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ABSTRACT: The paper presents a 2D progressive polynomial model for sensor calibration. A piezoresistive 

pressure sensor was used for the implementation of this model, whose voltage output depends on both pressure 

and temperature. In the presented example, temperature and pressure values were measured at 10 points and 

compared with values obtained from the standard. The observed measurement error can be utilized to improve 

the transfer characteristics of the sensor. For the purpose of correcting the transfer characteristics of the sensor, 

calibration was performed in four steps using the proposed model. Using Matlab software support, a graphical 

representation of the corrected function was presented, where it can be observed that the linearization was 

completed after four steps. A problem may arise if the sensor's output function is nonlinear; in that case, it is 

necessary to perform calibration in many more steps than presented. 
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I. INTRODUCTION 

The sensor plays a crucial role in the modern technological world, the use of sensors has enabled the 

automation of devices or systems, which is ubiquitous in today's world.. The primary function of a sensor is to 

provide a mechanism for collecting various types of information in specific processes. Sensors are devices that 

change some of their properties (most commonly electrical or chemical) under the influence of a physical 

phenomenon, i.e., its numerous values or changes in these values. For example, a mercury thermometer converts 

the measured temperature into the expansion of mercury liquid, which can be read on a graduated scale on the 

tube. Sensors have found application in various measurement and control models and are key elements in research 

and development across various industries.  

The practical application of sensors is present in almost every aspect of human activity. Sensors can be 

embedded in automobiles, airplanes, ships, mobile phones, industrial plants, and even implanted in human bodies. 

Measurement error is defined as the difference between the measured and true values. There are several reasons 

that lead to errors, such as calibration error, error due to input loading, error due to the sensor's sensitivity to the 

effects of other variables, etc. By performing appropriate sensor calibration, the accuracy of measurements can be 

significantly increased. Calibration is often defined as a set of procedures that, under specific conditions, establish 

a relationship between the values indicated by a measuring instrument and the corresponding values realized by a 

standard. According to the ISO definition, calibration is a set of operations to establish the relationship between 

the values indicated by a measuring instrument and the corresponding values realized by standards. Each sensor 

has a 'characteristic curve' that defines the sensor's response to input. The calibration process maps the sensor 

response to the ideal linear response. The most successful way to accomplish calibration depends on the nature of 

the characteristic curve. 

There are different approaches to sensor calibration, including single-point calibration, two-point 

calibration, or multi-point calibration [1], calibration using look-up tables [2], calibration based on piecewise-

polynomial or spline interpolation [3], [4], calibration through error minimization [1], and calibration based on 

curve fitting. Most of these methods are used for calibrating sensors in one dimension (involving a single variable), 

while for a multidimensional approach to calibration, the progressive polynomial calibration (curve fitting) 

method has proven to be most effective [1], [6]. As the most suitable method for calibrating multidimensional 

sensors, a progressively polynomial approach to linearization was used in a study for the calibration of a two-

dimensional sensor measuring both pressure and temperature. For the purposes of this research, a piezoresistive 

pressure sensor was used with the equation U(p, T) = -1.2ln(1.7(1+0.01T)-P), where U(p, T) is the output voltage 

dependent on temperature and pressure [7]. 
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II.  PROGRESSIVE POLYNOMIAL CALIBRATION METHOD – ONE DIMENSIONAL FUNCTION 

The progressive polynomial calibration method is performed in such a way that each calibration 

measurement can be individually used to directly calculate one programmable coefficient in the correction 

function. Correction is then automatically applied to modify the sensor output. The next calibration step allows 

the use of this corrected sensor signal. Each subsequent correction step is applied in a way that preserves the 

integrity of each previous calibration.  

If the input variable is denoted as x and the (electrical) sensor output as y, the response of the uncalibrated 

sensor can be represented by the sensor transfer function y=f(x). The desired transfer function is denoted as y=g(x), 

assuming that it is a linear function of the input signal g(x) = K∙x. 

