
International Journal of Engineering Inventions 

e-ISSN: 2278-7461, p-ISSN: 2319-6491 

Volume 13, Issue 4 [April. 2024] PP: 37-44 

www.ijeijournal.com                                                                                                                                   Page | 37 

Optimization of Turning Bearing Steel Parameters for 

PCBN Tools Based on RSM 
 

Hu Shi 
1*

, BaiZhong Wang 
1
, Kai Xiao

1
 

1 
School of Mechanical and Vehicle Engineering, Changchun University, Changchun,130022, China; 

 

Abstract: Aiming at the bearing steel material brittleness, low thermal conductivity and easy to produce 

excessive cutting force during machining caused by machine vibration, resulting in reduced machining accuracy 

of the difficult problem, it is proposed to use the response surface method to establish the bearing steel turning 

process surface roughness and cutting force of the regression model, the constructed regression model as an 

adaptive function; according to the adaptive function and the constraints of the optimal combination of the 

cutting amount of superior The results show that: the optimal combination of the cutting tools is selected. The 

results show that the optimal combination of cutting dosage can reduce the surface roughness to 1.39065μm and 

the cutting force to 29.9846N. 
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I. Introduction 

Bearing steels are used to make balls for rolling bearings, precision gauges and precision parts for 

diesel engine pumps because of their high and uniform hardness and wear resistance and high elastic limit [1-3]. 

High-quality machined surfaces are critical to the performance of bearing steel precision parts, so high-speed 

hard cutting has become an important machining method for processing bearing steel. And cutting force as a 

high-speed hard cutting process control of the important indicators, research predicts the rule of change to 

optimize the cutting process, thus helping to reduce or eliminate cutting vibration. At this stage, how to reduce 

the cutting force generated by cutting bearing steel, improve the surface quality of the workpiece has become a 

hot issue in today's research [4-6]. 

At the present stage, the methods for optimization and prediction of bearing steel machining process 

tend to utilize orthogonal experiments, polar analysis, multiple linear regression, Monte Carlo methods and 

artificial neural networks [7-10]. And Response Surface Methodology (RSM), as a powerful statistical and 

mathematical technique, has many advantages in experimental design and optimization. Xu et al. used RSM to 

optimize the main process parameters of minimum trace lubrication assisted cutting, and obtained a set of 

optimum process parameters with an error of only 2.91% between the experimental value and the predicted 

value [11]. Faisal M.H et al. used CBN coated tool to cut aluminum alloy under different cutting parameters to 

enhance the tool life, RSM test analysis was carried out to obtain a set of optimum combination of turning 

parameters under which the cutting test was carried out and the tool life was enhanced by more than 20 min [12]. 

After the above analysis, it can be seen that previous research often focuses on the optimization of a 

single objective, while for cutting, the enhancement of machining quality and machining efficiency is jointly 

determined by a number of factors. Therefore, this paper uses the response surface method to establish the 

regression model of surface roughness and cutting force in the turning process of bearing steel, and the 

constructed regression model is used as an adaptive function, and the optimal combination of cutting dosage is 

preferred according to the adaptive function and constraints. 

 

II. Materials and Methods 

2.1. Experimental setup 

In this paper, the object of study for the GCr15 bearing steel, according to the experimental conditions 

to determine the specifications of the workpiece is: Ф50X150 round bar, both ends of the processing of the top 

hole, the surface of the pre-turning. Lathe selection CA6140A ordinary lathe, and in the tool holder installed 

Kistler 9527B type force gauge for cutting force measurement. Figure 1 shows the machine tool used in this 

study and the sensor system used to measure the cutting forces. Table 1 illustrates the chemical composition and 

physical properties of the bearing steel bar stock used in this study. The tool was made of polycrystalline cubic 

boron nitride (PCBN) inserts embedded in the shank of the tool model MCLN2525M12.The PCBN inserts had a 

forward angle of -6
o
, a backward angle and a main deflection angle of 91

o
, a tip radius of 0.4mm and a thickness 

of 4.76mm. 
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Figure 1. Machine tools and force measurement systems. 

 

Table 1. Chemical elements and physical properties of GCr15. 
Chemical 

element 
Content 

(%) 
Chemical 

element 
Content 

(%) 
 Physical properties Values 

C 0.95-1.05 Ni ≤0.3  Poisson's ratio 0.277 

Si 0.15-0.35 Mo ≤0.1  Young's modulus【Gpa】 201 

Mn 0.2-0.4 Cu ≤0.25  Specific heat capacity【J/(kg • ℃)】 340 

Cr 1.3-1.65 P ≤0.027  Thermal conductivity【W/（m • ℃）】 52.5 

S ≤0.02 Ni+Cu ≤0.5  Coefficient of thermal expansion【/℃】 11.5×10-6 

 

The equipment used to measure the surface roughness of the workpiece in this study is the Zegage Pro 

HR optical profilometer, when using the Zegage Pro HR optical profilometer for surface roughness 

measurement, in order to minimize the surface roughness measurement error, the roughness measurement is 

carried out at intervals of 72
o
, and the whole outer circle is measured for a total of five times, and the average of 

the five roughness measurements is calculated. 

