, some processes involve the cooling 

of many continuous strips by drawing them through an electrically conducting fluid subject to a magnetic field 

(Kandasamy and Muhaimin [8]).This allows the rate of cooling to be controlled and final product with the 

desired characteristics to be obtained. Another important application of hydromagnetic flow in metallurgy is in 

the purification of molten metal’s from nonmetallic inclusions through the application of a magnetic field. 

Research has also been carried out by previous researchers on the flow and heat transfer effects of electrically 

conducting fluids such as liquid metals, water mixed with a little acid and other equivalent substance in the 

presence of a magnetic field. The studies have involved different geometries and different boundary conditions. 

Herdricha et al. [9] studied MHD flow control for plasma technology applications. They identified potential 

applications for magnetically controlled plasmas in the fields of space technology as well as in plasma 

technology. Seddeek et al. [10] investigated the similarity solution in MHD flow and heat transfer over a wedge 

taking into account variable viscosity and thermal conductivities. The magnetohydrodynamic (MHD) forced 

convection boundary layer flow of nanofluid over a horizontal stretching plate was investigated by Nourazar et 

al. [11] using homotopy perturbation method (HPM).  

 Unsteady free convection flows of dissipative fluids past an infinite plate have received a little attention 

because of non-linearity of the governing equations. Bhaskar Reddy and Bathaiah [12] studied the 

magnetohydrodynamic flow of a viscous incompressible fluid between a parallel flat wall and a long wavy wall. 

Neeraja and Bhaskar Reddy [13] investigated the MHD unsteady free convection flow past a vertical porous 

plate with viscous dissipation. Recently, El-Aziz [14] studied the mixed convection flow of a micropolar fluid 

from an unsteady stretching surface with viscous dissipation. Gangadhar [15] conclude that the local skin 

friction coefficient increases and local Nusselt number coefficient decreases in the presence of viscous 

dissipation. Aydin and Kaya [16] studied MHD mixed convection of a viscous dissipating fluid about a 

permeable vertical flat plate and found that the value of Richardson number determines the effect of the 

magnetic parameter on the momentum and heat transfer. 
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 The non-adherence of the fluid to a solid boundary, also known as velocity slip, is a phenomenon that 

has been observed under certain circumstances (Yoshimura and Prudhomme [17]). It is a well-known fact that, a 

viscous fluid normally sticks to the boundary. But, there are many fluids, e.g. particulate fluids, rarefied gas etc., 

where there may be a slip between the fluid and the boundary (Shidlovskiy [18]). Beavers and Joseph [19] 

proposed a slip flow condition at the boundary. Andersson [20] considered the slip flow of a Newtonian fluid 

past a linearly stretching sheet. Ariel [21] investigated the laminar flow of an elastic-viscous fluid impinging 

normally upon a wall with partial slip of the fluid at the wall. Wang [22] undertook the study of the flow of a 

Newtonian fluid past a stretching sheet with partial slip and purportedly gave an exact solution. He reported that 

the partial slip between the fluid and the moving surface may occur in particulate fluid situations such as 

emulsions, suspensions, foams and polymer solutions. Fang et al [23] investigated the magnetohydrodynamic 

(MHD) flow under slip condition over a permeable stretching surface. Fang and Aziz [24] conclude that the 

combined effects of the two slips and mass transfer parameters greatly influence the fluid flow and shear 

stresses on the wall and in the fluid. Nandeppanavar et al. [25] analyze the second order slip flow and heat 

transfer over a stretching sheet. Sajid et al. [26] analyzed the stretching flow with general slip condition. Sahoo 

and Poncet [27] studied the Non-Newtonian boundary layer flow and heat transfer over an exponentially 

stretching sheet with partial slip boundary condition. Noghrehabadi et al. [28] analyzed the effect of partial slip 

on the flow and heat transfer of nanofluids past a stretching sheet. Zheng et al. [29] investigated the 

magnetohydrodynamic (MHD) flow and heat transfer over a stretching sheet with velocity slip and temperature 

jump. Sharma et al. [30] considered the velocity and temperature slip on the boundary. Sharma and Ishak [31] 

considered the Second order velocity slip flow model instead of no-slip at the boundary. 

