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ABSTRACT: Agricultural factories represent an advanced form of controlled-environment farming, well-suited 

for mechanization due to their fully enclosed and controllable environments. In the context of agricultural 

factories, the application of robots is expected to be a growing trend. Therefore, a tomato harvesting robot 

designed for use in agricultural factories has been developed. This robot is capable of patrolling between plant 

racks within the agricultural factory, autonomously identifying ripe tomatoes, and completing the harvesting 

and collection process. The design features an ARM processor as the central controller, a tracked multi-

directional mobile platform serving as the robot's base, and an RGB camera controlled by the ARM processor 

for tomato recognition. The camera captures images, which are then processed by a deep learning-based 

detection network to obtain the tomato's position. Mounted on the base is a 6-degree-of-freedom robotic arm 

equipped with a flexible gripper. The mechanical arm is scalable, allowing for adjustments in grasping distance 

and height. The ARM processor controls the camera for tomato identification and capture. The coordinates of 

ripe tomatoes are transmitted to the ARM controller via an API port. The ARM controller uses inverse 

kinematic analysis to drive the robotic arm and gripper in coordinated motion, including movements of the 

arm's end joint, thereby achieving tomato harvesting. 
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I. INTRODUCTION  

Plant factories represent an advanced form of facility agriculture and are characterized by intensive 

labor requirements. Even in highly automated facility agriculture operations in developed countries, crop 

harvesting still heavily relies on manual labor. Manual harvesting is time-consuming and labor-intensive, 

making the pursuit of fully automated harvesting a primary requirement in the current development of facility 

agriculture, especially within the context of plant factory environments [1]. 

As electronic information technology, artificial intelligence, image recognition technology, and robot 

manufacturing control technology have matured, countries worldwide have been conducting research on 

harvesting robots since the 1970s and 1980s. These robots are designed for the harvesting of various crops, 

including apples, strawberries, cabbages, cucumbers, tomatoes, and more [2]. 

However, research on agricultural harvesting robots in China started relatively late and is still in its 

early stages. Wang Shunwei et al. [3] designed a harvesting mechanical arm that uses vibrations to detach fruit 

stems and collects fruits using an umbrella-like mechanism. However, this mechanical arm is prone to missing 

fruit due to the flexibility of fruit stems, and it cannot avoid collisions between fruits during the collection 

process, which significantly impacts harvesting coverage and fruit quality. 

Shao Kun [4] extended the mechanical arm of a harvesting robot to five degrees of freedom with a 

deviation of only 6.71 mm. However, the tracked chassis used in the robot leads to slow travel speeds and 

requires a significant amount of turning space, making it unsuitable for operation inside sunlight greenhouses. 

Furthermore, Tang Yadong [5] constructed a prototype tomato harvesting robot using binocular vision and 

robotic arm motion simulation. It completed tomato harvesting tests in complex environments but achieved only 

a 76.3% success rate due to the rigid gripper used. 

Wang Xiaonan et al. implemented damage-free tomato harvesting by utilizing vacuum suction devices, 

flexible bladder devices, and twisting motors. However, interference from branches and leaves can disrupt the 

recognition system, resulting in reduced harvesting accuracy. Liu Fang et al. [6] employed an improved multi-

scale YOLO algorithm for tomato training and recognition under various environmental conditions. Zhu 

Mingxiu [7] used K-means clustering, along with convolutional neural networks and binocular vision 

technology, to detect and locate fruits for harvesting robots. Hu Huiming [8] used binocular vision technology to 

obtain three-dimensional coordinates for fruits and vegetables, laying the foundation for fruit and vegetable 
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robot harvesting in greenhouse environments. 

In this study, we focus on tomatoes grown in artificial light plant factories and design a mobile robot 

capable of inspecting and identifying ripe tomato fruits, suitable for deployment in artificial light plant factories. 

 

II. Harvesting Robot System Functional Design  

The harvesting robot system consists of four main components: the chassis four-wheel drive system, 

harvesting system, and image recognition system [9]. 

The chassis drive system includes four driving wheels with their respective motors, chassis suspension 

structure, and bottom line-sensing camera. The harvesting system comprises flexible grippers and a sliding-rail-

type mechanical arm. The liftable upper platform system includes drive motors, a mechanical arm with an image 

recognition system, mounting brackets, and more. 

