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Abstract: 

Activation function is an important factor that affects the performance of deep neural networks, traditional fixed 

and adaptive activation functions have low stability across different tasks or networks, while the accuracy 

improvement of dynamic activation function becomes less with increasing network parameters. Therefore, in this 

paper, a novel activation function called Channel Pooled Dynamic Activation Unit (CPDAU) is proposed to 

improve the performance of deep neural networks on image classification tasks.The derivative of CPDAU 

combines trainability and smoothing and achieves superior graph classification performance across different 

network architectures by using a dynamic hyperfunction based on channel feature pooling inputs. Experimental 

results show that CPDAU outperforms ReLU on both ShuffleNetV2, a lightweight network, and ResNet-50, a 

deep network, and effectively reduces the classification error with respect to the state-of-the-art activation 

function. 
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I. Introduction 

In recent years, deep neural networks have been used in autonomous driving[1] , Intelligent Medical[2] 

remote sensing[3] and Internet of Things[4] and other fields, and has rapidly become one of the most popular 

and fastest growing research directions in the related fields of computer vision[5, 6] The activation function of 

deep neural network is the basic function of deep neural network. The activation function is a basic component 

of deep neural networks, and the network that obtains nonlinearity is able to approximate arbitrary functions to 

better learn and express complex patterns of data. Therefore, the activation function is an important factor that 

affects the performance of the neural network framework. Currently available activation functions do not 

perform consistently in different task scenarios, so finding activation functions that enable neural networks to 

better learn and generalize has become a current research hotspot. 

Based on the variation of activation functions during neural network training and inference, activation 

functions can be broadly classified into three categories: fixed invariant activation functions, adaptive 

parameterized activation functions and dynamic activation functions that vary with input. 

Fixed invariant activation functions are often applied to classical neural networks such as tanh and 

sigmoid[5] This saturation function tends to cause the gradient to vanish and cannot be adapted to neural 

networks with increasing depth. The linear rectification unit ReLU[7] was proposed to make the training of deep 

neural networks more feasible, but it tends to lead to the problem of dead neurons. The modified linear unit 

Leaky ReLU with leakage[8] The exponential linear unit ELU[9] , makes the output of a negative neuron a 

small negative value, while alleviating the problem of mean shift in the training of models using ReLU. These 

two nonlinear layers help the neural network to further improve its performance, outperforming ReLU in models 

for multiple image classification tasks. however, this approach is less efficient in parameter optimization during 

model training, further increasing the computational cost. Also exponential computation leads to decrease in 

testing speed and incompatibility with batch normalized BNs. The proportional exponential linear unit SELU in 

the self-normalizing neural network SNN[10] , and the sigmoid-weighted linear unit SiLU in the deep 

reinforcement learning network DQN[11] , are both capable of outperforming ReLU in a given network, 

however the complex nonlinear computations used by both methods lead to a decrease in test speed. The 

Gaussian error linear unit GELU, which combines the regularization idea[12] GELU, enables the generalization 

performance of neural networks to outperform ELU and ReLU in a variety of application scenarios; however, 

the accuracy of the approximation function used to compute the Gaussian distribution in practice is affected by 

the hyperparameters. Overall, the actual performance of a fixed invariant activation function depends heavily on 

the choice of hyperparameters. 
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In order to solve the problem of hyperparameter selection, adaptive parameterized activation function 

is proposed. Adaptive segmented linear activation function APL[13] The concept of adaptive parameters is 

introduced, and the significant difference in parameters between the activation functions of each neuron in the 

experimental results suggests that a fixed classical activation function may not be an optimal solution for neural 

networks. However, the gradients of the basis functions in APL may not be balanced, which makes the 

optimization of the adaptive parameters difficult. Padé Approximate Activation Unit PAU[14] The first to use 

rational functions for the optimal design of neural network parameters, which can approximate any existing 

activation function with sufficiently large polynomial order, while partitioning ameliorates the drawbacks of 

polynomial gradient explosion and oscillations. However, suitable initial values of hyperparameters require 

complex computations, and backpropagation of rational functions is computationally expensive. Segmented 

linear unit PWLU[15] The potential to find good activation functions is improved by well-designed flexible 

formulations covering a wide range of scalar functions. Easily integrated into various network architectures with 

microscopically adaptive parameters that are easily learned via gradients. Linear computation is efficient and 

practical for real-world applications. Balanced gradients and focus on bounded inputs make PWLU consistently 

outperform APL and PAU in different architectures. parametric linear rectifier unit PReLU[16] Parameterized 

exponential linear unit PELU by replacing the hyperparameters in LReLU with trainable parameters.[17] 

