Performance and Emission Test of Diesel Engine Using Algae Oil Diesel Blend as an Alternative Fuel

V.NARESH ¹	ASSOCIATE PROFESSOR	BHARATHIDASAN ENGINEERING COLLEGE
H.DHANANJAYAN ²	PG STUDENTS	COLLEGE BHARATHIDASAN ENGINEERING COLLEGE
J.YUVARAJ ³	PG STUDENTS	BHARATHIDASAN ENGINEERING COLLEGE
G.NAGARAJ ⁴	PG STUDENTS	BHARATHIDASAN ENGINEERING COLLEGE
P.THIRUNAVUKKARASU ⁵	PG STUDENTS	BHARATHIDASAN ENGINEERING COLLEGE

ABSTRACT

Increased urbanization and increase in population has led to an increased demand for fuels. The result is the prices of fuels are reaching new heights every day. The diesel engines has led to the emission of hazardous gases like Sulphur oxides, nitrogen oxides and carbon monoxide, which can further led to problems like acid rain. These emissions can also affect human health and increase global warming which has led to the need for alternate fuels. Biodiesel is one of the alternatives which are being widely studied and its production from oil seeds is limited by crop land displacement. Production of biodiesel from algae is a promising option. The present work aims to focus on the performance of diesel engine with algae oil as fuel. The properties of algae oil blends with diesel are tested in a variable compression ratio engine (VCR engine) and its performance and emission characteristics are studied.

Keywords— Algae Oil, Emission of Sulphur Oxides, Nitrogen Oxides And Carbon Monoxide.

Date of Submission: 24-09-2023 Date of acceptance: 07-10-2023

I. INTRODUCTION

The rapid depletion of petroleum based fuels and need for more fuels has resulted in the search for alternative fuels which can serve as the substitute for these petroleum based fuels. Increase in price of these petroleum based fuels and environmental factors caused by them are the other factors which leads to the search of alternative fuels. In this respect biodiesel, which is a well-known renewable energy source have been proposed as a possible solution to meet the increasing energy demand and reduce environmental degradation. Algae fuel or algal biofuel is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable. The energy crisis and the world food crisishave ignited interest in algaculture (farming algae) for making biodiesel and other biofuels using land unsuitable for agriculture. Among algal fuels attractive characteristics are that they can be grown with minimal impact on fresh water resources. Algae can be converted into various types of fuel, depending on the technique and part of the cells used. The lipid, or oily part of the algae biomass can be extracted and converted into biodiesel through a process similar to that used for any other vegetable oil or converted in a refinery into "drop-in" replacements for petroleum-based fuels. Alternatively or following lipid extraction, the carbohydrate content of algae can be fermented into bioethanol or butanol fuel.

In the beginning biodiesel are mostly produced from sources like soya bean, Camelina, sunflower, Rapeseed, Jatropha, oil palm etc.. The oil yield from those sources is comparatively less when compared to algae and its advantages over edible crop sources are

- Rapid growth rates.
- A high per acre yield (7 to 31 times greater than the next best crop palm oil).
- Certain species of algae can be harvested daily.
- Algae bio-fuel contains no sulphur.
- Algae bio-fuelis non toxic.
- Algae bio-fuel is highly biodegradable.

Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials, and often have a characteristic pleasant, fruity odour. This leads to their extensive use in the fragrance and flavour industry. Ester bonds are also found in many polymers.

- The direct use of crude renewable oils in diesel engines is envisage able, but could lead to numerous technical problems.
- For example, their characteristics (high viscosity, high density, difficulty to vaporize in cold conditions) cause deposits in the combustion chamber, with a risk of fouling and an increase in most emissions.
- These drawbacks can be mitigated, but not without some modifications of the diesel engine.
- To overcome all these inconveniences, the transformation of microalgae lipids in corresponding esters is essential.

II. Experimental Work

A EXPERIMENTAL PROGRAMME

FIGURE 1 EXPERIMENTAL STUP

B SOFTWARE

Engine Soft is Labview based software package developed by Apex Innovations Pvt. Ltd. for engine performance monitoring system. EngineSoft can serve most of the engine testing application needs including monitoring, reporting, data entry, data logging. The software evaluates power, efficiencies, fuel consumption and heat release. Various graphs are obtained at different operating condition. While on line testing of the engine in RUN mode necessary signals are scanned, stored and presented in graph. Stored data file is accessed to view the data graphical and tabular formats. The data in excel format can be used analysis.

C. EXPERIMENTAL MEASUREMENTS

The engine exhaust emissions like hydrocarbon, carbon monoxide, oxides of nitrogen and smoke were measured using appropriate instruments.

D.HC, CO MEASUREMENTS

Hydrocarbon and carbon monoxide were measured using five gas analyzer. The instrument consists of a probe which is inserted into the exhaust pipe. The emission levels were displayed on a LCD window.

