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Abstract—This paper presents a mini-course focusing on global optimization techniques in nonconvex 

programming, which is a challenging field in both practical and theoretical aspects. Accurate modeling of real-

world problems often requires introducing nonconvex terms in the objective function or constraints, leading to 

the presence of multiple local minima. To address this, the paper discusses the use of global optimization 

techniques. The syllabus covers various topics, starting with examples of Nonlinear Programming Problems 

(NLPs) and a general description of two-phase algorithms. It also delves into local optimization of NLPs with 

the derivation of KKT conditions, followed by insights into stochastic global multistart algorithms, including a 

concrete example of SobolOpt. The paper further explores a deterministic spatial Branch-andBound algorithm 

and discusses convex relaxation of NLPs. Finally, it presents the latest advances in bilinear programming, 

focusing on the theory of reduction constraints  
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I. INTRODUCTION (GLOBAL OPTIMIZATION) 

Optimization, a field of applied mathematics, focuses on finding the best possible value of a function 

within a specific domain while adhering to certain constraints on the variable values. Early optimization 

techniques were developed to address logistical challenges related to personnel and transportation management. 

These problems were often formulated as Linear Programming (LP) tasks, where the objective was to minimize 

costs while satisfying linear constraints on decision variables. The famous Simplex Algorithm, proposed by 

Dantzig in the late 1940s, became the prominent method for solving such LP problems, demonstrating 

exceptional efficiency in practical scenarios despite its exponential worst-case complexity.   

Another approach for solving LP problems is the Ellipsoid Algorithm, which offers a polynomial 

complexity. Today, both free and commercial implementations of the Simplex Algorithm exist, capable of 

handling large-scale instances with millions of variables and constraints.  

However, in many real-world cases, problems explicitly require the use of integer or binary decision 

variables, significantly increasing the difficulty of solving them. These problems fall into the category of 

Mixed-Integer Linear Programming (MILP), where some or all variables must take integer values, while the 

objective function and constraints remain linear. Despite the linearity of the functions, the integrality constraints 

on the variables introduce nonlinearity into the problem. Consequently, the techniques used to solve MILPs 

differ significantly from those employed for LPs.  

In MILP solving, typically, an algorithm needs to solve the entire LP problem (obtained by relaxing the 

integrality constraints on the integer variables) at each step. This LP relaxation step is a crucial part of the 

MILP-solving process.  

Two commonly used algorithms for MILP problems are the Branch-and-Bound algorithm and the 

Branch-and-Cut algorithm.  

 Overall, MILPs present more challenges than LPs due to the inclusion of discrete variables, but modern 

techniques and algorithms have made significant progress in addressing these complex optimization problems.  

 

II. GLOBAL OPTIMIZATION TECHNIQUES 

The field of optimization deals with finding the best possible value of a function within a given domain, 

considering various constraints on the variable values. Convexity plays a crucial role in distinguishing "easy" 

and "hard" optimization problems. A problem is convex if it involves minimizing a convex function or 

maximizing a concave function within a  convex set of feasible points. A significant advantage of convex 

problems is that a locally optimal solution is also globally optimal, making termination conditions 

computationally efficient for optimization algorithms.   
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In contrast, nonconvex problems present challenges as they may have multiple local optima, making it 

difficult to find the best solution. The study of finding extremal points of nonconvex functions subject to 

nonconvex constraints is known as Global Optimization. When discrete values constrain some or all problem 

variables, even if the mathematical expressions are linear, the problem becomes nonconvex due to the discrete 

nature of the solution set. Such problems are termed Combinatorial Optimization problems due to the discrete 

decision variables.  

 The general form of a global optimization problem involves finding a point x in a solution space set X 

(the feasible region) where an objective function f: X → T attains a minimum or maximum. T is usually an 

ordered set, often a subset of real numbers. The feasible region X is a subset of n-dimensional space defined by 

constraints g(x) T 0, where g represents a set of possibly nonlinear functions of x and T includes relations such 

as ≤, =, and ≥. Some variables may have bounds, denoted as xL ≤ x ≤ xU (xL, xU ∈ Rn). Additionally, certain 

variables may be constrained to take only integer values (xi ∈ Z for i in the index set Z ⊆ {1, . . . n}).  

