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ABSTRACT: Proteins are a class of vital biomacromolecules in biological organisms, exhibiting four levels of 

structural organization: primary, secondary, tertiary, and quaternary structures. The tertiary structure of 

proteins is typically employed to depict the spatial characteristics of proteins, facilitating the analysis of their 

functions and actions. This article provides a comprehensive review and investigation of protein tertiary 

structure generation utilizing both physical experimental methods and deep learning approaches. 

Simultaneously, it conducts an analysis of their respective strengths and weaknesses, offering valuable insights 

and scientific significance for the future development and research of protein tertiary structure generation.  
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I. INTRODUCTION 

Proteins represent intricate, crucial, and indispensable natural polymers [1], pivotal in sustaining the 

growth, differentiation, and repair of biological organisms, thus playing a paramount role in the realm of biology 

[2]. Based on structural hierarchy, proteins can be categorized into primary, secondary, tertiary, and quaternary 

structures [1]. The properties of lower-level structures can determine the quality of higher-level structures, 

thereby influencing their functionality and impact. The primary structure of a protein consists of multiple amino 

acids arranged in a specific sequence [3]. The secondary structure is formed when certain amino acids interact 

via hydrogen bonds, resulting in local spatial conformations such as α-helices, β-sheets, and β-turns, among 

others [4]. The tertiary structure, built upon the secondary structure, involves further coiling and folding of the 

polypeptide chain to create more complex, globular molecular structures, which can be categorized into α, β, 

α+β, and α/β types [5]. The quaternary structure is constituted by the assembly of two or more subunits, each 

possessing its own tertiary structure, through non-covalent interactions, resulting in a complex with a distinct 

tertiary structure [6]. The tertiary structure of proteins is the most commonly employed structure for 

representing the spatial characteristics of proteins. 

The prediction of various protein properties and the inference of their functions and roles can be 

achieved through the analysis of protein tertiary structure. Currently, physical experimental methods employed 

for protein tertiary structure resolution include X-ray crystalline diffraction, nuclear magnetic resonance, and 

cryogenic electron microscopy. 

(1) X-ray crystalline diffraction. The principle behind it is that when X-rays strike particles in a molecular 

crystal, they interact with the electrons in the crystal, leading to a diffraction effect. By collecting these 

diffraction signals with a detector, it is possible to determine the distribution of electron density within the 

crystal. This information allows us to obtain the spatial coordinates of the particles and ultimately derive 

the tertiary structure of the protein. X-ray crystalline diffraction is the most commonly used and highly 

accurate technique for determining protein tertiary structures [7], and the resulting protein tertiary structure 

is depicted in Figure 1. As shown in Table 1, this method offers a wide range of protein molecular weights, 

high resolution, and suitability for soluble proteins, pancreatic enzymes, and protein complexes. However, 

it requires protein crystallization. Additionally, X-rays themselves carry a significant amount of energy, 

making it easy to cause radiation damage to crystals. One limitation is that it is not suitable for analyzing 

proteins with larger molecular weights. 

(2) Nuclear magnetic resonance. The underlying principle involves atomic nuclei with lone pair electrons 

undergo spin in response to an external magnetic field, resulting in energy level transitions through Zeeman 

splitting. This process leads to the absorption and emission of electromagnetic radiation, generating distinct 

resonance spectra. By recording changes in the spectrum, one can determine the location and relative 

abundance of the atoms within the molecule, enabling quantitative analysis, molecular weight 

determination, and molecular structure analysis. This technique is extensively utilized in structural biology 
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[8], and the resulting protein tertiary structure is depicted in Figure 2. As indicated in Table 1, this method 

provides a more accurate depiction of the natural structures of biomacromolecules and is suitable for 

investigating transient and unstable complexes. It is well-suited for studying protein dynamics and can also 

be applied to research the three-dimensional structures of membrane proteins. However, the presence of 

structural instability in proteins within a solution can make it challenging to obtain stable nuclear magnetic 

resonance signals, and there are limitations in its capacity when dealing with large biomolecules. 