E. MEASUREMENT OF SMOKE INTENSITY

Smoke intensity was measured by means of a Bosch Smoke meter. A fixed quantity of the exhaust gas was passed through a fixed filter paper using pneumatically operated sampling pump. The density of the smoke stains on the paper was evaluated optically using a photoelectric unit. The smoke density is given in Bosch Smoke Number (BSN).

Performance and Emission Test of Diesel Engine Using Algae Oil Diesel Blend as An ..

FIGURE 2 EXHAUST GAS TEMPERATURE MEASUREMENT

F.EXHAUST GAS TEMPERATURE MEASUREMENT

The exhaust gas temperature was measured by using a K-Type (Chromel-Alumel) thermocouple.

READINGS FROM VCR ENGINE

TORQ UE (N-M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consumptio n (kg/KW- hr)	Specific fuel consump tion (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consump tion (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficienc y (%)	Mechani cal Efficienc y (%)
0	32.1	0	0	0.4485 98	00	0	∞'	2.3	2.7544 91	42.72 569	0
8	27.6	1.5072	1.8269 09	0.5413 04	0.359 146	23.20 321	15515 .09	3.8072	4.5595 21	58.61 151	39.588 15
16	18.3 1	3.0144	3.6538 18	0.8159 48	0.270 683	30.78 629	11693 .52	5.3144	6.3645 51	54.27 636	56.721 36
24	13.2 6	4.5216	5.4807 27	1.1266 97	0.249 181	33.44 289	10764 .62	6.8216	8.1695 81	50.45 427	66.283 57
32	8.12	6.0288	7.3076 36	1.8399 01	0.305 185	27.30 581	13184 .01	8.3288	9.9746 11	37.72 303	72.384 98

TABLE 1 BASE READING OF PURE DIESEL IN VCR ENGINE

TABLE 2 READINGS OF A-20 BLEND (ALGAE-20) IN VCR ENGINE

TORQU E (N-M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consumptio n (kg/KW- hr)	Specific fuel consumpti on (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consumpti on (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficiency (%)	Mechanic al Efficiency (%)
0	32	0	0	0.45	00	0	∞'	2.3	2.7544 91	42.59 259	0
8	27.1	1.5072	1.8269 09	0.5512 92	0.365 772	22.78 286	15801 .35	3.8072	4.5595 21	57.54 971	39.588 15
16	17.9	3.0144	3.6538 18	0.8346 37	0.276 883	30.09 692	11961 .36	5.3144	6.3645 51	53.06 1	56.721 36
24	12.7	4.5216	5.4807 27	1.1763 78	0.260 169	32.03 052	11239 .28	6.8216	8.1695 81	48.32 347	66.283 57
32	8.1	6.0288	7.3076 36	1.8444 44	0.305 939	27.23 855	13216 .56	8.3288	9.9746 11	37.63 012	72.384 98

TABLE 3 READINGS OF A-40 BLEND (ALGAE-40) IN VCR ENGINE

TORQUE (N-M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consumpti on (kg/ KW-hr)	Specific fuel consumpti on (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consumpti on (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficiency (%)	Mechanic al Efficiency (%)
0	30.3	0	0	0.475 248	00	0	∞'	2.3	2.7544 91	40.32 986	0
8	27.7	1.5072	1.8269 09	0.539 35	0.357 849	23.28 728	15459 .08	3.8072	4.5595 21	58.82 387	39.588 15
16	17.01	3.0144	3.6538 18	0.878 307	0.291 37	28.60 048	12587 .2	5.3144	6.3645 51	50.42 277	56.721 36
24	12.2	4.5216	5.4807 27	1.224 59	0.270 831	30.76 948	11699 .91	6.8216	8.1695 81	46.42 097	66.283 57
32	8.02	6.0288	7.3076 36	1.862 843	0.308 991	26.96 953	13348 .4	8.3288	9.9746 11	37.25 846	72.384 98

TABLE 4 READINGS OF A-60 BLEND (ALGAE-60) IN VCR ENGINE

TORQUE (N-M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consumpti on (kg/ KW-hr)	Specific fuel consumpti on (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consumpti on (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficiency (%)	Mechanic al Efficiency (%)
0	29.1	0	0	0.494 845	00	0	∞'	2.3	2.7544 91	38.73 264	0
8	26.6	1.5072	1.8269 09	0.561 654	0.372 647	22.36 252	16098 .37	3.8072	4.5595 21	56.48 791	39.588 15
16	16.9	3.0144	3.6538 18	0.884 024	0.293 267	28.41 553	12669 .13	5.3144	6.3645 51	50.09 67	56.721 36
24	11.7	4.5216	5.4807 27	1.276 923	0.282 405	29.50 843	12199 .9	6.8216	8.1695 81	44.51 847	66.283 57
32	8.01	6.0288	7.3076 36	1.865 169	0.309 376	26.93 59	13365 .06	8.3288	9.9746 11	37.21 201	72.384 98