The present study investigates the steady, two dimensional, Flakner-Skan boundary layer flow over a 

stationary Wedge with momentum and thermal slip boundary conditions and the temperature dependent thermal 

conductivity in the presence of porous medium and viscous dissipation. Using the similarity transformations, the 

governing equations have been transformed into a set of ordinary differential equations, which are nonlinear and 

cannot be solved analytically, therefore, bvp4c MATLAB solver has been used for solving it. The results for 

velocity, microrotation and temperature functions are carried out for the wide range of important parameters 

namely; material parameter, magnetic parameter, Eckert number and first order slip velocity parameter and 

second order velocity slip parameter. The skin friction, the couple wall stress and the rate of heat transfer have 

also been computed. 

 

II. MATHEMATICAL FORMULATION 
Consider a two dimensional steady Falkner-Skan boundary layer laminar flow past a static wedge in the moving 

free stream. The physical model is depicted in Figure 1. We consider the effects of the momentum and thermal 

slip boundary conditions and temperature dependent thermal conductivity. It is further assumed that the velocity 

of the free stream is of the form 

m

e

x
u U

L


 
  

 
 (Yacob et al. [32]). A Cartesian coordinate system  ,x y , 

where x and y  are the coordinates along the surface of the wedge and normal to it. Under the above 

assumptions, the partial differential equations and the corresponding boundary conditions govern the problem 

are given by (White [33]): 
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The boundary conditions for the velocity, Angular Velocity and temperature fields are   
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  ,eu u x T T         as   y                   (2.4) 

Where u  and v  are the velocity components in the x  - and y  - directions, respectively, T is the fluid 

temperature inside boundary layer,  is the fluid density, is the specific heat, is the kinematic viscosity, is the 

variable slip factor with dimension (velocity)
-1

,  1D x is the variable thermal slip factor with dimension length, 

T
is the free stream temperature, wT is the wall temperature and k is the thermal conductivity, pc  is the heat 

capacity pressure. 
    

 

The following relations for k are introduced (Aziz et al. [34]),  

 
   1k T k c T T              (2.5) 

where c and k∞ are constants.  
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 Figure 1. Physical model and coordinate system 

 

 For lubricating fluids, heat is generated by internal friction and the increase in the temperature affects 

the viscosity and thermal conductivity of the fluid and hence the fluid properties should no longer be assumed to 

be constant (Prasad et al. [35]). Therefore, in order to predict the flow characteristics in an accurate and reliable 

manner it is necessary to consider the variation of thermal conductivity with the temperature.  

We now introduce the following dimensionless variables to reduce the number of independent variables and the 

number of equations,  
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(2.6) 

Here Re is the Reynolds number, L is the characteristics length and U∞ is some reference velocity.  

The dimensionless forms of the governing equations 
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here   wA c T T   is the parameter of thermal conductivity, α is the thermal diffusivity,  
L

U k






  is the 

permeability parameter, Pr



  is the Prandtl number, and 

( )p w

U
Ec

c L T T











is the Eckert number.  

The boundary conditions become, 

            
1Re ( ) Re

( ) , 0, 1
u D x

u N x v
y L L y


 
 

   
 

 at  0y    

 
 , 0eu u x           as    y

    
   (2.10) 

We introduce stream function ψ which is defined as u = ∂ψ/∂y and v = –∂ψ/∂x to reduce the number of equations 

and number of dependent variables. Then (2.7)- (2.9) with the boundary conditions in (2.10) transform as 

follows: 

   e
y xy x yy e yyy y e

du
u u

dx
                 (2.11) 

   1Pr 1y x x y yyA Ec
y y


        

    
  

      (2.12) 

with the boundary conditions, 

            

1Re Re
, 0, 1y yy x y

D
N

L L
          at  0y    

 
 , 0y eu x           as    y        (2.13) 

A closed-form solution of the set of partial differential (2.11) - (2.13) may not exist. So we transform this 

system to an ordinary system using scaling group transformations (Aziz et al. [34]; Khan et al. [36]; Uddin et al. 