Adding two additional learnable parameters to ELU, the morphology of the negative interval of the optimization 

function further improves the model fitting ability. The effect of the additional parameters of the activation layer 

is negligible compared to the computational cost of increasing the depth of the network. Both activation 

functions are more flexible than LReLU and ELU and alleviate the effort of manually setting the appropriate 

parameters. However, the performance improvement of individual adaptive parameters is not stable and 

consistent across different datasets and frameworks, and the flexibility of these two activation functions is still 

insufficient. In this regard, inspired by the idea of biological neuron research and borrowing the method of 

PReLU, we have successively proposed the flexible rectified linear unit FReLU[18] and S-shaped rectified 

linear unit SReLU[19] The FReLU mainly learns the negative value information by adding an adaptive 

rectification point, and the SReLU mainly contains a three-stage linear function with four learnable parameters 

for flexible adaptive tuning. These two activation functions outperform ReLU in terms of expressiveness and 

performance with almost no additional computational cost, enabling deep networks to learn features and 

mappings better. Based on the existing qualities of excellent activation functions with no upper bound in the 

positive region and nonlinearity in the negative region, AbsLU for absolute value linear units and IpLU for 

inverse polynomial linear units[20] neural networks based on different depths and architectures on multiple 

benchmark datasets enhance the learning rate and accuracy. Although the newly proposed activation functions 

are robust and have high average accuracy across different networks, the training process of finding the most 

adapted hyperparameters can be time-consuming. From a collection of basis functions, the combined activation 

function CAF[21] Constructing new activation functions by linear combination, Swish[22] An automated search 

technique is used to discover new activation functions in an attempt to solve the problem of inconsistent 

performance improvement of various variants of ReLU in different tasks. Both methods outperform previous 

optimal activation functions within the framework of the network being tested and evaluated, but the tree-based 

search space and sample-based search methods make the training process very complex and inefficient, making 

it difficult to find specialized activation functions for each dataset or neural architecture. Therefore 

Hard-Swish[23, 24] uses a ReLU6-based[25] based ReLU6 to replace the sigmoid function in Swish, optimizing 

the computational speed of Swish while achieving a 'net accuracy-latency efficiency' increase. However, these 

approaches above still do not address the limitation of inconsistent performance improvement brought by a 

single activation function when applied to different datasets or network architectures. 

Fixed or adaptive activation functions that improve performance by adding hyperparameters raise the 

risk of overfitting, while network architectures that dynamically change with inputs can effectively reduce this 

risk and facilitate model generalization. Inspired by this idea, recent research has attempted to construct 

dynamic activation functions that vary with input. Combining the Maxout network[26] and dynamic 

convolution[27] ideas, the dynamic rectified linear unit DY-ReLU[28] and the funnel-shaped activation 

Funnel-ReLU[29] which both have their function shapes determined by the input elements, dramatically 

improve the performance of lightweight networks without a significant increase in computational cost. However 

its performance enhancement gradually decreases in deeper networks[30] . Meta-activation function with degree 

of nonlinearity determined by the input meta-ACON[30] Flexible tuning of different activation function patterns 

on a pixel-by-pixel, channel-by-channel and layer-by-layer basis is realized. In the experiments, the 

channel-by-channel meta-ACON shows stable (i.e., does not vary with network depth) performance 

improvement compared to DY-ReLU and Funnel-ReLU. However the simple substitution of ReLU by 

channel-by-channel meta-ACON does not fully utilize the diversity of this activation function structure. 