TABLE 5 READINGS OF A-80 BLEND (ALGAE-80) IN VCR ENGINE

TORQU E (N-M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consump tion (kg/ KW-hr)	Specific fuel consump tion (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consump tion (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficienc y (%)	Mechani cal Efficienc y (%)
0	29	0	0	0.496 552	00	0	∞'	2.3	2.7544 91	38.59 954	0
8	25.5	1.5072	1.8269 09	0.585 882	0.388 722	21.43 775	16792 .81	3.8072	4.5595 21	54.15 194	39.588 15
16	16.5	3.0144	3.6538 18	0.905 455	0.300 376	27.47 297	12976 .29	5.3144	6.3645 51	48.91 098	56.721 36
24	11.1	4.5216	5.4807 27	1.345 946	0.297 67	27.99 518	12859 .36	6.8216	8.1695 81	42.23 5498	66.283 57
32	7.45	6.0288	7.3076 36	2.005 369	0.332 632	25.05 274	14369 .68	8.3288	9.9746 11	34.61 042	72.384 98

TABLE 6 READINGS OF PURE BIODIESEL A-100 (ALGAE-100) IN VCR ENGINE

TORQ UE (N- M)	Time for 5cc (S)	Brake power (KW)	BMEP (bar)	Total fuel consumptio n (kg/KW- hr)	Specific fuel consumpti on (kg/ Kw-hr)	Brake thermal efficiency D 100 (%)	Specific energy consump tion (KJ/KW- hr)	Indicated power (KW)	IMEP (bar)	Indicated thermal Efficienc y (%)	Mechan ical Efficien cy (%)
0	27	0	0	0.5333 33	00	0	∞'	2.3	2.7544 91	35.93 75	0
8	22.2	1.507 2	1.8269 09	0.6729 73	0.4465 05	18.66 345	19289 .03	3.8072	4.5595 21	47.14 404	39.58 815
16	12.1	3.014 4	3.6538 18	1.2347 11	0.4096 04	20.34 485	17694 .9	5.3144	6.3645 51	35.86 805	56.72 136
24	10.1	4.521 6	5.4807 27	1.4792 08	0.3271 43	25.47 309	14132 .56	6.8216	8.1695 81	38.43 048	66.28 357
32	6	6.028 8	7.3076 36	2.49	0.4130 18	20.17 671	17842 .36	8.3288	9.97461 1	27.87 416	72.38 498

III.EMISSION READINGS

	BRAKE POWER (KW)	BASE (ppm)	A-20 (ppm)	A-40 (ppm)	A-60 (ppm)	A-80 (ppm)	A-100 (ppm)
0		81	95	98.2	99.1	99.4	99.9
1.	5072	240	249	252.1	252.9	253.6	259.3
3.	0144	400	422	433	439	444	489
4.	5216	750	759	765	777	789	851
6.	0288	889	902	915	926	955	978

TABLE 7 NITROGEN OXIDES (NOX) EMISSION READINGS

TABLE 8 CARBON DIOXIDE (CO2) EMISSION READINGS

BRAKE POWER (KW)	BASE (% vol)	A-20 (% vol)	A-40 (%vol)	A-60 (% vol)	A-80 (%vol)	A-100 (% vol)
0	0.74	0.77	0.78	0.81	0.812	0.833
1.5072	1.19	1.21	1.25	1.27	1.28	1.31
3.0144	1.23	1.29	1.32	1.33	1.34	1.37
4.5216	1.35	1.39	1.4	1.42	1.44	1.49
6.0288	1.52	1.6	1.67	1.68	1.72	1.75

J	ABLE 9 COR	KBON M	UNUAI	DE (CO) FIMI221	ION KE	ADINGS
	BRAKE POWER (KW)	BASE (% vol)	A-20 (% vol)	A-40 (%vol)	A-60 (% vol)	A-80 (%vol)	A-100 (% vol)
	0	0.13	0.08	0.08	0.1	0.11	0.11
	1.5072	0.14	0.06	0.07	0.09	0.1	0.1
	3.0144	0.19	0.12	0.15	0.18	0.185	0.187
	4.5216	0.25	0.1	0.2	0.22	0.24	0.28
	6.0288	0.26	0.11	0.18	0.21	0.23	0.252

TABLE 9 CORBON MONOXIDE (CO) EMISSION READINGS

TABLE 10 HYDRO CARBON (HC) EMISSION READINGS

BRAKE POWER (KW)	BASE (ppm)	B-20 (ppm)	B-40 (ppm)	B-60 (ppm)	B-80 (ppm)	B-100 (ppm)
0	40	29.1	29.8	30.5	31.1	32.1
1.5072	41.39	37.1	37.7	38.2	40	40.3
3.0144	47.8	39	39.4	40.1	42.3	43.4
4.5216	45.4	37.8	43.2	44.4	46.3	47.1
6.0288	71.1	61.7	64.4	65.1	68.8	69.5