 

III. HAVERLY’S POOLING PROBLEM 

Haverly's Pooling Problem, introduced in [Hav78], is a practical optimization problem illustrated 

visually. The problem involves three input feeds, each containing a different percentage of sulphur in the crude, 

and the unit costs of these input feeds vary accordingly. Two of these feeds are mixed in a pool to achieve the 

same level of sulphur percentage in the resulting streams. The blended streams are then used to create two end 

products, each with specific sulphur percentage requirements and different unit revenues. The goal is to 

determine the optimal quantities of input crude of each type to be fed into the network to minimize operational 

costs while meeting market demands. This problem can be formulated in what is known as the pformulation of 

the Haverly's Pooling Problem:  

  

minimize the objective function:  

6x11 + 16x21 + 10x12 − 9(y11 + y21) − 15(y12 + y22)  

(representing the costs) subject to the following constraints:  

  

Mass balance equations: x11 + x21 − y11 − y12 = 0 and x12 − y21 − y22 = 0  

Demand constraints: y11 + y21 ≤ 100 and y12 + y22 ≤ 200  

Sulphur balance equation: 3x11 + x21 − p(y11 + y12) = 0 Quality requirements constraints: py11 + 2y21 ≤ 

2.5(y11 + y21) and py12 + 2y22 ≤ 1.5(y12 + y22)  

  

Here, x and y represent the quantities of input and intermediate streams, respectively and p denotes the 

percentage of sulphur in the streams coming out of the pool. Notably, this problem contains three constraints 

involving bilinear terms, making the use of global optimization techniques essential for finding its optimal 

solution.  

 

IV. BLENDING PROBLEMS 

The Haverly's Pooling Problem (HPP) belongs to a broader class of problems known as 

Pooling/Blending problems. These problems involve mixing different types of crude oils with varying qualities, 

originating from multiple feeds, in various pools to produce several end-products that must meet specific quality 

requirements and quantity demands. The main objective is to minimize the overall costs involved in the 

blending process. Typically, these problems are formulated as continuous Nonlinear Programming Problems 

(NLPs) that include bilinear terms. Due to the presence of multiple local optima, global optimization methods 

become essential for finding the best solutions. The literature on Pooling/Blending problems is extensive 

[ATS99, FHJ92, VF96, TS02, ABH+02, LP04].  

 

V. EUCLIDEAN LOCATION PROBLEMS 

The problem at hand involves optimizing the geographical positions of storage points for the delivery 

of raw materials to a set of plants. There are n plants, each with specific daily raw material requirements (ri 

tons), and m storage points available, each with a storage capacity (cj). The storage points must be located at 

least 1 kilometer (D) away from any plant for security reasons. The transportation cost of raw materials between 

each storage point and each plant is directly proportional to both the distance and the quantity of raw material.  

  

The objective is to find the optimal geographical positions (xj, yj) for each storage point and the corresponding 

transportation quantities (wij) so that the overall transportation costs are minimized.  

  

The mathematical formulation is as follows:  
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Minimize the objective function:  

Pn ∑ Pm ∑ wijdij  

 Subject to the following constraints:  

Pm ∑ wij ≤ cj for all j ≤ m (storage capacity constraint for each storage point)  

Pn ∑ wij ≥ ri for all i ≤ n (satisfying the raw material requirement for each plant) dij = √((xj - ai)^2 + (yj - bi)^2) 

for all i ≤ m, j ≤ n (Euclidean distance between each plant and storage point) dij ≥ D for all i ≤ n, j ≤ m 

(minimum distance constraint between plants and storage points)  

  

Here, (xj, yj) represents the geographical position of the j-th storage point, dij denotes the distance between the 

i-th plant and the j-th storage point, and wij represents the quantity of raw material transported from the j-th 

storage point to the ith plant (i ≤ n, j ≤ m).  

  

This optimization problem aims to minimize transportation costs while ensuring that storage capacities are not 

exceeded, and raw material requirements for each plant are met. The problem is nonlinear and involves bilinear 

terms, which necessitates the use of global optimization techniques to find the optimal solution. This example 

showcases how global optimization methods can be beneficial in addressing questions involving pure 

mathematics.  

