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Summary: This article presents a method to design a controller for a MIMO (multiple-input, multiple-Multiple-

Output) linear system using the pole placement method. This method is applied to designing a controller for an 

object that is the edge motion channel of an aircraft. This is a very complex object; the mathematical model is 

represented as a system of equations with six degrees of freedom that operate under different conditions and are 

influenced by many impacts. The mathematical model of the aircraft is broken down into individual motions, 

namely edge motion and longitudinal motion, using the linear method with small deviations. Designing controllers 

for separate aircraft motion channels is very important to achieve aircraft control quality criteria. In this study, the 

pole point assignment method is used to design a controller for the object's edge motion channel based on the 

parameters in the object's mathematical model. Simulation results on MATLAB software show that the proposed 

design method produces results in accordance with the required quality criteria. 
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I. Introduction 

           The pole point assignment method is based on the principle that the quality of the automatic control 

system depends on the position of the system's pole points, so we can assign the system the given pole points 

and set stability standards for the system from which to build a controller for the system that fully meets the 

standards we set before designing. The ultimate goal of the design is to find the K coefficient matrix from which 

we can build a closed-loop circuit of the system that fully meets the standards we have set. 

The selection of pole pairs for designing a controller for the aircraft's edge motion channel to fully meet the set 

standards is presented in Section 2.3 of this article. In Part 3, the calculation results are checked through 

simulation on Matlab software. 

 

II. Content 

2.1. Mathematical model of the vertical motion channel of an aircraft 

 

 
 

x, y, z = Position coordinates;  ϕ = Roll angle; u,v,w  = Velocity coordinates;  θ = Pictchi angle; 

p = Roll rate; ψ = Yaw angle; q = Pitch rate;   β  = Slide-slip angle;  r = Yaw rate; α = Angle of attack. 

Figure 1. Aircraft motion parameters 
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Decoupled longitudinal motion is motion in response to a disturbance which is constrained to the 

longitudinal plane of symmetry, the oxz plane, only. The motion is therefore described by the axial force X, 

normal force Z, and the pitching moment M equations only. Since no lateral motion is involved the lateral 

motion variables v, p and r and their derivatives are all zero. Also, decoupled longitudinal - lateral motion means 

that the aerodynamic coupling derivatives are negligibly small and may be taken as zero. The parameters for 

calculation are shown in Figure 1. 

 

Thus, the equation of longitudinal motion referred to the body axes, taking into account zero initial conditions and since 

small perturbation only is considered possible to write: 
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Equations (1a) are the most general form of the dimensional decoupled equations of longitudinal symmetric 

motion referred to aeroplane body axes. In (1a) the dimensional variables are denoted by 
o

X .  

If it is assumed that the aeroplane is in level flight and the reference axes are wind or stability axes then 

0 ee W cos 1e   and sin 0e  , and 0q wZ Z   

And the equations simplify further to 
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  (2a) 

Variables  ,   in equation (2a) stand for elevator and throttle deflection, respectively. Since the longitudinal 

motion of aeroplane is described by four state variables , ,u w q  and   and four differential equations are 

required. Thus the additional equation is the auxiliary equation relating pitch rate to attitude rate, which small 

perturbation is q  . 

The motion, or state, of any linear dynamic system may be described by a minimum set of variables called the 

state variables. The number of state variables required to completely describe the motion of the system is 

dependent on the number of degrees of freedom the system has. Thus the motion of the system is described in a 

multidimensional vector space called the state space, thee number of state variables being equal to the number 

of dimensions. The equation of motion, or state equation, of the linear time invariant (LTI) multi-variable 

system is written: 
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Hence, in terms of dimensionless derivatives the equations of longitudinal motion in the state space form is 

written as follows [1,2]: 
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where the state space vector x and control vector   are given by  
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2.2. Design the control system using the pole point assignment method. 
Consider the control system in the form of state variables as follows: 

Cxy

BuAxx




                                                       (1) 

Here A is the state matrix of size )( nn , B is the input matrix of size )( rn , and C is the output matrix of the 

system. 

The important thing in state control is the controllability and observability of the object. To check, we compare 

the states of the following two matrices with the rank of the system's state matrix A. 

PB = [B AB …. BAn 1
]; PC = [   TnTTTT CACAC

1
....


] 

If the rank of matrix PB is equal to the rank of matrix A, then we say that the object is controllable, and if the 

rank of matrix PC is equal to the rank of matrix A, then the object is completely observable. 

The characteristic equation of the open system (1) is 
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Here I is the unit matrix of size )( nn  and ai coefficients of the original characteristic polynomial. If the 

dynamical system defined by matrices of A, B, and C is controllable, characteristic polynomial equation of the 

closed loop control system can be set using state feedback matrix of K. 

 
Figure 2. Closed-loop circuit structure diagram 

 

Here K is a constant feedback gain vector. 