 

2.2. Experimental Design 

Response surface methodology (RSM) based on Box-Behnken design (BBD) was used to design 

cutting parameter optimization experiments [13,14]. RSM is a multivariate statistical analysis method used to 

study the relationship between independent and dependent variables, which can visualize complex multivariate 

relationships into simple two-dimensional or three-dimensional graphs, and can intuitively explain the 

relationship between variables. In the field of machining, RSM is used to optimize the process and improve 

product quality by studying the effect of cutting parameters on cutting forces and surface roughness. To achieve 

this goal, the cutting parameters are designed as variable parameters. The cutting parameter levels are shown in 

Table 2. 

 

Table 2. Levels of cutting parameters. 
Symbol Factors Unit level 

-1 0 1 

v Spindle speed r/min 1000 1250 1600 

f Feed rate mm/r 0.1 0.15 0.2 
ap Depth of cut mm 0.1 0.15 0.2 

 

A total of 17 groups of experiments were designed using BBD, and the cutting experiments were 

carried out in the same cutting environment, and the tool was replaced after each cutting, and the experimental 

parameters and results are shown in Table 3. From Table 3, it can be seen that the surface roughness increases 

with the increase of feed and the cutting force increases with the increase of depth of cut. Therefore, in order to 

obtain better surface roughness and smaller cutting force, it is necessary to optimize the cutting parameters with 

the optimization objective of reducing surface roughness and cutting force. 

 

Table 3. Experimental layout and measurement results. 
No. Cutting Parameter Ra(μm) Fx(N) 

v(r/min) f(mm/r) ap(mm) 

1 1000 0.1 0.15 1.303 35.12 

2 1600 0.1 0.15 1.318 35.927 

3 1000 0.2 0.15 1.54 39.26 
4 1600 0.2 0.15 1.652 40.98 

5 1000 0.15 0.1 1.423 21.5505 
6 1600 0.15 0.1 1.599 23.007 
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7 1000 0.15 0.2 1.439 50.29 

8 1600 0.15 0.2 1.365 50.61 

9 1250 0.1 0.1 1.418 27.722 
10 1250 0.2 0.1 1.686 20.035 

11 1250 0.1 0.2 1.317 46.34 

12 1250 0.2 0.2 1.605 55.64 
13 1250 0.15 0.15 1.396 37.09 

14 1250 0.15 0.15 1.436 38.48 

15 1250 0.15 0.15 1.412 38.63 
16 1250 0.15 0.15 1.388 38.46 

17 1250 0.15 0.15 1.451 38.37 

 

2.3. RSM Modeling 

The RSM model can be expressed as a polynomial function. Among them, the first-order regression 

prediction model lacks accuracy and adaptability, has a large fitting error, and cannot effectively respond to the 

effect of the cutting parameters on the surface roughness (cutting force) between the cutting parameters, 

although the fitting error can be reduced by increasing the order of the regression prediction model, the 

overfitting phenomenon leads to an increase in the model's prediction instability, and the increase in the 

coefficients to be determined makes the model to the number of samples demanded also increased dramatically. 

increase, leading to a decrease in modeling efficiency and an increase in the cost and burden of experimentation. 

Although the use of artificial neural networks produces good results in terms of quality and accuracy of the 

model, they are subject to problems such as overfitting, poor interpretability, the need for a large number of 

parameters and sensitivity to initial weights. Therefore, in this study, a quadratic polynomial regression 

prediction model was developed with the expression shown in equation (1). 

 
3 3 3 3 2

0 1 1 1 1j j j j k jk j k j jj jy a a x a x x a x             (1) 

Where: y is the expected response, a0 is a constant, aj, ajj and ajk are the coefficients of the linear, quadratic and 

cross product terms, respectively, ε is the fitting error, and xj is the input factor to the model. 

 

III. Results and Discussion 

3.1. Analysis of Experimental Results Based on RSM 

In this study, the response surface correlation analysis was carried out using data analysis software, and the 

following model was obtained by establishing the regression equation of the RSM model for surface roughness 

and cutting force based on the data in Table 3 and equation (1). 

 
2 2 2

1.42 0.0286 0.1409 0.05 0.0242

0.0625 0.005 0.0067 0.0433 0.0466

a p

p p p

R v f a vf

va fa v f a

    

    
 (2) 

 
2 2 2

38.21 0.5379 1.35 13.82 0.2282

0.2841 4.25 0.7271 0.3428 1.11

x p

p p p

F v f a vf

va fa v f a

    

    
 (3) 

 

In this study, the credibility of the model was assessed from both statistical and experimental 

perspectives through ANOVA and experimental validation, and the results of the ANOVA for Ra and Fx are 

presented in Tables 4 and 5, respectively. 