 

VI. A BRIEF HISTORY OF GLOBAL OPTIMIZATION 

The history of global optimization can be traced back to Lagrange's significant work in 1797. However, 

the need for global optimization was not a major concern until the advent of electronic computers, as 

computational efforts were substantial. Initially, optimization focused on locally optimizing convex functions, 

which had guaranteed global optimality only for this limited class of problems.  

 The early methods in global optimization were deterministic, employing the divide-and-conquer 

principle, which was facilitated by the introduction of electronic computers in the late 1950s. Deterministic 

techniques, like the Branch-and-Bound algorithm, were initially used for discrete problems such as the 

Travelling Salesman Problem.  

  

Continuous global optimization with Branch-and-Bound was first introduced in 1969. However, 

progress in continuous global optimization was slow due to computational expenses until more powerful 

computer hardware became available in the 1990s.  

  

Towards the end of the 1980s, elementary textbooks started appearing, explaining the basics of local 

optimization and early techniques in deterministic and stochastic global optimization. The field saw an 

explosion of research in the 1990s, with numerous papers, books, algorithms, and software packages on 

deterministic and stochastic global optimization.  

 One early significant algorithm for dealing with generic nonconvex continuous problems was Interval 

Optimization in 1980. The late 1980s and early 1990s witnessed the emergence of various iterative methods and 

stochastic algorithms applied to particular classes of problems.  

 In the early 1990s, Ryoo and Sahinidis developed the Branch-and-Reduce algorithm, addressing 

generic nonconvex continuous problems directly. Floudas' team also contributed with the Branch-and-Bound 

method, thoroughly explored and analyzed in subsequent papers.  

  Despite significant progress, some limitations persisted, such as the requirement for functions to be 

twice differentiable in continuous variables for certain algorithms.  

  

In summary, global optimization has evolved from early deterministic divide-and-conquer techniques to 

sophisticated algorithms capable of handling generic nonconvex continuous problems, making it a thriving field 

in optimization research.  

  

VII.  THE STRUCTURE OF GLOBAL OPTIMIZATION ALGORITHMS 

  Algorithmic methods for solving Mixed-Integer Nonlinear Programming (MINLP) problems can be 

broadly categorized into two main types: deterministic and stochastic.  

  An algorithm is considered deterministic if it can be simulated by a deterministic finite automaton, 

represented by a 5-tuple (Σ, Q, q0, F, δ). Here, Σ is the input alphabet, Q is the set of states, q0 ∈ Q is the start 

state, F ⊆ Q is the set of final states, and δ : Q × Σ → Q is the transition function. The transition function δ is a 

well-defined function that, given the current state of the automaton and an input symbol from the alphabet, 

determines the next state the automaton will move to. In a deterministic automaton, there is a unique next state 

for any given pair of the current state and input symbol.  
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Contrastingly, if the transition function δ is a relation between Q × Σ and Q, meaning that δ(q, σ) is a 

subset of Q, then the automaton is termed a nondeterministic finite automaton (NFA). In this case, for a given 

pair of the current state and input symbol, there may be multiple possible next states. However, it is worth 

noting that while algorithms are inherently deterministic since they are instruction sequences performed by 

computers, any NFA can be simulated by a deterministic finite automaton, allowing the representation of 

nondeterministic behavior using deterministic counterparts.  

 It is essential to differentiate between nondeterminism and random choices. Nondeterminism in this 

context refers to situations where the next step in the computation is not uniquely determined, while random 

choices imply the introduction of randomness or probability in the algorithm's behavior. Deterministic 

algorithms running on deterministic computers can be based on transition relations (nondeterministic behavior), 

but this does not involve randomness or chance-based decision-making.  

 In conclusion, while all algorithms are inherently deterministic due to their execution by deterministic 

computers, there are deterministic algorithms that incorporate nondeterministic behavior, meaning they can have 

multiple possible next states at certain stages of computation. However, these algorithms do not involve random 

choices or probabilistic outcomes. In the context of global optimization algorithms, there are two main 

categories: deterministic and stochastic. In deterministic algorithms, the next step of computation is uniquely 

determined without involving random elements. The convergence proofs for such algorithms do not rely on 

probability theory.  