[37]; Mutlag et al. [38]), 

 
31 2 4* * * *: , , ,

cc c c
x e x y e y e e

         
     

(2.14) 

Here ε is the parameter of the group Γ and ci 's, (i = 1,2,3,4) are arbitrary real numbers. The system of (2.11)-

(2.13) will remain invariant under the group transformations in (2.14) if the following relationships hold, 
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In terms of differential, 
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Solving (16) we obtain,
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Here     , ,f      are similarity independent and dependent variables.  

Substituting (2.17) into (2.11)- (2.13), we get, 
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The boundary conditions become, 
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 (2.20) 

It is worth noting that if at this stage of our analysis we put Ec=γ=0, then our problem reduces to Mutlag et al. 

[38]. This supports the validity of our group analysis.  

For further investigation, we use the following minor modification: 
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1 1

2 2
1 2

, ,
2 1

m m
m

x y x f
m

     
 


  

     

 (2.21) 

Substituting (21) into (18) - (19), we get, 
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The boundary conditions become, 
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where prime is the derivative with respect to 
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Expressions for the quantities of physical interests, the skin friction factor and the rate of heat transfer can be 

found from the following definitions: 
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Using (2.6) and (2.21) into (2.25) we get, 
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where  Re
e

x

u x


  is the local Reynolds number.

 

 

III. SOLUTION OF THE PROBLEM 
 The set of equations (2.12) to (2.24) were reduced to a system of first-order differential equations and 

solved using a MATLAB boundary value problem solver called bvp4c. This program solves boundary value 

problems for ordinary differential equations of the form  ' , , ,y f x y p a x b   , by implementing a 

collocation method subject to general nonlinear, two-point boundary conditions  ( ), ( ),g y a y b p . Here p is a 

vector of unknown parameters. Boundary value problems (BVPs) arise in most diverse forms. Just about any 

BVP can be formulated for solution with bvp4c. The first step is to write the ODEs as a system of first order 

ordinary differential equations. The details of the solution method are presented in Shampine and 

Kierzenka[39]. 

  

IV. RESULTS AND DISCUSSION 
 The governing equations (2.13) - (2.14) subject to the boundary conditions (2.15) are integrated as 

described in section 3. In order to get a clear insight of the physical problem, the velocity and temperature have 

been discussed by assigning numerical values to the parameters encountered in the problem.  

 Figure 1 shows the effect of the power law index parameter (m) on the non-dimensional velocity 

profiles. We observe that the velocity increases with the influence of m. These findings are similar to the results 

reported by Mutlag et al. [12]. The results are quite different in the case of stretching sheet. Figure 2 illustrate 

the effect of permeability parameter (γ) on the velocity. We observed that the velocity increases with increasing 

γ. The variation of the velocity profiles with the velocity slip parameter (S) is shown in Figure 3.  It is observed 

that the velocity increases with an increasing S.  
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 Figure 4 illustrate the effect of power law index parameter on the temperature. We observed that the 

temperature decreases with increasing m. Moreover, the boundary layer thickness decreases, these results are 

similar to the findings by Mutlag et al. [38]. Figures 5, 6, 7 & 8 illustrate the effects of the thermal conductivity 

parameter (A), thermal slip parameter (b), Prandtl number (Pr) and Eckert number on the temperature. It is 

observed that temperature of the fluid reduces with a rising the parameters A, b, Pr and Ec.  