Starting from the structure diagram of the closed-loop control system (Figure 2), we can determine 

Kxru                                                              (3) 

The characteristic polynomial of the closed loop control system defined by equation (3) is as follows by can be 

expressed in the controllable canonical form, i.e.: 
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The state matrix A and matrix B of the open-loop state equation system (2) can be written as follows: 
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Consider the block diagram of the system with state feedback control below: 

Here r is the input signal of the closed system, and K is the feedback amplification factor. 

].....[ 01 kkK n  

With the control structure diagram of the closed loop circuit and from (1), (3), the state equation system has the 

following form: 
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The A-BK state matrix of the closed-loop state equation system (4) can be written as follows: 
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The characteristic equation of the closed system (4) is 
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With closed-loop pole positions npppp ,,,, 321  , the desired characteristic equation will be: 
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The purpose of design is to find K so that the characteristic equation for the control system is identical to the 

desired characteristic equation. Therefore, vector K is obtained by unifying the coefficients of equations (5) and 

(6): 
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Note that if the state model is not in normal form, we can use transformation techniques to transform the given 

state model into normal form by using the non-degenerate matrix T. The coefficient K obtained for this model is 

then back-transformed to fit the original model. This transformation is performed according to the Bass-Garu 

transformation [3]. 
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Use the Bass-Garu transformation to determine the transformation matrix T so that the matrix ATT 1
 has the 

same normal form. Then the T matrix will be calculated according to the following formula: 

WPT B  

where PB is the matrix to check the controllability of the system and W is the matrix of the form 
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Then the control law of the closed-loop circuit with r = 0 is 
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2.3. Method of selecting pole points 

We want the system to achieve a certain quality in terms of overshoot and settling time. In terms of kinetics, the 

closed system will be equivalent to a certain sample stage [6, 7]. 

Consider a general object with a transfer function. 
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The transfer function )(sH can be written in the following approximate form: 
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The solution of the characteristic polynomial of (7) has the following form: 
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And the overcorrection degree and overcorrection time are calculated according to the formula. 
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The pole points are selected as follows [5]: 

A pair of poles with dominant characteristics determines the entire dynamic characteristics of the entire system. 

All remaining poles are chosen far enough away so as not to affect the dominant poles. 

 From the requirements for the quality of the closed system, we can deduce the requirements for the 

characteristics of the second order stage. We can determine the parameters T, and   from these two 

parameters, we can find the pair of poles of the second order oscillation stage. is the dominant pair of poles in 

the system. The remaining pole points of the system (if any) will be chosen to be 5 to 10 times farther from the 

virtual axis than the dominant pair of pole points and have no imaginary component. 

 

2.4. Calculation and simulation results 

Specific research with light aircraft, parameters are referenced from document [2]. The flight condition assumed 

corresponds with Mach 2.0 at an altitude of 60,000 ft. 

The parameters in the aircraft edge motion state equation system according to equation (1a) are 
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From the pole point distribution chart of the open system (Figure 3), we see that the system has 4 pole 

points with values (-0.245 ± 0.54i; -0.245 ± 0.54i; -0.00592+0.0215i; -0.00592+0.0215i). In which there is a 

pair of symmetric poles, we can find a pair of dominant solutions to replace this pair of solutions, and we see 

that the open system has one solution located close to the virtual axis, so the stability of the open system is not 

possible. stable. 
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Figure 3. Polarity distribution diagram of an open-loop control circuit 

vertical motion channel of the aircraft 

 

From the transient characteristics (Figure 4) of the open-loop circuit of the aircraft longitudinal motion channel, 

we see that the motion parameters do not meet the stability standards of an automatic control system. 

 

 
Figure 4. Transient characteristics of the open-loop  

longitudinal channel of an aircraft 

 

The task is to design the system after having a quality state controller, as follows: 

- Adjustment overshoot: 10%; 

- Setup time: 10 s. 

From formula (10), we can determine that the dominant pair of extreme points of the system is 

1,2 0,4 0,547p i   and the remaining pair of valid solutions is 28,33 p ; 47,54 p . 

We can determine which match K 

 0.1139 0.0146 0.7177 42.6209K     
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Figure 5. Polarity distribution diagram of a closed-loop control circuit 

vertical motion channel of the aircraft 

 

 With the received K value, we have a polar distribution chart of a closed system (Figure 5) with 4 pole 

points, including 1 pair of pole points that are symmetrical and the remaining 2 pole points located on the real 

axis and far away from the imaginary axis. These 4 poles are all located to the left of the virtual axis, ensuring 

the stable reserve of the closed system. The transient characteristics of the closed system (Figure 6) fully meet 

the stability standards required by the design. 

 
Figure 6. Transient characteristics of the closed-loop longitudinal 

channel of an aircraft 

 

III. Conclusion 
This article presents a calculation method to design a system controller that meets preset standards by 

using the pole point assignment method. This method is applied to calculate the gain response coefficient matrix 

of a closed system based on the mathematical model of an open system. This is a simple method to design a 

controller for a linear system that is highly effective. 
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