To summarize, we find that while improving the accuracy, the fixed and adaptive classes of activation 

functions increase the training cost and their performance is not stable enough in different datasets or network 
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architectures, while the dynamic class of activation functions is more flexible and stable in different 

environments but the accuracy improvement becomes less with the increase of network parameters. Aiming at 

this problem of the current activation function, this paper tries to integrate the characteristics of multi-class 

activation function to construct a new activation function.The contributions made in this paper are as follows: 

1. A trainable channel pooling dynamic activation unit, CPDAU, is proposed by combining two properties, 

the trainable derivative of PReLU and the smooth derivative of Swish.Experimental results show that the 

classification accuracy of CPDAU is better than that of ReLU on two network structures, namely, ShuffleNetV2 

and ResNet-50, and it effectively improve the accuracy of the image classification task. In addition, CPDAU 

compares favorably with the recent activation functions ACONC[30] and LAU[31] can effectively reduce the 

classification error on different network structures compared to the recent activation functions ACONC and 

LAU, respectively. 

2. In this paper, we propose a dynamic input-feature-based hyperfunction consisting of a combination of 

depth-separable convolutional layers and batch normalization, and investigate the performance comparison of 

using different hyperfunctions (Conv, DSC, Conv+BN, DSC+BN) in the activation function. The experimental 

results show that without adding batch normalization, the classification error of the ordinary convolutional 

hyperfunction is slightly smaller than that of the depth-separable convolutional hyperfunction. However, with 

the addition of batch normalization, the performance of the depth-separable convolutional hyperfunction is 

significantly improved, and the batch normalization plays an important role in the enhancement of its nonlinear 

representation. 

3. In this paper, a series of pooling functions based on different statistics are designed, including mixed 

application mean pooling (AP), L2 paradigm pooling (L2P) and standard deviation pooling (SDP). The 

experimental results show that it can help the model to better understand and distinguish the feature differences 

between different categories, while in the practical application, it is necessary to consider the specific task, 

model architecture and data characteristics to choose the appropriate pooling function. 

 

II. Related work 

Smooth maximumMaxout[26] can segment linearly approximate arbitrary convex functions and is a general 

formula for many current activation functions. There exists a smooth approximation formula for the maximum 

function α-softmax[32], when the maximum max(x1,x2) is sought between two inputs, α-softmax can be reduced 

to S(x1,x2)=(x1-x2)-σ[β(x1-x2)]+x2, where β is the activation factor: when β & gt;0, Sβ is a smoothed 

approximation of the maximum; when β < 0, Sβ is a smoothed approximation of the minimum; when β → 0, Sβ 

converges to the average of the two inputs. The Smooth Maximum Unit (SMU) from Smooth Approximation of 

Maximum uses the smooth approximation function of |x| to find a generalized approximation formula for a 

maximum function that smoothly approximates the general Maxout family, ReLU and its variants, and 

well-established functions such as GELU and Swish can also be considered as special cases of SMU. 

Dynamic modulesDynamic CNNs[27] use dynamic convolutional kernels, widths, or depths, and can achieve 

significant accuracy gains depending on the conditions of the input samples. Dynamic network implementations 

include learning dynamic convolutional kernels, using attention-based methods to change the network structure, 

and focusing on the depth of the dynamic convolutional network. In practice as the depth of the convolutional 

neural network increases, the memory used for nonlinear activations gradually decreases as the resolution of each 

layer typically decreases.MobilenetV3[23] has found that most of the benefits of swish are actually achieved by 

using them only in deeper layers, and therefore only using h-swish in the second half of the model.Even with these 

optimizations, h swish still introduces some latency costs. However, its net effect on accuracy and latency is also 

positive, and h-swish can be implemented as a segmented function to reduce the number of driver memory 

accesses and thus significantly reduce latency costs. 

Lazy NeuronThe sparsity of activations that commonly occurs in Transformer[33] models is that the hidden layer 

following the activation function outputs very few non-zero elements, with larger Transformer models (with more 

layers and wider MLP hidden dimensions) being sparser in terms of the percentage of non-zero entries. Top-k 

thresholding using small k values to achieve sparser activations can bring a range of desired properties to the 

model, including lower sensitivity to noisy training data, greater robustness to input corruption, and better 

calibration of prediction confidence. Thus boosting activation sparsity is a way to significantly reduce FLOP 

counts and improve Transformer efficiency. 