 On the other hand, stochastic global optimization deals with situations where there is randomness in the 

choice of the next step during computation. Since deterministic automata, like computers, are not adept at 

performing random choices, stochastic behavior is simulated using pseudo-random number sequences or similar 

computational devices. True random data can be introduced through external inputs, such as the decaying time 

of radioactive atoms. Convergence proofs for stochastic algorithms often involve the use of probability theory.  

 Global optimization algorithms, whether deterministic or stochastic, generally consist of two distinct 

phases. The first phase, called the global phase, involves the exhaustive exploration of the search space to find 

promising regions. This phase may employ either deterministic or stochastic methods. At each iteration of the 

global phase, a local optimization procedure is called to identify a locally optimal point. This second phase is 

known as the local phase and is typically deterministic. The global phase relies on the local optimization 

procedure as a "black-box" function, making it crucial to have a reliable and robust local optimization algorithm 

for fast convergence. As a result, highly advanced local optimization techniques are commonly used.  

  Local optimization of Nonlinear Programming Problems (NLPs) is an NP-hard problem in itself, 

meaning that finding the global optimum of most nonconvex problems is also NP-hard. Even though the local 

optimization phase is treated as a "black-box" function call, understanding the underlying local optimization 

technique is essential for finetuning the global optimization process. Thus, a good knowledge of the theory of 

local optimization for NLPs is significant to improve the overall performance of global optimization algorithms.  

  

VIII. STOCHASTIC METHOD 

  Stochastic methods in global optimization introduce an element of randomness in the computation, 

which means that an absolute guarantee of finding the global optimum within a finite amount of computation is 

not possible. These methods are divided into two main approaches: the sampling approach and the escaping 

approach.  

  

In the sampling approach, algorithms like Multi-Level  

Single Linkage (MLSL) and Variable Neighbourhood  

Search focus on extensive sampling. Multiple local optimization procedures are initiated from various starting 

points selected using different rules (as shown in Figure 3). The best local optimum among these sampled points 

is considered the "labelled" global optimum. Various termination rules exist, including the Bayesian stopping 

rule based on the expected number of local minima in the sampling set, exhaustive sampling set exploration, or 

a CPU time limit. While sampling stochastic algorithms are guaranteed to converge in infinite time with 

probability 1, there is no guarantee that the located solution will be the true global optimum. As the number of 

dimensions increases, the chance of finding the global optimum diminishes due to the limitation on the size of 

the sampling set.  

 The escaping approach, employed in algorithms like Tabu Search, Simulated Annealing, and tunnelling 

methods, aims to "escape from local optima." After the local optimization procedure finds a local optimum, the 

global phase is designed to reach another feasible point from which to start a new local optimization procedure 

(as depicted in Figure 4). Termination conditions are usually based on the number of local optimization calls or 

a maximum time limit. As with the sampling approach, there are no definite guarantees of global optimality, 

except for convergence in infinite time with probability 1.  
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  In summary, stochastic methods in global optimization introduce randomness, which restricts the 

ability to guarantee finding the global optimum within a finite computation. Both the sampling approach and the 

escaping approach have their strengths and limitations, and their effectiveness may vary depending on the 

problem size and complexity.  

  

IX. THE SOBOLOPT ALGORITHM 

The algorithm named SobolOpt [KS04] is classified as a Multi-Level Single Linkage (MLSL) 

algorithm. Its primary advantage lies in its utilization of specialized LowDiscrepancy Sequences (LDSs) 

referred to as Sobol' sequences. These sequences have exceptional uniformity properties in their distribution 

within Euclidean space.  

While conventional random distributions, often generated within specific time intervals on computers, 

theoretically "fill the space" over infinite time with certainty, this scenario is quite removed from practical 

operating conditions. In contrast, LDSs, particularly Sobol' sequences, exhibit the remarkable property of 

uniformly populating the space even within finite time frames. To elaborate, for any given positive integer N, 

the initial N terms of a Sobol' sequence effectively distribute points throughout the space in an even manner.  

 A further noteworthy characteristic of Sobol' sequences is that any projection onto a coordinate 

hyperplane within the n-dimensional Euclidean space (Rn), encompassing N points derived from a Sobol' 

sequence, will consistently contain N projected points in the reduced n − 1-dimensional Sobol' sequence.  