(3) Cryogenic electron microscopy. The principle involves rapidly freezing biomacromolecules in 

milliseconds, embedding them in a glassy state of ice. Highly coherent electrons are employed as a light 

source, and an acceleration voltage of 80 to 300 kV is applied to accelerate the electron beam. The electron 

beam passes through the sample and the surrounding ice layers, causing the sample to scatter. 

Subsequently, the scattered signals are recorded using a detector and lens system, collecting two-

dimensional projections of the biomacromolecule from various orientations. Afterward, image processing 

and three-dimensional reconstruction techniques are employed to compute the fine tertiary structure of the 

biomacromolecule. This method combines the advantages of X-ray crystalline diffraction and nuclear 

magnetic resonance, making it the most suitable alternative for structural research [9]. The resulting protein 

tertiary structure is depicted in Figure 3. As shown in Table 1, this method allows for the direct acquisition 

of the structure and conformational changes of biomacromolecules under near-physiological conditions. It 

does not require protein crystallization, demands relatively small sample quantities, and is applicable to a 

wide range of researches, and resolution of the three-dimensional fine structure of macromolecular 

complexes. However, it imposes high demands on sample preparation, particularly for samples with lower 

molecular weights and poor homogeneity, and the resolution achieved may be comparatively lower. 

 

Table 1. Comparation of physical experimental methods for protein tertiary structure resolution 
 X-ray crystalline diffraction Nuclear magnetic resonance Cryogenic electron microscopy 

Advantages 1. A wide range of protein molecular 

weights 
2. High resolution 

3. Suitability for soluble proteins, 

pancreatic enzymes, and protein 
complexes 

1. A more accurate depiction of the 

natural structures of 
biomacromolecules  

2. It is suitable for investigating 

transient and unstable complexes 
3. It is well-suited for studying 

protein dynamics  

4. It can also be applied to research 
the three-dimensional structures 

of membrane proteins 

1. Direct acquisition of the structure 

and conformational changes of 
biomacromolecules under near-

physiological conditions. 

2. It does not require protein 
crystallization 

3. It demands relatively small sample 

quantities 
4. It is applicable to a wide range of 

researches 

5. Resolution of the three-dimensional 

fine structure of macromolecular 

complexes. 

Limitations 1. Protein crystallization requirement 
2. X-rays themselves carry a 

significant amount of energy, 

making it easy to cause radiation 
damage to crystals 

3. It is not suitable for analyzing 

proteins with larger molecular 
weights 

1. The presence of structural 
instability in proteins within a 

solution can make it challenging 

to obtain stable nuclear magnetic 
resonance signals 

2. There are limitations in its 

capacity when dealing with large 
biomolecules. 

1. It imposes high demands on sample 
preparation, particularly for samples 

with lower molecular weights and 

poor homogeneity 
2. Resolution achieved may be 

comparatively lower 

 

 

These experimental methods often necessitate prolonged timeframes, involve intricate measurement 

techniques with numerous steps, carry a risk of experimental failure, incur high costs, and require protein 

crystallization. With the rise of deep learning technology, utilizing deep learning for protein tertiary structure 

generation has become mainstream. This method offers high efficiency, rapid processing, reduced reliance on 

extensive manual labor and experiments, and lower costs. The process of protein tertiary structure generation 

based on deep learning involves four stages: generating a multiple sequence alignment file, generating residue 

distance and orientation geometric constraint files, generating tertiary structure files, and visualizing the tertiary 

structure.  
Depending on the different approaches to deep learning model generation, protein tertiary structure 

generation models can be categorized into three types: based on autoregressive models, based on variational 

autoencoders (VAE), and based on generative adversarial networks (GAN). The following is a detailed 

exploration of these tertiary structure generation models. 
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Figure 1. Protein tertiary structure determination using x-ray crystalline diffraction  