 Figure 9 shows the effects of S and m on skin friction. From Figure 9 it is seen that the skin friction 

decreases with an increase S and increases with an increase m. The variation of S and γ on skin friction is shown 

in Figure.10. It is observed that the skin friction increases with an increase γ.  The effect of A and m on local 

Nusselt number is shown in fig.11. It is found that the local Nusselt number enhances with an increase in the 

parameters A and m. The variations of b and Ec on local Nusselt number are shown in fig.12. It is observed that 

the local Nusselt number decrease with an increasing the parameter b whereas local Nusselt number increases 

with an raising Ec. Tables.1, 2 & 3 shows that the present results perfect agreement to the previously published 

data. 

 

V. CONCLUSIONS 
In the present prater, the steady, two dimensional, Flakner-Skan boundary layer flow over a stationary 

Wedge with momentum and thermal slip boundary conditions and the temperature dependent thermal 

conductivity by taking porous medium and viscous dissipation into account. The governing equations are 

approximated to a system of non-linear ordinary differential equations by similarity transformation. Numerical 

calculations are carried out for various values of the dimensionless parameters of the problem. It has been found 

that 

1. The velocity increases with an increase in the permeability parameter and velocity slip parameter. 

2. The thermal slip parameter and Eckert number reduces the temperature. 

3. The skin friction enhances the permeability parameter or power law index parameter and decreases the 

velocity slip parameter. 

4. The local Nusselt number enhances the Eckert number or power law index parameter and decreases the 

thermal slip parameter. 
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Fig.2 Velocity for different values of γ 

 
Fig.3 Velocity for different values of S 
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Fig.4 Temperature for different values of m 

 
 

Fig.5 Temperature for different values of A 
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Fig.6 Temperature for different values of b 

 
    Fig.7 Temperature for different values of Pr 
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Fig.8 Temperature for different values of Ec 

 
Fig.9 Local Skin friction for different values of S and m 
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Fig.10 Local Skin friction for different values of S and γ 

Fig.11 Local Nusselt number for different values of A and m 
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Fig.12 Local Nusselt number for different values of b and Ec 
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1.719

8 

2.177

0 

2.589

2 

4.133

1 

5.623

0 

8.948

1 

12.15

7 

7 

0.79599

1 

0.93035

2 

1.20692

4 

1.45575

0 

2.15773

7 

2.75196

3 

3.28625

0 

5.28901

7 

7.22117

3 

11.5320

34 

15.6927

70 

7 

0.79599

1 

0.93035

1 

1.20692

4 

1.45574

9 

2.15773

7 

2.75196

2 

3.28624

9 

5.28901

7 

7.22117

2 

11.5320

3 

15.6927

7  

2.1577 

2.7520 

3.2863 

5.2890 

7.2212 

11.532 

15.692 

 

Table.3 Comparison for the values of ''(0)f for A=S=b=Ec=γ=0, Pr=1 for various values of
2

1

m

m
 


. 

  ''(0)f  

Present results 

(BVP4c) 

Mutlag et al. [38] 

(Runge–Kutta–

Fehlberg 

fourth- fifth) 

Bararnia et al. 

[42] (Homotopy 

perturbation 

method) 

Rajagopal et al. [43] 

(Block-tridiagonal 

factorization technique) 

0.0 

0.05 

0.1 

0.2 

0.3 

0.4 

0.6 

0.7 

0.8 

0.9 

1.0 

1.2 

1.6 

2.0 

0.469600 

0.531130 

0.587035 

0.686708 

0.774755 

0.854421 

0.995836 

1.059808 

1.120268 

1.177728 

1.232588 

1.335721 

1.521514 

1.687218 

0.469600 

0.531129 

0.587035 

0.686708 

0.774754 

0.854421 

0.995836 

1.059807 

1.120267 

1.177727 

1.232587 

1.335720 

1.521513 

1.687218 

0.46964 

0.53119 

0.58716 

0.68672 

0.77475 

.854420 

0.99589 

1.05985 

1.12020 

1.17699 

1.23150 

1.33559 

1.52141 

1.68462 

0.4696 

0.5311 

0.5871 

0.6867 

0.7747 

.85440 

0.9958 

…….. 

1.1202 

…….. 

1.2325 

1.3357 

1.5215 

…….. 
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