Gated Linear UnitsA gated linear unit[34] is a neural network layer that consists of an element-by-element 

product of the outputs of two linear transformer layers, one of which undergoes sigmoid activation. Instead of the 

first linear transform and activation function in the Transformer FFN layer, a GLU or a variant thereof, which also 

omits the bias term, is used. All these layers have three weight matrices, while the original FFN has only two. In 

order to keep the number of parameters and computation constant, the number of hidden units in the FFN needs to 

be reduced. 

Channel AttentionSENet [35] adds an attention mechanism to the channel dimension to obtain the importance of 
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each channel of the feature map, and then uses this importance to assign a weight value to each feature, thus 

allowing the neural network to focus on certain feature channels. Boost the channels of the feature map that are 

useful for the current task and suppress the feature channels that are not very useful for the current task. Compress 

the 2D features (H*W) of each channel into 1 real number by global average pooling. Generate a weight value for 

each feature channel and construct the correlation between the channels by two fully connected layers, weighting 

the normalized weights obtained earlier to the features of each channel. 

 

III. Method 

Our approach is a channel-pooled dynamic activation unit based on input hyperfunctions whose shape is 

determined by multiple dynamic hyperfunctions based on trainable parameters and input features. These 

hyperfunctions are composed of a combination of deeply separable convolutional layers and batch normalization 

that enables custom activation behavior based on the input features. Its input is a channel distribution pooling of 

the input features, which can make the custom activation behavior more channel-specific. 

 

 
Fig. 2. The channel pooling dynamic activation unit on the left and its first order derivatives on the right. The blue 

line is parameterized by h1=1, h2=0, h3=10,the red and green lines are parameterized by h1=1, h2=0, h3=1. 

 

3.1 Variant Swish activation function 

Among the variants of the classical ReLU activation function, the trainable derivatives of PReLU as well 

as the smooth derivatives of Swish are shown to be effective improvements. By combining the properties of these 

two, we propose a trainable, i.e., derivative-continuous, nonlinear function whose expression and first-order 

derivatives are shown in Eqs. (1) and (2). where ∙ denotes element-by-element multiplication. 

  1 3 2( ( ) )f x x h h x h   (1) 

3 3( ) ( ) 2

1 3 1 3 2 1( ) ( ) / (1 ) ( )
h x h x

f x x h h e e h h x h h      (2) 

 

As shown in Figure 2, the first-order derivative of the activation function has the property of smoothing 

the gradient of the activation function as the inputs get closer together, which can reduce the potential risk of 

model overfitting. A smooth activation function is also better able to cope with the noise interference present in the 

data, as small changes in the input do not have a very large impact on the output results. At the same time, the 

first-order derivatives are very steep near the zero input, which means that the gradient of the activation function 

varies more near the zero point, which makes it easier for the model to learn the features and improves the speed of 

convergence of the model. In addition, the existence of negative gradient can avoid the problem of gradient 

vanishing or gradient explosion to a certain extent, thus improving the training efficiency and accuracy of the 

model. 

The parameters h1,h2,h3 in the activation function formulation can be obtained by generating a set of 

dynamic hyperfunctions based on the trainable parameters and input features can effectively improve the 

flexibility of the activation function. If the right-hand side of the element-by-element product symbol ∙ is regarded 

as a whole, then the activation function formula can also be understood as an operation that multiplies the input 

with the corresponding element in the threshold. The threshold mechanism is a method of controlling the flow of 

information, and by introducing thresholds to determine which information should be passed between different 

layers of the network, the expressive power and predictive accuracy of the model can be improved. A static 

threshold performs the same operation on all input samples and is unable to accommodate the differences between 

different inputs. Dynamic thresholds, on the other hand, consisting of hyperfunctions of the input features, 
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adaptively adjust the shape of the activation function according to the input data. 