 

 
Figure 2. Protein tertiary structure determination using nuclear magnetic resonance  

 

 
Figure 3. Protein tertiary structure determination using cryogenic electron microscopy 

 

II. BASED ON AUTOREGRESSIVE MODELS 

The autoregressive model refers to a process in which a variable is regressed on its own past values. It 

utilizes the historical time data of the variable to predict its current value [10]. As shown in Table 2, classical 

models like ProteinSolver [11] employ deep graph neural networks to rapidly and highly accurately design 

sequences that can fold into predetermined shapes. They can generate desired geometric sequences from 

existing proteins and combine them with backbone detection methods to design new structures more quickly, 

enabling more extensive sampling of large conformational spaces. However, the learning curve is steep, and a 

high degree of domain-specific expertise is required. The ESM-1b Transformer [12] utilizes unsupervised 

language models based on the Transformer technology to generate new diverse sequences. It then automatically 

learns features to accurately represent contact maps, secondary structures, and tertiary structures. The network 

can generalize, with a scale comparable to models in the text domain, and it outperforms ISTM. However, due 

to limited model capacity, even the highest-capacity trained model cannot fit sequence datasets. The MSA 

Transformer [13], which takes multiple sequence alignment as input, is a language model based on the 

Transformer technology. It is used to reconstruct a disrupted MSA and predict contact maps and secondary 

structures with high accuracy. It offers higher parameter efficiency compared to previous state-of-the-art protein 

language models and outperforms current unsupervised contact prediction methods, suitable for all depths of 
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multiple sequence alignments. However, bundled attention and parameter counting can affect contact accuracy, 

and the diversity of input sequences has a significant impact on structural inference. RefineGNN [14] utilizes 

sequence autoregression decomposition and iteratively improves its predicted global structure for antibody 

sequence and structure co-design. It can modify generated subgraphs to accommodate the addition of new 

residues. It significantly outperforms sequence-based and graph-based methods in three antibody generation 

tasks. However, it cannot be experimentally tested in wet labs, and the PPL given by the structural-conditioned 

model is lower than expected. 

 

Table 2. Research on protein tertiary structure generation based on autoregressive models 
Author Model Targets Limitations 

Strokach, A ProteinSolver[11] Rapidly and highly accurately design 

sequences that can fold into 

predetermined shapes, and combine with 
backbone detection methods to design 

new structures more quickly and sample a 

larger conformational space at a faster 
pace. 

Its learning curve is steep, and a high 

degree of domain-specific expertise is 

required 

Rives, A ESM-1b Transformer[12] Generate new diverse sequences and 

automatically learn features to precisely 

represent contact maps, secondary 
structures, and tertiary structures. 

Due to limited model capacity, even the 

highest-capacity trained model cannot fit 

sequence datasets 

Rao, R MSA Transformer [13] Reconstruct disrupted multiple sequence 

alignments (MSA) and predict contact 
maps and secondary structures with high 

accuracy. 

Bundled attention and parameter counting 

can affect contact accuracy, and the 
diversity of input sequences has a 

significant impact on structural inference 

Jin, W RefineGNN[14] Perform antibody sequence and structure 
co-design by iteratively improving 

predicted global structures through 

sequence autoregression decomposition. 

It cannot be experimentally tested in wet 
labs, and the PPL given by the structural-

conditioned model is lower than expected 

 

III. BASED ON VARIATIONAL AUTOENCODERS 

The Variational Autoencoder (VAE) consists of an encoder and a decoder. The encoder maps high-

dimensional input data into a lower-dimensional latent space, obtaining features, which are subsequently 

decoded by the decoder into an output of the same form as the input [15]. As shown in Table 3, CO-VAE and 

DCO-VAE [16] employ variational autoencoders to reconstruct three-dimensional protein structures from 

generated contact maps. The generated contact maps and structure quality are high, and they can effectively 

capture the sample distribution of observed contact maps, resulting in diverse generated maps. However, it is not 

a direct end-to-end protein tertiary structure generation model, and there exists a gap between contact map 

generation and the formation of three-dimensional structures. CogMol [17], combining molecular SMILES and 

variational autoencoders, is used for designing highly affinity and off-target selective novel virus proteins. It can 

handle the constrained design of synthesizable, low-toxicity, drug-like molecules and exhibits high target 

specificity and selectivity without target-dependent fine-tuning of frameworks or target structure information. 

