Tripartitions of Natural Numbers

D.Bratotini and M.Lewinter

Abstract

A tripartition of a natural number, n, is an expression of the form $n=a+b+c$. It is known that for $n>17, n$ has a tripartition such that $a<b<c, a>1$, and a, b, and c are pairwise relatively prime. Various results concerning these tripartitions and several variations are presented.

I. Partitions

A partition of a natural number, n, is an expression of the form $n=n_{1}+n_{2}+\ldots+n_{r}$, where the n_{i} 's are natural numbers, and r is the number of summands of the partition. See [1]. Partitions have excited number theorists since the time of the great $18^{\text {th }}$ century Swiss mathematician, Euler. In determining the number of partitions of n, we must distinguish between ordered and unordered partitions. In the later case, we treat, say, 9 $=1+5+3$ and $9=3+1+5$ as the same partition. The eight ordered partitions of 4 are:

4	$2+2$	$1+1+2$
$1+3$	$2+1+1$	$1+1+1+1$
$3+1$	$1+2+1$	

$3+1 \quad 1+2+1$
The five unordered partitions of 4 are:

$$
\begin{array}{lllll}
4 & 1+3 & 2+2 & 1+1+2 & 1+1+1+1
\end{array}
$$

Here a few facts about partitions.

1. The number of ordered partitions of n is 2^{n-1}.
2. The number of partitions of n, where each summand is odd equals the number of partitions of n, where the summands are distinct.
3. Given the natural number $k \leq n$, the number of partitions of n, where each summand is less than or equal to k equals the number of partitions of n, where there are at most k summands.

II. Tripartitions

In this article, we shall write partitions in increasing order. That is, $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$. We shall confine ourselves to tripartitions, that is, partitions for which $r=3$. It is known [2, 3] that for $n>17$, we can write $n=a+b+c$, where

1. $a<b<c$
2. $\quad a>1$, and
3. $\quad a, b$, and c are pairwise relatively prime (abbreviated PRP).

That is, $n>17$ has a pairwise relatively prime tripartition.
Lemma 1: (1) If n is odd, then each of a, b, and c must be odd. (2) If n is even, exactly one of a, b, and c must be even.
Proof: (1) $a+b+c$ is odd if either they are all odd, or two of them are even. As the second possibility is incompatible with the PRP condition, the result follows. (2) $a+b+c$ is even if either they are all even, or one of them is even. As the first possibility is incompatible with the PRP condition, we are done.
Remark 1: Here are solutions for $n<17$:

10	$=2+3+5$	14
12	$=2+5+7$	
15	$=3+5+7$	$16=2+5+9$

The reader may wish to prove that there are no solutions for $n=1,2,3,4,5,6,7,8,9,11,13,17$.
Remark 2: $b \geq a+1$ and $c \geq a+2$, so $n \geq a+(a+1)+(a+2)=3 a+3$. Then $3 a+3 \leq n$, so

$$
a \leq \frac{n-3}{3}
$$

yielding an upper bound for a.

III. Consecutive and Arithmetic Tripartitions

A consecutive tripartition of n may be written $n=a+(a+1)+(a+2)$. The PRP condition implies that a, and therefore, $a+2$, are odd. Letting $a=2 k+1$, we have

$$
n=2 k+1+(2 k+2)+(2 k+3)=6 k+6=6(k+1)
$$

so $n=0(\bmod 6)$ is a necessary condition. To see that it is sufficient, $n=6 m=2 m+2 m+2 m=(2 m-1)+2 m+$ $(2 m+1)$, which clearly satisfies the PRP condition since

$$
\operatorname{GCD}[(2 m-1), 2 m]=\operatorname{GCD}[2 m,(2 m+1)]=1
$$

This follows since the GCD of two consecutive numbers is 1 . Finally, $2 m-1$ and $2 m+1$ are odd and two apart, so $\quad \operatorname{GCD}[(2 m-1),(2 m+1)]=1$
Three numbers, x, y, and z form an arithmetic progression if there exists a number, d, such that $y=x+d$ and $z=$ $y+d$. Observe that y is the arithmetic mean of x and z. Also, the three numbers can be written $y-d, y, y+d$. For our purposes, we seek arithmetic tripartitions of n, which requires $y-d, y, y+d$ to have the PRP condition. In particular, $y-d$ must be odd. Otherwise, $y+d=(y-d)+2 d$ would also be even. Examine the following arithmetic tripartitions of $n=42$ that are PRP:
$13+14+15$
$5+14+23$
$11+14+17$
$3+14+25$
$9+14+19$

We skipped $7+14+21$, as this arithmetic tripartition is not PRP. (In fact, 7 divides each summand!) Now examine the arithmetic tripartitions of $n=60$ that are PRP:
$19+20+21$
$11+20+29$

$$
3+20+37
$$

$17+20+23$
$9+20+31$
$13+20+27$
$7+20+33$

Once again, we skipped $15+20+25$ and $5+20+35$ (5 divides each summand). The eligible values of a must be relatively prime to n. As n goes to infinity, the set of natural numbers relatively prime to it also goes to infinity, so the number of arithmetic partitions of n that are PRP approaches infinity.