The regularity and uniformity characteristics of Sobol' sequences are harnessed within the subsequent 

MLSL algorithm, outlined as follows. Let Q denote the collection of pairs consisting of sampled points q along 

with their corresponding evaluations f(q) using the objective function f. Meanwhile, S represents the 

accumulated record of all locally minimal points discovered thus far.  

  

(Initialization) Commence by setting Q and S as empty sets.  

Initialize k as 1, and define a positive value " > 0.  

  

(Termination) If a predefined termination condition is satisfied, the algorithm concludes.  

  

(Sampling) Extract a point qk from a Sobol' sequence and include the pair (qk, f(qk)) into the Q set.  

  

(Clustering distance) Calculate a distance rk, a function reliant on parameters k and n. Various methods exist for 

computing this distance; one option is rk = k− 1 n , where is a predetermined parameter.  

  

(Local phase) If no previous sampled point qj  Q (where j < k) exists such that the distance ||qk − qj || is less 

than rk and f(qj) is no greater than f(qk)−", undertake a local problem-solving phase. Within this phase, employ 

qk as the starting point to solve problem (1) locally, resulting in the identification of a solution y having the 

value f(y). If y is not already present in S, add it to S. Increment k by 1 and return to step 2.  

  

The algorithm culminates with the creation of the S list, containing all the locally minimal points discovered. To 

locate the global minimum, it's a straightforward task to pinpoint the minimum point possessing the lowest 

value of the objective function f(y). Two commonly used termination conditions encompass: (a) reaching the 

maximum count of sampled points, and (b) surpassing a specified maximum time limit.  

  

X. THE SOBOLOPT ALGORITHM 

The spatial Branch-and-Bound (sBB) algorithm described in this section is a deterministic algorithm that solves 

NLPs in form (1). The general mathematical structure and properties of sBB algorithms aimed at solving 

nonconvex NLPs are explained in Section 2.2. The convergence proof theorem 2.1 also covers the sBB 

algorithm described in this section. The Branch-and-Reduce method [RS95] is an sBB algorithm with strong 

emphasis on variable range reduction. The  BB algorithm [AMF95, Adj98,  

AAMF96, AAF98] is an sBB whose main feature is that the convex underestimators for general 

twicedifferentiable nonconvex terms can be constructed automatically. The reduced-space Branch-and-Bound 

algorithm [EP97] identifies a priori a reduced set of branching variables so that less branching is required.  

The generalized Branch-and-Cut framework proposed in [KB00] derives cuts from violated constraints 

in three sub-problems related to the original problem. In this exposition, we follow a particular type of sBB 

algorithm called spatial Branch-and-Bound with symbolic reformulation [Smi96, SP99, Lib04b].  

Central to the each sBB algorithm is the concept of a convex relaxation of the original nonconvex problem; this 

is a convex problem whose solution is guaranteed to provide an underestimation for the objective function 

optimal value in the original problem. At each iteration of the algorithm, restrictions of the original problem and 

its convex relaxations to particular sub-regions of space are solved, so that a lower and an upper bound to the 
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optimal value of the objective function can be assigned to each sub-region; if the bounds are very close together, 

a global optimum relative to the subregion has been identified. The particular selection rule of the sub-regions to 

examine makes it possible to exhaustively explore the search space rather efficiently. Since the subregions of 

space are usually hyper-rectangles defined by restrictions of the variable ranges, it is very important to start with 

the smallest variable ranges guaranteeing feasibility of the problem.  

  

XI.  CONCLUSION 

This paper is a brief (mostly theoretical) overview of the main concepts in global and local nonconvex 

optimization, with a particular slant on deterministic methods for global optimization. It provides an 

introductory exposition of the field of optimization and includes a short history of global optimization. global 

optimization algorithms according to their algorithmic behaviour and convergence properties; we then explain 

the two-phase structure underlying most global optimization algorithm, and introduce the classes of stochastic 

global optimization algorithms and deterministic global optimization algorithms. describes recent advances 

which allow to automatically generate a very tight convex relaxation for a large class of nonconvex problems 

containing bilinear terms.  
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