Currently, robots in artificial light plant factories operate in various modes, including ground-based 

free-moving, suspended rail-based movement, and ground rail-based movement [10]. Given the need for direct 

sunlight utilization in artificial light plant factories, installing suspended rails would occupy a significant portion 

of the upper space of the planting racks, significantly reducing light penetration and energy efficiency. On the 

other hand, installing ground rails would occupy a considerable area inside the greenhouse, affecting the layout 

of plant racks. Therefore, this study employs a four-wheel track-based ground rail mobile robot operation 

method. The four-wheel track platform is more flexible than traditional steering mechanisms, as it can move in 

any direction by controlling the speed and direction of the two-wheel sets. It can complete harvesting tasks 

without changing its own state in narrow greenhouses. 

Tomatoes in artificial light plant factories are primarily grown in shelf and bed cultivation modes, with 

columnar distribution and vertical growth. Tomato fruits grow vertically on the plants. Therefore, the design of 

the chassis takes into account the factors mentioned above and uses a pendulum-type suspension structure. This 

structure enhances the robot's terrain adaptability, ensures the stability of the chassis during operation, and 

improves driving stability and precision [11]. The tomato cultivation mode in artificial light plant factories is 

shown in Fig 1. 

 

 
Fig. 1 Tomato Cultivation Mode in Plant Factories 

 

When the harvesting robot is in operation, the mechanical claw's role is to grip the fruit for stem 

separation. Considering the mechanical properties of ripe tomato fruit skins, the robot's harvesting mechanism 

employs flexible grippers made of rubber material using injection molding [12]. These flexible grippers use a 

two-fingered gripping approach driven by motors. The gripping action part of the gripper is 40 mm long, and it 

can grasp diameters ranging from 10 to 90 mm. Following an analysis and discussion of research on the 

separation force between tomato fruit and stem conducted by Huang Guowei and others, a harvesting scheme 

involving twisting and picking was determined. An end joint capable of continuous 180° rotation was designed. 

With this design, during the harvesting action, the mechanical hand can penetrate into the tomato plant at 0°. 

After stable gripping, the end joint rapidly rotates 180°, causing the tomato stem to move away from the stem in 

a direction 90° away, using minimal force to separate the fruit from the stem. The harvesting claw schematic is 

shown in Fig 2. 
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Fig. 2 Harvesting Claw Schematic 

 

To account for the fact that tomatoes are not at a fixed height and may have different depths of growth 

relative to the robot, a lifting structure is used. The lifting structure is controlled by an electric motor, allowing 

the robot to harvest tomatoes at different heights. Additionally, considering that tomato plants may have 

different depths of growth (the horizontal distance between the tomato fruit and the centerline of the ridge), a 

retractable arm on the robot's upper platform is employed [13]. The controller, using sensors such as an RGB 

camera, obtains tomato data and calculates the depth of tomatoes relative to the screw platform's center position. 

The arm movement is adjusted by feedback from the screw-drive motor and ranging sensor to position the 

gripper accurately for fruit picking.  

 

III. Harvesting Robot Software Design 

The hand-eye coordination is a critical aspect that embodies the autonomous harvesting operation of 

fruit and vegetable harvesting robots. Based on the camera's installation location, the robot's vision system can 

be classified into Eye to Hand and Eye in Hand types, where Eye to Hand involves mounting the camera outside 

the robot body and fixing it in place, while Eye in Hand involves fixing the camera on the robot's arm, moving it 

together with the robot arm [14]. Height limitations in greenhouse environments, the vertical growth direction of 

tomato plants, and the relatively small size of tomato fruits have made Eye to Hand operation less suitable for 

greenhouse operations. Considering Eye in Hand, where the robot arm is in motion, real-time changes in the 

camera's position can be obtained, resulting in more accurate system calculations. Additionally, microcontrollers 

like ARM can meet the real-time control requirements of the system to some extent. Therefore, it was decided to 

place the camera on the robot's arm and keep it fixed in place. 