However, due to biases in training data or inaccuracies in predictors used to control generation, it may not 

always generate molecules with the desired attributes. Mathematical-neural network [18] combines the SRVF 

function, ResNets network, and G-VAE model network to compare, deform, and generate similar yet distinct 

novel three-dimensional protein structures. It can accurately infer missing portions of protein structures and 

restore their shapes. However, there are instances of unreasonable phenomena in the generated α-helices in the 

middle portion of proteins, and it is still unable to generate complete structures that are chemically valid and 

realistically complex in tertiary structure. SPP-VAE [19], which combines a convolutional variational 

autoencoder network with spatial pyramid pooling, can learn directly from the tertiary structures of proteins of 

different lengths in a protein database, enabling the precise generation of corresponding diversity distance 

matrices. The output results are unaffected by input size. However, it requires a relatively large training dataset, 

and training the model using the PISCES-derived database may significantly reduce the accuracy of the distance 

matrix. Ig-VAE [20] is used to directly generate the three-dimensional coordinates of immunoglobulins using a 

variational autoencoder. It does not require recovering coordinates from bidirectional distance constraints, thus 

avoiding issues with the validity of distance matrices. It can generate novel, high-quality backbones that satisfy 

specific design constraints while also providing a compatible distribution of supporting elements. However, 

refining with Rosetta did not improve the accuracy of backbone reconstruction, and the quality decreases when 

the structure deviates too far from the training data. 
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Table 3. Research on protein tertiary structure generation based on variational autoencoder 
Author Model Target Limitations 

Guo, X CO-VAE 
DCO-VAE[16] 

Generate diverse, high-quality 
contact maps and protein tertiary 

structures 

It is not a direct end-to-end protein tertiary 
structure generation model, and there exists a gap 

between contact map generation and the formation 

of three-dimensional structures 

Chenthamarakshan, 
V 

CogMol[17] Be used for designing high-affinity 
and off-target selective targeted novel 

virus proteins and can handle the 

constrained design of synthesizable, 
low-toxicity, drug-like molecules 

Due to biases in training data or inaccuracies in 
predictors used to control generation, it may not 

always generate molecules with the desired 

attributes 

Huang, H mathematical-neural 

network[18] 

Compare, deform, and generate 

similar yet distinct novel three-
dimensional protein structures, while 

accurately inferring the missing 

portions of protein structures to 
restore their shapes. 

There are instances of unreasonable phenomena in 

the generated α-helices in the middle portion of 
proteins, and it is still unable to generate complete 

structures that are chemically valid and 

realistically complex in tertiary structure 

Alam, F SPP-VAE[19] Learn directly from the tertiary 

structures of proteins of different 

lengths in a protein database, 
allowing for the precise generation of 

corresponding diversity distance 

matrices, with the output results 
unaffected by input size. 

It requires a relatively large training dataset, and 

training the model using the PISCES-derived 

database may significantly reduce the accuracy of 
the distance matrix 

Eguchi, R.R Ig-VAE[20] Avoid the need to recover 

coordinates from bidirectional 
distance constraints, thus mitigating 

issues with the validity of distance 

matrices. This approach can generate 
novel, high-quality backbones that 

satisfy specific design constraints 

while also providing a compatible 
distribution of supporting elements. 