 

3.2 Dynamic hyperfunctions 

For the activation function to be flexible enough to handle changing inputs and thus improve the 

generalization ability of the model, the dynamic hyperfunction needs to be able to adapt to input data with 

different features, sizes and distributions. For the activation function to be easily integrated into existing neural 

network architectures, the implementation of the dynamic hyperfunction needs to be as simple and general as 

possible. To adapt the activation function to the needs of lightweight neural networks, the additional 

computational overhead of the dynamic hyperfunction needs to be as small as possible. At the same time, for the 

activation function to help the model capture important features at different scales and improve the feature 

extraction capability of the model, the dynamic hyperfunction needs to extract and abstract the input information 

sufficiently. Therefore, the dynamic hyperfunction should be characterized by strong data adaptability, small 

computational overhead, sufficient feature extraction, and plug-and-play ease of implementation. 

Our proposed dynamic hyperfunction hi (i=1,2,3) based on input channel features consists of 

depth-separable convolutional layers
[6]

 and batch normalization
[36]

 combination. Its expression is shown in Eq. 

(3). 

  ccf ( )( ( (f )))h DC BNPC BN  (3) 

Where DC is Depthwise Convolution, PC is Pointwise Convolution, BN is Batch Normalization, and fc is 

the input channel feature. 

Depth Separable Convolution (DSC) consists of two parts, Depthwise Convolution and Pointwise 

Convolution.The computation of Depthwise Convolution is very simple, it uses one convolution kernel for each 

channel of the input feature map, and then splices the outputs of all the kernels to get the final output. Pointwise 

Convolution is actually a 1×1 convolution, which allows DSC to freely change the number of output channels 

while performing channel fusion on the feature maps output by Depthwise Convolution. The biggest advantage of 

using DSC instead of normal convolution to extract input features is that it is very computationally efficient and 

the additional parameters added are negligible to the total network parameters. At the same time the addition of 

batch normalization helps to improve the nonlinear expressiveness of the hyperfunction, which in turn enables the 

hyperfunction to better learn more complex input features. 

Since each channel represents the same class of features in CNN, by analyzing and extracting different 

channels of an image or feature map, we are able to capture feature information at different levels and perspectives 

to better understand and represent the input data. Channel features can help us distinguish between different 

objects, patterns, or attributes and provide more accurate and robust feature representations. In many vision tasks, 

such as target detection, image classification, and semantic segmentation, the effective extraction and utilization 

of channel features is crucial for obtaining good performance. Therefore, hyperfunctions that can fully understand 

and utilize the channel features can help us improve the model's ability to solve visual tasks, i.e., the inputs to the 

hyperfunctions should fully reflect the salient features of the channel features. 

 

3.3 Pooling of channel distribution 

Inspired by the fact that pooling function plays a crucial role in speech feature learning
[37]

 inspired by the 

crucial role played by pooling functions in speech feature learning, we design a series of pooling functions based 

on different statistics with reference to typical pooling methods in speech feature learning. The output of the 

pooling function serves as the input channel features of the dynamic hyperfunction, reflecting the feature 

information of each channel of its input. The first statistic is the mean, which is calculated by adding all data 

values and dividing by the number of data. The mean value is able to measure the trend of channel feature pooling, 

summarize the overall information of channel features, and quickly compare feature differences between channels. 

The pooling function based on the mean value is shown in Equation (4). 

, ,1 1

1
( )

W H

c c w hw h
AveragePooling x x

W H  



  (4) 

The second statistic is the sample standard deviation, which is calculated by squaring the difference 

between each data value and the mean and averaging these squared values and then opening the square root. The 

standard deviation is a measure of how discrete the distribution of features is and reflects the outlier characteristics 

of the channel features. The pooling function based on the sample standard deviation is shown in equation (5). 

 
2

2

, ,1 1

1 1
( )

1 1

W H

c c w h h ww h
Pooling x x

W H
StandardDeviation  

 

 
      

  (5) 

where μh and μw are the mean values of the input features in the dimensions of height and width, respectively. 