An Intel RealSense D455 depth camera is used in conjunction with an ARM controller to capture 

images. Tomato recognition primarily consists of object detection based on RGB images and image data 

processing [15]. RGB images are processed using the YOLOv5 object detection network, which calculates the 

rectangular bounding boxes for tomatoes. Depth information is then fused with the two-dimensional information 

generated by object detection. Finally, the 3D center position of the tomatoes is computed. The overall 

algorithm flowchart is shown in Fig  3. 
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Fig. 3 Image Algorithm Flowchart 

 

YOLOv5 is a high-precision, high-speed single-stage object detection algorithm [16]. It is the latest 

achievement in the YOLO series, significantly improving both speed and accuracy. The YOLOv5 network 

model consists of four main parts: the input, the backbone network, the neck network, and the prediction [17]. 

The input part processes the input image data and annotation data to adapt the image to the network size, using 

normalization, mosaic data augmentation, adaptive anchor calculation, and adaptive image scaling. The 

backbone network specializes in feature extraction, and its quality directly affects the accuracy of subsequent 

work. YOLOv5 introduces the Focus structure for the first time, with a key operation being the slice operation. 

It also uses the CSPDarknet53 feature extraction network. The neck network includes the SPP module and 

FPN+PAN module. The SPP module uses multi-scale max pooling to extract features at different scales for 

multi-scale fusion [18-20]. The FPN+PAN module enhances both expressive and positional features by fusing 

different detection layers from different backbone layers. 

The Prediction module is used for final target classification, detection, and positioning output. It 

employs the GIOU_Loss function and DIOU_nms function [21]. The GIOU loss function solves the problem of 

distinguishing between non-intersecting and intersecting prediction boxes and different intersecting situations 

when the intersection ratio is the same. The DIOU_nms function further considers the bounding box and center 

position information when performing non-maximum suppression, optimizing the prediction output. 

The process begins with labeling previously captured tomato images and dividing them into training 

and testing sets in a 4:1 ratio. These images are then used to train the YOLO object detection network, which is 

later converted into the NCNN (a lightweight neural network framework for mobile devices) framework. The 

network is deployed on the ARM controller. Images are obtained using a stereo infrared RGB depth camera, 

creating a point cloud map based on the camera's coordinate system. The three-dimensional point cloud 

information is filtered through algorithms like multi-plane segmentation and clustering [22]. The three-

dimensional point cloud information is then projected onto two-dimensional coordinates and matched with the 

two-dimensional information obtained from the detected tomato keyframes. This process results in the three-

dimensional bounding box for the target tomato, allowing the calculation of the tomato's center point. The 

tomato recognition results are shown in Fig 4. 
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Fig. 4 Tomato Recognition Results 

 

Traditional harvesting robots with multi-degree-of-freedom mechanical arm motion use methods like 

differential interpolation and coordinate inverse kinematic analysis. These methods involve sensors, such as 

cameras, that provide information about the target's coordinates and orientation angles. The controller calculates 

the joint angles based on the collected data and generates control signals using pulse width modulation 

technology to drive the mechanical arm's rotation. This positions the end effector at the specified location to 

complete the harvesting task [23]. However, due to the relatively fixed growth patterns of crops like tomatoes, 

which grow vertically due to gravity, the end effector connected to joint DE always remains parallel to the 

ground, with an angle α of 0°. Therefore, in the inverse kinematic analysis process of the robot arm, α can be 

directly used as a known condition, significantly reducing the controller's computational load. Additionally, 

considering that the arm may be quite long, and joint B must withstand certain forces, the system fixed the angle 

β3 between arm BC and the horizontal plane at 45°, without imposing restrictions on other joints. This meets the 

requirements after theoretical analysis. 

 

IV. Experiments and Result Analysis 

The experiments were conducted in May 2022 in the Artificial Light Plant Factory Laboratory at 

Henan University of Science and Technology. The robot prototype was placed in the gaps between planting 

trays, and the system was initiated. The robot correctly detected tomatoes and completed the harvesting. The 

experimental site is shown in Fig 5. 

 

 
Fig. 5 Experimental Site 
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The tomato harvesting robot successfully completed the experimental operation. The control chip 

effectively controlled the robot arm to pick tomatoes and place them in the designated collection container. 

However, the designed tomato harvesting robot still has some errors and areas that need improvement. It should 

be noted that the full replication of the design was limited by the experimental conditions and equipment 

support. 
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