Refining with Rosetta did not improve the 

accuracy of backbone reconstruction, and the 
quality decreases when the structure deviates too 

far from the training data 

 

IV.  BASED ON GENERATIVE ADVERSARIAL NETWORKS 

Generative Adversarial Networks (GANs) consist of a generator and a discriminator. The generator 

attempts to produce realistic data to 'fool' the discriminator, while the discriminator tries to distinguish it from 

real data. In this continuous adversarial training, the generator's generation capability and the discriminator's 

discrimination ability gradually improve, ultimately producing high-quality outputs [21]. As shown in Table 4, 

GANs [22] employ Generative Adversarial Networks to generate fixed-length, all-atom protein backbones in a 

fast and fully differentiable manner. It can recover the generated folds after forward folding, eliminating the 

need for explicitly encoding structural invariance to arbitrary rotations and translations. What's more, it can 

model long-range contacts. However, generating structures can be challenging, and it consumes a relatively high 

amount of energy. The coordinate recovery network trained may not generalize to arbitrary generated mappings 

without local backbone net errors, requiring additional optimization for each structure. RamaNet [23] utilizes a 

combination of GAN architecture and Long Short-Term Memory units to design de novo protein backbones. It 

can generate a large number of random, logical, rigid, and compact helical protein backbone topologies without 

the need for user-defined topological values. However, it is only suitable for dense protein main chains 

containing 80 to 150 amino acids. It has not been successful in generating structures that include beta sheets, 

and it relies on other simulation tools to obtain proteins with specific sequences. ContactGAN [24] utilizes a 

generative adversarial network to refine and denoise contact maps, improving the accuracy of protein tertiary 

structure models. This approach significantly enhances the precision of contact maps predicted by CCMpred, 

DeepCov, and DeepContact. However, improving the accuracy of contact map predictions, particularly for 

crucial long-range contacts between residues 12-18 and 112-118, remains challenging when using trRosetta. 
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Table 4. Research on protein tertiary structure generation based on generative adversarial networks 
Author Model Target Limitations 

Anand, N GANs[22] Generate fixed-length, all-atom protein 
backbones in a fast and fully 

differentiable manner, recover the 

generated folds after forward folding, 
and model long-range contacts. 

Generating structures can be challenging, and it 
consumes a relatively high amount of energy. The 

coordinate recovery network trained may not 

generalize to arbitrary generated mappings 
without local backbone net errors, requiring 

additional optimization for each structure. 

Sabban, S RamaNet[23] Automatically generate a large number 
of random, logical, rigid, and compact 

helical protein backbone topologies 

without the need for user-defined 
topological values. 

It is only suitable for dense protein main chains 
containing 80 to 150 amino acids. It has not been 

successful in generating structures that include 

beta sheets, and it relies on other simulation tools 
to obtain proteins with specific sequences 

Maddhuri, V ContactGAN[24] Refine and denoise contact maps to 

improve their accuracy, leading to the 

generation of higher-precision protein 
tertiary structure models. 

Improving the accuracy of contact map 

predictions, particularly for crucial long-range 

contacts between residues 12-18 and 112-118, 
remains challenging when using trRosetta 

 

V. CONCLUSION 

This article elaborates on the significance of proteins in biology and their structural classifications. 

Among these, the tertiary structure of proteins is commonly employed to depict their spatial characteristics, 

allowing for the analysis of protein functionality and roles based on their tertiary structures. The generation of 

protein tertiary structures can be achieved through physical experimental methods, including X-ray crystalline 

diffraction, nuclear magnetic resonance, and cryogenic electron microscopy, as well as through deep learning-

based methods, such as autoregressive-based models, variational autoencoders (VAE), and generative 

adversarial networks (GAN). The article provides detailed explanations of these methods and summarizes their 

advantages and limitations. Clearly, compared to physical experimental methods, the methods based on deep 

learning for protein tertiary structure generation offer higher efficiency, faster processing, reduced reliance on 

extensive manual work and experiments, and lower costs. 
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