The purpose of calibration is to obtain the transfer function of the calibrated sensor that is identical or 

close to the desired transfer function. This is achieved through calibration measurements with a set of known input 

signals xn, and by comparing the measured sensor output f(xn) with the desired output value yn = g(xn). The 

proposed approach is to calculate the corrected transfer curve of the sensor hn(x) after each calibration 

measurement. Using the previously corrected transfer curves h1(x) to hn-1(x), previously calibrated output values 

y1 to yn-1, and the nth calibration measurement f(xn). In this way, calibration is expressed through a series of 

formulas: 

ℎ𝑛(𝑎𝑛 , ℎ1(𝑥) … ℎ𝑛−1(𝑥), 𝑦1 … 𝑦𝑛−1)            (1) 

where an is the n-th calibration coefficient. At each calibration step, the calibration coefficient an must 

be calculated to achieve a representation where the corrected sensor output is equal to the desired output: hn(xn) = 

g(xn) = yn. The expression for the n-th calibration function in the progressive polynomial method is [1], [6]: 

ℎ𝑛(𝑥) = ℎ𝑛−1(𝑥) + 𝑎𝑛 ∙ 𝑦𝑟𝑒𝑓 ∙ ∏ (
ℎ𝑖(𝑥) − 𝑦𝑖

𝑦𝑟𝑒𝑓

)

𝑛−1

𝑖=1

           (2) 

The calibration coefficient an is calculated based on the n-th calibration measurement, providing h1(xn) 

to hn-1(xn), expressed as: 

𝑎𝑛 =
𝑦𝑛 − ℎ𝑛−1(𝑥𝑛)

𝑦𝑟𝑒𝑓

∙ ∏ (
𝑦𝑟𝑒𝑓

ℎ𝑖(𝑥𝑛 − 𝑦1

)

𝑛−1

𝑖=1

           (3) 

 
III. PROGRESSIVE POLYNOMIAL CALIBRATION METHOD – TWO DIMENSIONAL FUNCTION 

In this approach, the sensor output depends not only on one variable, but the output is also influenced 

from two independent variable. 

As an example, consider a sensor in which the output voltage is not determined solely by the pressure 

applied to the sensor but is also to some extent influenced by the working temperature of the sensor, such that 

errors offset, gain, and nonlinearity are temperature-dependent to a certain extent. Such a sensor must be calibrated 

for both pressure and temperature, hence the term two-dimensional calibration. To implement this approach, a 

normalized input variable x for the desired sensitivity and z for the cross-sensitive variable were used. The 

uncalibrated sensor transfer function is given by y=f(x, z). For the calibration of the second variable z, we assume 

that an additional sensor can be used to measure z independently of other variables, z' = k(z). The sensor transfer 

function will be calibrated using: 

1. NxM calibration measurements of the sensor output at different input vectors, denoted as f(xn, zm), where       

n = 1 to N and m = 1 to M. 

2. M simultaneous measurements of the output of the additional z-sensor, denoted as z'm = k(zm), m = 1 to M. 

3. N desired values of the sensor output signal, based on the ideal linear transfer curve yn = g(xn), n = 1 to N. 

After each calibration measurement, a corrected transfer curve hnm(x, z) is constructed based on the 

previous calibrated transfer functions and the calibration coefficient anm. Each coefficient can be calculated based 

on additional values obtained in the aforementioned list. Table 1 presents the functions of the progressive 

polynomial calibration method [1], [6]. 
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Table 1. Two-dimensional function of the progressive polynomial method 

m 

n 

1 

T=T1 

 

... 