The third statistic is the L2 paradigm, which is calculated by adding the 2nd power of the absolute value of 
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the data and then opening the root of the 2nd power.The L2 paradigm can reflect the distribution range of the 

channel features and measure the feature similarity between the channels. The pooling function based on the L2 

paradigm is shown in Equation (6). 

2
2

22
, ,1 1

2 ( )
W H

c c w hw h
L normPooling x x

 
   (6) 

These pooling functions extract stable feature representations through feature degradation and 

aggregation operations and capture the distribution information of the input feature maps. Pooling functions can 

retain the main feature information and have translation invariance, which can spatially abstract the input features 

and extract more stable and robust feature representations. For image classification tasks, the global information 

extracted by the pooling function can help the model better understand and distinguish feature differences 

between different categories. 

 

IV. Experiment 

 

4.1 Experimental setup 

In order to show the performance of the proposed channel pooling dynamic activation unit more 

objectively and to compare it with different activation functions, we conduct our experiments on the 

ImageNet2012 dataset, which is challenging in image classification tasks
[38]

 We conduct experiments on the 

challenging ImageNet2012 dataset for the image classification task. The experimental results are obtained by 

replacing the lightweight neural network ShuffleNetV2
[39]

 and the deep neural network ResNet-50
[40]

 in the 

lightweight neural network ShuffleNetV2 and the deep neural network ResNet-50 to obtain the activation function. 

Except for changing the activation functions of the models, all models were trained for 20 epochs using the same 

input size of 224x224, data batch size of 32, and learning rate of 0.1, and all other training settings for the same 

models were kept consistent with the recommended settings in the corresponding papers for the models. The 

activation functions such as ReLU, PReLU, Swish, ACONC, LAU are used as baseline functions for the 

experiments and for the trainable activation functions they are initialized and updated by back propagation 

algorithm as recommended in the literature. The initial value of the DSC convolution kernel in the dynamic 

hyperfunction is set to 1. The default pooling inputs for the hyperfunctions h1,h2,h3 are standard deviation 

pooling, mean pooling and l2-paradigm pooling, respectively. For the performance comparison of different 

activation functions, the evaluation criterion uses the common Top-1 classification error, and the lowest error 

value is highlighted in bold in the table. 

 

Table 1.Top-1 errors for different activation functions on ImageNet 

Method ShuffleNetV2⬇ ResNet-50⬇ 

ReLU 39.4 24.0 

PReLU 38.9 23.8 

Swish 

ACONC 

LAU 

CPDAU (ours) 

38.3 

37.0 

36.7 

36.1 

23.5 

23.2 

22.5 

22.6 

 

4.2 Comparison with other activation functions 

 

Table 1 shows the performance of various activation functions on ShuffleNetV2 and ResNet-50. The 

Top-1 classification error of CPDAU is 36.1% on ShuffleNetV2 and 22.6% on ResNet-50.CPDAU outperforms 

ReLU on both networks.CPDAU has a 2.2% improvement over Swish on ShuffleNetV2 and compared to PReLU 

has a 2.8% improvement. On ResNet-50, CPDAU shows a 0.9% improvement over Swish and a 1.2% 

improvement over PReLU. CPDAU reduces the Top-1 classification error by 0.9% and 0.6% compared to 

ACONC on the two network architectures, respectively. error on ShuffleNetV2 is reduced by 0.6% and the Top-1 

classification error on ResNet-50 is improved by 0.1%. By comparing the performance of different activation 

functions, the proposed CPDAU has a higher accuracy on the lightweight network ShuffleNetV2, while the 

performance on ResNet-50, which has a larger number of parameters, is slightly inferior to that of LAU.The 

experimental results show that our method CPDAU has an excellent performance on neural network structures of 

different sizes and complexities, which significantly improves the image classification performance of the 

network. 

 

 

 



Channel Pooling Dynamic Activation Unit for Image Feature Learning 

www.ijeijournal.com                                                                                  Page | 70 

4.3 Selection of dynamic hyperfunctions 

 

Table 2.Top-1 errors of different hyperfunctions on ImageNet. 

Conv is normal convolution, DSC is depth separable convolution, and BN is batch normalization. 