IV. RESULTS A. RESULTS ON PERFORMANCE CHARACTERISTICS Brake thermal efficiency and specific energy consumptions are the two performance characters discussed here. **B. BRAKE THERMAL EFFICIENCY**

BRAKE THERMAL EFFICIENCY CHART

- The maximum brake thermal efficiency for neat diesel is 33.44%.
- For A-20 It is 32.03%, for A-40 it is 30.76%, for A-60 it is 29.50%, for A-80 it is 27.99% and for A-100 it is 25.47%.

C. SPECIFIC ENERGY CONSUMPTION

SPECIFIC ENERGY CONSUMPTION

- Specific energy consumption for neat diesel at three fourth of the load is 10764.62 KJ/KW-hr.
- For diesel blends it starts to increase by 4.4%, 8.68%, 13.33%, 19.45%, and 31.28% for A-20, A-40, A-60, A-80, A-100 respectively.

D. RESULTS ON EMISSION CHARACTERISTICS

Nitrogen oxides, carbon dioxide, carbon monoxide and hydro carbon are the emissions discussed here.

E. NO_X EMISSIONS

• The NO_X emission for neat diesel at maximum load is 889 ppm and it starts to increase for the biodiesel blends.

• The emission increases by 1.46%, 2.92%, 4.16%, 7.42%, 10.01% for A-20, A-40, A-60, A-80, A-100 respectively.

F. CO EMISSIONS

The emissions decreases by 0.252%, 0.23%, 0.21%, 0.18%, 0.11% for A-20, A-40, A-60, A-80, A-100 respectively at maximum load.

. The carbon monoxide emissions for neat diesel at maximum load is 0.26% .

G. CO₂ EMISSIONS

- The co_2 emission for neat diesel at maximum load is 1.52%.
- And for diesel blends it is 1.6%, 1.67%, 1.68%, 1.72%, 1.75% for A-20, A-40, A-60, A-80, A-100 respectively.

H. HYDRO CARBON EMISSIONS

• The hydro carbon emission for neat diesel at maximum load is 71.1 ppm and it starts to decrease for bio diesel blends.

• The emission decreases to 61.7 ppm, 64.4 ppm, 65.1 ppm, 68.8 ppm, 69.5 ppm for A-20, A-40, A-60, A-80, A-100 respectively.

V. CONCLUSION

A.COMPARISON OF VARIOUS PERFORMANCE AND EMISSION CHARACTERISTICS AMONG DIESEL AND VARIOUS BLENDS OF BIODIESEL WITH DIESEL

VARIOUS CHARACTERISTICS	DIESEL	A-20	A-40	A-60	A-80	A-100
BRAKE THERMAL EFFICIENCY (%)	33.44	32.03	30.76	29.50	27.99	25.47
SPECIFIC ENERGY CONSUMPTION (KJ/KW-hr)	10764.62	11239.28	11699.91	12199.9	12859.36	14132.56
NITROGEN OXIDE EMISSIONS (ppm)	889	902	915	926	955	978
CARBON MONOXIDE EMISSIONS (% vol)	0.26	0.11	0.18	0.21	0.23	0.252
CARBON DIOXIDE EMISSIONS (% vol)	1.52	1.6	1.67	1.68	1.72	1.75
HYDRO CARBON EMISSIONS (ppm)	71.1	61.7	64.4	65.1	68.8	69.5

• Among various blends of algae biodiesel tested in VCR engine Algae-20 has the least exhaust characteristics and better performance characteristics.

• Hence 20% methyl ester of algae oil and 80% of diesel blend at standard temperature of 27 ⁰ C and standard compression ratio 18:1 gives slightly better performance and reduced emission when compared to other diesel blends.

REFERENCES

- Harish, H., Shashi Kumar, C. R., Dr. Rajanna, S., Dr. G. S. Prakash. 2014. —Experimental Investigation on the Performance and Emission Characteristics of Edible and Non-Edible Oill International Journal of Emerging Technology and Advanced Engineering (IJETAE) ISSN 2250-2459, Volume 4, Issue 10, October (2014).
- [2]. Banapurmath N.R, Tewari P.G, Yaliwal V.S, Satishkambalimath and Bsavarajappa Y.S, Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and rice bran oils when directly injected and dual fuelled with producer gss induction, Renewable Energy, pp. 1877-1884, 2009
- [3]. Cherung-Yuan Lin, Rong-ji Li, —Engine performance and emission characteristics of marine fish-oil bio-diesel produced from the discarded parts of marine fishl fuel processing technology90 (2009) 883-888