M 

T=TM 

1 

p=p1 

 

h11= f(p,T)+a11 

 

… 
ℎ1𝑀(𝑝, 𝑇) = ℎ1,𝑀−1(𝑝, 𝑇) + 𝑎1𝑚 ∏(𝑇𝑀 − 𝑇𝑚)

𝑀−1

𝑚=1

 

2 

p=p2 h21= h1M (p,T)+a21(h1M (p,T)-y1) 

 

… 

ℎ2𝑀(𝑝, 𝑇) = ℎ2,𝑀−1(𝑝, 𝑇) + 𝑎2𝑚{ℎ1𝑚(𝑝, 𝑇)

− 𝑦1} ∏(𝑇𝑀 − 𝑇𝑚)

𝑀−1

𝑚=1

 

... … … … 

n 

p=pN 
ℎ𝑁1(𝑝, 𝑇) = ℎ𝑁−1,𝑀(𝑝, 𝑇) + 𝑎𝑁1{ℎ𝑛𝑚(𝑝, 𝑇)

− 𝑦𝑛} 

 

… 
ℎ𝑁𝑀(𝑝, 𝑇) = ℎ𝑁,𝑀−1(𝑝, 𝑇) + 𝑎𝑁𝑀 ∏(𝑇𝑀

𝑀−1

𝑚=1

− 𝑇𝑚) ∏{ℎ𝑁𝑀(𝑃, 𝑇) − 𝑦𝑛}

𝑀−1

𝑚=1

 

 
Table 2. Calculation of coefficients for the two-dimensional function in the progressive polynomial 

calibration method 

m 

n 

1 

T=T1 

 

... 

M 

T=TM 

1 

p=p1 

 

a11=y1 – f(p1,T1) 

 

… 
𝑎1𝑀 =

𝑦1 − ℎ1,𝑀−1(𝑝1, 𝑇𝑀)

∏ (𝑇𝑀 − 𝑇𝑚)𝑀−1
𝑚=1

 

2 

p=p2 
a21=

𝑦2−ℎ1,𝑀−1(𝑝2,𝑇1))

{ℎ1,𝑀−1(𝑝2,𝑇1)−𝑦1}
 

 

… 
𝑎1𝑀 =

𝑦2 − ℎ2,𝑀−1(𝑝2, 𝑇𝑀)

{ℎ1,𝑀−1(𝑝2, 𝑇1) − 𝑦1} ∏ (𝑇𝑀 − 𝑇𝑚)𝑀−1
𝑚=1

 

... … … … 

n 

p=pN 
aN1=

𝑦𝑁−ℎ𝑁−1,𝑀(𝑝𝑁,𝑇1))

∏ {ℎ𝑛𝑀(𝑛,𝑇1)−𝑦𝑛
𝑁−1
𝑛=1

 
 

… 
𝑎1𝑀 =

𝑦𝑁 − ℎ,𝑀−1(𝑝𝑁 , 𝑇𝑀)

{ℎ𝑚,𝑀−1(𝑝𝑛, 𝑇𝑀) − 𝑦𝑛} ∏ (𝑇𝑀 − 𝑇𝑚)𝑀−1
𝑚=1

 

 

IV. Experimental result 

The method has been successfully tested on various types of functions. In our case, the validity of the 

presented method was examined by correcting the transfer function of a piezoresistive pressure sensor U(p, T) = 

-1.2ln(1.7(1+0.01T)-P), where U(p, T) is the output voltage dependent on temperature and pressure. 

The progressive polynomial model algorithm was tested using the Matlab computer program. For this 

purpose, a sample of 10 measured sensor values was presented, both for pressure and temperature values. The 

adopted static characteristics in the plane and space, in the temperature range of 0-20°C and pressure range of 0-

1000mbar, are presented in Figures 1, 2, 3, 4, and 5, respectively. 

 

 

 

 

 

http://www.ijeijournal.com/


Calibration of a Piezoresistive Pressure Sensor Using the 2D Progressive Polynomial Method 

 

www.ijeijournal.com                                                                                                                                   Page | 50 

Table 3. Values of the sensor/sensor standard 

Measured value 

temp. [°C] 
0.2 2.4 4.6 8.8 9 11.2 13.4 15.6 17.8 20 

Standard temp. 

[oC] 
0 2 4 6 8 10 12 14 16 18 

Measured 

pressure value P 

[bar] 

0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.1 

Standard pressure 

value P [bar] 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

For the transfer function U(p, T) = -1.2ln(1.7(1+0.01T)-P), the graph of temperature and pressure 

variation before correction is first presented (Figure 1). 