IV. Tripartitions with Given Differences, $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{a}$ and $\boldsymbol{s}=\boldsymbol{c}-\boldsymbol{b}$

Given natural numbers, n, r, and s, does there exist a PRP tripartition $n=a+b+c$, such that $\quad b-a=r$ and $c-b=s$? If so, how many such tripartitions does n have? Equivalently, are there values of k such that $n=$ $(k-r)+k+(k+s)$? If so, $n=3 k+s-r$, implying the necessary condition, $n=s-r(\bmod 3)$. Then we have $k=\frac{n-(s-r)}{3}$. For example, given $n=23, r=4$, and $s=6$, we find that $k=7$, so $23=3+7+13$. If $n=$ 35, $r=4$, and $s=6$, then $k=11$, so $35=7+11+17$. These two tripartitions are PRP. On the other hand, if $n=$ $26, r=4$, and $s=6$, then $k=8$, so $\quad 26=4+8+14$ which has the given differences, 4 and 6 , but isn't PRP. Lemma 2, below, will be useful in establishing which of partitions are PRP.
Lemma 2: If GCD $[k, t]=1$, then $\operatorname{GCD}[k, k \pm t]=1$.
Proof: We will prove the contrapositive by contradiction. Assume that $\operatorname{GCD}[k, k \pm t]=d>1$. Then $d \mid k$ and d $\mid(k \pm t)$. Then $k=a d$ and $k \pm t=b d$, that is, $a d \pm t=b d$. So $\pm t=b d-a d$, implying that $d \mid k$. It follows that $\operatorname{GCD}[k, t]=d>1$, a contradiction.
Using Lemma 2, if $\operatorname{GCD}[k, r]=\operatorname{GCD}[k, s]=1$, then $\operatorname{GCD}[k, k-r]=\operatorname{GCD}[k, k+s]=1$. It remains to determine additional conditions to ensure that $\mathrm{GCD}[k-r, k+s]=1$.

V. Removing the Restriction $a \neq 1$

Lemma 3: Every natural number, $n \geq 7$, satisfies $n=b+c$ where $1<b<c$ and $\operatorname{GCD}[b, c]=1$. Proof: If n is odd, let $n=2 k+1$. Then $n=k+(k+1)$. Thus $7=3+4,9=4+5$, etc. If n is even, let k satisfy $1<k<n-1$ and $\operatorname{GCD}[n, k]=1$. It follows that $n-k$ satisfies these two conditions, so $n=k+(n-k)$.
Theorem 1: Let $n \geq 8$. Then $n=a+b+c$, where

1. $a<b<c$
2. $a \geq 1$, and
3. a, b, and c are PRP

Proof: Given $n \geq 8$, we have by Lemma 3, $n-1=b+c$ where $1<b<c$ and $\operatorname{GCD}[b, c]=1$. Then $n=1+(n-$ 1) $=1+b+c$.

VI. Primitive Tripartitions

The set, $\mathrm{S}=\left\{n_{1}, n_{2}, \ldots, n_{r}\right\}$, where $r \geq 2$ and no member divides any other, is called primitive. Clearly, 1 cannot belong to S. If 2 belongs to S , then all other members must be odd. We assume, WLOG, that $n_{1}<n_{2}<\ldots<n_{r}$. Note that a primitive set need not have the PRP property. The sets, $\{k+1, k+2, k+3, \ldots, 2 k\}$, of length, k, form an infinite class of primitive sets for $k \geq 2$. The primes form a primitive set of infinite cardinality.

A partition of n is called primitive, if its summands form a primitive set. If there are exactly three summands, we have a primitive tripartition. For example, $17=4+6+7$ is a primitive partition. It is not PRP. Clearly, PRP tripartitions of n are primitive tripartitions, whereas the converse of generally false.
Example 1: The primitive partitions of $n=19$ are

$3+4+5+7$	$8+11$	
$\mathbf{4}+\mathbf{6}+\mathbf{9}$	$7+12$	$4+15$
$\mathbf{3}+\mathbf{5}+\mathbf{1 1}$	$6+13$	$3+16$
$9+10$	$5+14$	2

The primitive tripartitions of 19 are in bold font. Note that $4+6+9$ does not have the PRP property.
Example 2: Let $n=(k+1)+(k+2)+(k+3)+\ldots+(k+k)=k^{2}+(1+2+3+\ldots+k)=$ $k^{2}+\frac{k(k+1)}{2}=\frac{2 k^{2}+k(k+1)}{2}=\frac{3 k^{2}+k}{2}$. Then $n=\frac{3 k^{2}+k}{2}$ has a consecutive primitive tripartition of length k. We see from this example that there exist arbitrarily lengthy primitive partitions.
$1,2,3,4$, and 6 are the only natural numbers that do not have primitive partitions. If $p \geq 5$ is prime, it has $\left\lfloor\frac{p}{2}\right\rfloor-1$ primitive bipartitions. (It may also have longer primitive partitions.) See Example 1.
Lemma 4: Let n be an odd natural number with the primitive partition, $n=a+b+c$, where $a<b<c$. Then $a \geq 3$.
Proof: We know that $a \neq 1$. If $a=2$, then b and c must be odd, implying that n is even, which contradicts the hypothesis that n is odd.
Let $g(n)$ denote the number of primitive partitions of n, and let $h(n)$ denote the maximum length among the primitive partitions of n.
Open Questions: Determine $g(n)$ and $h(n)$ and study their properties.

References

[1]. M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley \& Sons. 2015.
[2]. W.Sierpinski, 250 Problems in Number Theory, American Elsevier, New York 1970.
[3]. J.Roberts, Lure of the Integers, Spectrum Series, MAA. 1992