Method ShuffleNetV2⬇ ResNet-50⬇ 

Conv 36.4 22.7 

DSC 36.8 23.0 

Conv+BN 

DSC+BN 

36.3 

36.1 

22.6 

22.6 

 

According to the experimental results in Table 2, the Top-1 errors of directly using Conv and DSC as 

hyperfunctions in ShuffleNetV2 are 36.4% and 36.8%, respectively, and the Top-1 errors of Conv hyperfunctions 

in ResNet-50 are 0.3% smaller than those of DSC hyperfunctions. Due to the better expressive power of ordinary 

convolution with more trainable parameters, the Top-1 error of directly using Conv hyperfunctions in 

ShuffleNetV2 and ResNet-50 will be slightly smaller than that of DSC hyperfunctions by 0.4% and 0.3%, 

respectively. With the addition of batch normalization, the Top-1 errors for the Conv+BN hyperfunction are 36.4 

(ShuffleNetV2) and 22.6 (ResNet-50), while the Top-1 errors for the DSC+BN hyperfunction are 36.1 and 22.6 in 

ShuffleNetV2 and ResNet-50, respectively. in ShuffleNetV2 the Top-1 error of the DSC+BN hyperfunction is 

slightly lower than that of the Conv+BN hyperfunction, while in ResNet-50 the Top-1 errors are equal. Adding 

batch normalization leads to a slight decrease in Top-1 error in both models compared to using the DSC and Conv 

hyperfunctions alone. However the Top-1 error of the DSC hyperfunction is improved to a greater extent, 

suggesting that batch normalization is more helpful in improving the performance of DSC. This is because batch 

normalization can effectively solve the covariance shift problem, which in turn improves the nonlinear 

expressiveness of the hyperfunction. In addition, compared with the other three hyperfunctions, the DSC+BN 

hyperfunction is able to obtain better Top-1 errors in both ShuffleNetV2 and ResNet-50, which indicates that the 

DSC+BN hyperfunction has better feature extraction and representation capabilities. In conclusion, the 

experimental results show that DSC+BN is a hyperfunction that performs better on ImageNet2012, and it can be 

used to improve the accuracy of image classification and other visual tasks. 

 

Table 3. h1 Top-1 errors for different pooling inputs of the hyperfunction. 

Method ShuffleNetV2⬇ ResNet-50⬇ 

AP 36.8 23.0 

SDP 36.1 22.6 

L2P 36.4 22.6 

 

Table 4. h2 Top-1 errors for different pooling inputs of the hyperfunction. 

Method ShuffleNetV2⬇ ResNet-50⬇ 

AP 36.1 22.6 
SDP 37.0 22.9 

L2P 37.3 22.8 

 

Table 5. h3 Top-1 errors for different pooling inputs of the hyperfunction. 

Method ShuffleNetV2⬇ ResNet-50⬇ 

AP 37.2 22.9 

SDP 36.1 22.7 

L2P 36.1 22.6 

 

Different pooling inputs (based on mean, sample standard deviation, and L2 paradigm) were used as 

pooling operations for the h1, h2, and h3 hyperfunctions, changing the pooling inputs for only one of the three 

hyperfunctions and leaving the other two hyperfunctions with default pooling inputs. The errors (e.g., Top-1 error) 

of the ShuffleNetV2 and ResNet-50 models on the test set of ImageNet2012 are computed separately to evaluate 

the effect of different pooling on the performance, and the experimental results are shown in Tables 3, 4, and 5, 

where AP is the mean pooling, SDP is the standard deviation pooling, and L2P is the L2-paradigm pooling. 