 

Figure 1. Transfer function before correction 

 

What can be noticed from the graph is that the deviation of pressure and temperature from the real value 

is linear, which will significantly simplify the calibration process. 

1. In the first step, offset calibration is performed: 

 ℎ1𝑀(𝑝, 𝑇) = ℎ1,𝑀−1(𝑝, 𝑇) + 𝑎1𝑀 ∙ ∏ (𝑇𝑀 − 𝑇𝑚)𝑀−1
𝑚=1            (4) 

where the calibration coefficient: 

𝑎1𝑀 =
 𝑦1(𝑝, 𝑇) − ℎ1,𝑀−1(𝑝, 𝑇)

∏ (𝑇𝑀 − 𝑇𝑚)𝑀−1
𝑚=1

            (5) 

The calibration procedure is the same as in the one-dimensional approach, with the difference that in this process, 

there is also a variable T. Where Tm represents the measured temperature value of the sensor, and TM represents 

the desired temperature value of the sensor. At the beginning of the calibration process, the pressure value is 

selected, starting from the initial value. This pressure value remains fixed while correcting the temperature by 

selecting values according to an established procedure. 
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Figure 2. Offset correction 

 

2. After the offset correction, the next calibration step involves correcting the gain error (full-scale error) without 

affecting the previous step. This is achieved by rotating the function around the previous calibration point. The 

pressure values are selected, which, in the second calibration step, represent the end of the signal. Analogous to 

the previous step, the pressure value remains fixed, while further correction of the temperature is performed in the 

procedure. In this process, the transfer function rotates around the line (x=x1, z=z1) moving along the z-axis. The 

gain correction of the transfer function is performed without compromising the previous calibration step: 

   ℎ2𝑀(𝑝, 𝑇) = ℎ2,𝑀−1(𝑝, 𝑇) + 𝑎2𝑀 ∙ {ℎ1𝑀(𝑝, 𝑇) − 𝑦1} ∏(𝑇𝑀 − 𝑇𝑚)           (6)

𝑀−1

𝑚=1

 

where the calibration coefficient: 

𝑎2𝑀 =
   𝑦2(𝑝, 𝑇) − ℎ2,𝑀−1(𝑝, 𝑇)

{ℎ1𝑀(𝑝, 𝑇) − 𝑦1} ∏ (𝑇𝑀 − 𝑇𝑚) 𝑀−1
𝑚=1

           (7) 

Graphical representation, Figure 3 

 

Figure 3. Gain correction of the transfer function 

3. The third calibration step involves selecting a fixed pressure value at point three. These calibration 

measurements are used to correct the second-order linearity by 'bending' the function so that the previous 

calibration points remain fixed. 
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   ℎ3𝑀(𝑝, 𝑇) = ℎ3,𝑀−1(𝑝, 𝑇) + 𝑎3𝑀 ∙ {ℎ1𝑀(𝑝, 𝑇) − 𝑦1} {ℎ2𝑀(𝑝, 𝑇) − 𝑦2} ∏(𝑇𝑀 − 𝑇𝑚)           (8) 

𝑀−1

𝑚=1

 

where the calibration coefficient: 

𝑎3𝑀 =
   𝑦3(𝑝, 𝑇) − ℎ3,𝑀−1(𝑝, 𝑇)

{ℎ1𝑀(𝑝, 𝑇) − 𝑦1}{ℎ2𝑀(𝑝, 𝑇) − 𝑦2} ∏ (𝑇𝑀 − 𝑇𝑚) 𝑀−1
𝑚=1

           (9) 

 

Figure 4. Nonlinearity calibration 

4. Through a continuous process of temperature correction, we obtain the final graph of the two-dimensional 

calibration method, where Figure 5 represents third-order linearization. 