According to the data in Table 3, on ShuffleNetV2, the Top-1 errors for mean pooling (AP), L2 paradigm pooling 

(L2P) and standard deviation pooling (SDP) are 36.8%, 36.1% and 36.4%, respectively. On ResNet-50, the Top-1 

errors for mean pooling (AP), standard deviation pooling (SDP) and L2-paradigm pooling (L2P) are 23.0%, 22.6% 

and 22.6%, respectively. That is, on the h1 hyperfunction in ShuffleNetV2, standard deviation pooling (SDP) 

performs best, outperforming mean pooling (AP) and L2 paradigm pooling (L2P). On the h1 hyperfunction in 

ResNet-50, standard deviation pooling (SDP) and L2-paradigm pooling (L2P) have comparable performance and 
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outperform mean pooling (AP). According to the data in Table 4, the Top-1 errors of mean-value pooling (AP) on 

ShuffleNetV2 and ResNet-50 are 36.1% and 22.6%, respectively, the Top-1 errors of standard deviation pooling 

(SDP) on ShuffleNetV2 and ResNet-50 are 37.0% and 22.9%, respectively, and the L2 paradigm pooling (L2P ) 

has Top-1 errors of 37.3% and 22.8% on ShuffleNetV2 and ResNet-50, respectively. Thus on the h2 hyperfunction 

of ShuffleNetV2, standard deviation pooling (SDP) performs best, outperforming mean pooling (AP) and L2 

paradigm pooling (L2P). On the h2 hyperfunction of ResNet-50, mean value pooling (AP) has the best 

performance, slightly outperforming standard deviation pooling (SDP) and L2 paradigm pooling (L2P). 

According to the data in Table 5, on ShuffleNetV2, the Top-1 error is 37.2% for mean pooling (AP), 36.1% for 

standard deviation pooling (SDP), and 36.1% for L2 paradigm pooling (L2P). On ResNet-50, the Top-1 error is 

22.9% for mean pooling (AP), 22.7% for standard deviation pooling (SDP), and 22.6% for L2 paradigm pooling 

(L2P). Standard Deviation Pooling (SDP) performs best on the h3 hyperfunction of ShuffleNetV2, slightly 

outperforming Mean Value Pooling (AP) and L2 Paradigm Pooling (L2P). Mean value pooling (AP) performs 

best on the h3 hyperfunction of ResNet-50, slightly outperforming standard deviation pooling (SDP) and 

L2-paradigm pooling (L2P). 

Taken together, Standard Difference Pooling (SDP) achieves the best performance on h1 hyperfunctions 

in both ShuffleNetV2 and ResNet-50, as well as better performance on h1 and h3 hyperfunctions in ShuffleNetV2. 

L2 Paradigm Pooling (L2P) has a relatively outstanding performance on ResNet-50, especially on h3 

hyperfunctions performs better. Average value pooling (AP) performs poorly on both h1 and h3 hyperfunctions, 

but performs better on h2 hyperfunctions than the other two pooling methods. Standard deviation pooling is 

universal and stable in models with different hyperfunction structures, while L2-paradigm pooling shows better 

performance in some cases. The mean pooling function extracts stable feature representations through feature 

degradation and aggregation operations, which capture the distribution information of the input feature maps well. 

A mixed application of mean pooling (AP), L2 paradigm pooling (L2P) and standard deviation pooling (SDP) can 

be designed to help the model better understand and distinguish feature differences between different classes. In 

practical applications, it is necessary to consider the selection of pooling functions and the performance 

performance may be affected by the specific task, model architecture and data characteristics to choose the 

appropriate pooling function. 

 

V. Conclusion 

The channel pooling dynamic activation unit CPDAU proposed in this paper effectively improves the 

performance of two neural networks of different magnitudes, ShuffleNetV2 and ResNet-50, on the task of image 

classification, and reduces the classification error compared to the latest activation function practice on different 

network structures, respectively. In addition, performance comparison experiments using different hyperfunctions 

(Conv, DSC, Conv+BN, DSC+BN) in ShuffleNetV2 and ResNet-50 show that the performance of deeply 

separable convolutional hyperfunctions can be significantly improved with the addition of batch normalization, 

and batch normalization plays an important role in its nonlinear representation. Finally, the comparison of the 

performance of three channel pooling functions (SDP, L2P, and AP) in different hyperfunctions illustrates that the 

pooling functions with different statistics can extract stable feature representations through feature degradation 

and aggregation operations. The channel pooling dynamic activation unit can provide a useful reference for 

feature learning in vision tasks, and the adaptability and effectiveness to different task requirements and network 

architectures can be further explored in future work. 
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