   ℎ4𝑀(𝑝, 𝑇) = ℎ4,𝑀−1(𝑝, 𝑇) + 𝑎4𝑀 ∙ {ℎ1𝑀(𝑝, 𝑇) − 𝑦1} {ℎ2𝑀(𝑝, 𝑇) − 𝑦2}{ℎ3𝑀(𝑝, 𝑇) − 𝑦3} ∏(𝑇𝑀 − 𝑇𝑚)     (10) 

𝑀−1

𝑚=1

 

where the calibration coefficient: 

𝑎4𝑀 =
   𝑦4(𝑝,𝑇)−ℎ4,𝑀−1(𝑝,𝑇)

{ℎ1𝑀(𝑝,𝑇)−𝑦1}{ℎ2𝑀(𝑝,𝑇)−𝑦2}{ℎ3𝑀(𝑝,𝑇)−𝑦3} ∏ (𝑇𝑀−𝑇𝑚) 𝑀−1
𝑚=1

           (11) 

 

Figure 5. Corrected transfer function 

 

Multiple calibration measurements can be performed in the same way for further linearization of the 

sensor transfer function. This explains the gradual correction of the transfer function until it fits the desired 

function. In fact, at each calibration step, the calibrated transfer function progresses towards the desired transfer, 
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hence the name progressive polynomial calibration. In this situation a simpler example was used, so the calibration 

expression is not 'cumbersome', more precisely, the calibration expression in four steps was applied. Very often, 

the situation is not so simple, and to achieve a high-quality solution, more than four calibration steps may be 

needed. 

 

V. Conclusion 

The progressive polynomial calibration method represents the most powerful algorithm for calibrating 

smart sensors. Taking this into account, this paper focuses on a more detailed presentation of this algorithm for 

the calibration of two-dimensional sensors. Through the presented example of a two-dimensional function, it can 

be observed that the advantage lies in the simplicity of the sensor calibration process, at each calibration step, the 

calibrated transfer function progresses towards the desired transfer, while on the other hand, the disadvantage is 

the 'cumbersome' expression in the case of a nonlinear sensor output. U ovom slučaju korišćen je jednostavniji 

primer senzora, gde je kompletan proces okončan u četiri kalibraciona koraka. For more complex functions, the 

process is much more complicated and takes place in multiple steps, and the need itself depends on the level of 

measurement precision required. Additionally, this algorithm has proven to be a very efficient tool for 

multidimensional sensor calibration. To improve the curve fitting technique with the progressive polynomial 

method, two strategies can be employed. The first is further development and improvement of this method, and 

the second is the smart selection of calibration points during the implementation of each calibration step. 

 

REFERENCES 
[1]. Van der Horn, G. and Huijsing, J. L. [1998] “Integrated smart sensors: design and calibration” Netherlands, Kluwer Academic 

Publishers. 

[2]. Flammini, A., Marioli, D.  and. Taroni, A. [1998] “Application of an optimal look-up table to sensor data processing” In IMTC/98 
Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. 

No. 98CH36222), Vol. 2, pp. 981-985. 

[3].  Dyer, S. A. and Dyer, J. S. [2001] “Cubic-spline interpolation” 1. IEEE Instrumentation & Measurement Magazine, 4(1), pp. 44-46. 
[4]. Dierickx, P. [1993] “Curve and Surface Fitting with Splines” Oxford: Oxford University Press. 

[5]. Nugroho, A., Gumelar, A. B., Yuniarno, E. M. and Purnomo, M. H. [2020] “Accelerometer calibration method based on polynomial 

curve fitting” International Seminar on Application for Technology of Information and Communication (iSemantic) IEEE, pp. 592-
596. 

[6]. Pereira, J. D., Postolache, O. and Girão, P. S. [2009] “Based progressive polynomial calibration method for smart sensors 

linearization” IEEE transactions on Instrumentation and Measurement, 58(9), pp. 3245-3252. 
[7]. Žorić, A. Č., Martinović, D. and Obradović, S. [2006] “A simple 2D digital calibration routine for transducers” Facta universitatis-

series: Electronics and Energetics, 19(2), pp. 197-207. 

http://www.ijeijournal.com/