As can be seen from Table 4, the F-value of the Ra model is 55.7 and the P-value of the model is less 

than 0.0001, which indicates that the established Ra model is extremely significant. The P-value of the primary 

terms v, f, ap, interaction term v×ap, and secondary terms f 
2
, ap

2
 is <0.01, which indicates that the effect on the 

surface roughness Ra is extremely significant and the other factors are not significant. The C.V. is 1.44% <10%, 

which indicates that the experiments are highly credible and accurate. The Adeq Precision, which is the ratio of 

the effective signal to the noise, is considered to be reasonable for a value greater than 4. The R
2
 and Adjusted 

R
2
 of Ra model are 98.62% and 96.85% respectively, and the difference between them is only 1.77%, which is 

negligible, indicating that the polynomials established can adequately respond to the relationship between the 

design variables and the response with good adaptability. 

From table 5 it is clear that the F-value of Fx model is 134.44 and the P-value of the model is less than 

0.0001. primary term ap, P-value of interaction term f×ap <0.01 indicates extremely significant effect on cutting 

force Fx, P-value of primary term f <0.05 indicates significant effect on cutting force Fx and other factors are not 

significant. c.v. is 4.09% <10% and Adeq Precision has a value greater than 4. The R
2
 and adjusted R

2
 of Fx 

model are 99.42% and 98.69% respectively and the difference between them is only 0.73%. 
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Table 4. ANOVA for cutting Ra. 
Source Sum of Squares Degrees of 

Freedom 

Mean Square F-

value 

P-value Remarks 

Model 0.2214 9 0.0246 55.7 <0.0001 Significant 

v 0.0066 1 0.0066 14.84 0.0063 Significant 
f 0.1588 1 0.1588 359.5 <0.0001 Significant 

ap 0.02 1 0.02 45.29 0.0003 Significant 

v×f 0.0024 1 0.0024 5.33 0.0544  
v×ap 0.0156 1 0.0156 35.38 0.0006 Significant 

f×ap 0.0001 1 0.0001 0.2264 0.6487  

v2 0.0002 1 0.0002 0.4248 0.5354  
f 2 0.0079 1 0.0079 17.9 0.0039 Significant 

ap
2 0.0091 1 0.0091 20.68 0.0026 Significant 

Residual 0.0031 7 0.0004    
Cor total 0.2245 16     

       

R2 0.9862    Std. Dev. 0.021 
Adjusted R2 0.9685    Mean 1.46 

Predicted R2 0.9612    C.V.% 1.44 

Adeq 
Precision 

22.8478      

 

Table 5. ANOVA for cutting Fx. 
Source Sum of Squares Degrees of 

Freedom 

Mean Square F-

value 

P-value Remarks 

Model 1625.76 9 180.64 134.44 <0.0001 Significant 
v 2.32 1 2.32 1.72 0.2307  

f 14.6 1 14.6 10.86 0.0132 Significant 

ap 1528.09 1 1528.09 1137.2
5 

<0.0001 Significant 

v×f 0.2084 1 0.2084 0.1551 0.7054  

v×ap 0.3229 1 0.3229 0.2403 0.6390  
f×ap 72.14 1 72.14 53.69 0.0002 Significant 

v2 2.23 1 2.23 1.66 0.2390  

f 2 0.4948 1 0.4948 0.3683 0.5631  
ap

2 5.23 1 5.23 3.89 0.0891  

Residual 9.41 7 1.34    

Cor total 1635.16 16     
       

R2 0.9942    Std. Dev. 1.16 

Adjusted R2 0.9869    Mean 37.50 
Predicted R2 0.9220    C.V.% 3.09 

Adeq 

Precision 

40.6447      

 

The distribution of predicted and actual values of surface roughness Ra and cutting force Fx are plotted in Figure 

2. From Figure 2, it can be seen that the distributions of predicted and actual values of Ra and Fx are 

approximately on a straight line, indicating that the model fitted using RSM is well adapted. 

 

  

（a）Ra Predicted vs. Actual （b）Fx Predicted vs. Actual 

Figure 2. Ra and Fx Predicted vs. Actual. 
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In order to verify the reliability of the constructed model, experimental validation was also carried out 

in this study. Cutting parameters within the experimental interval were randomly selected, and the 

experimentally measured Ra and Fx values were compared with the calculated results of the constructed model. 

The relative errors of the experimental parameters, experimental results and predicted results are shown in Table 

6. As can be seen from Table 6, the maximum relative errors of Ra and Fx are 2.59% and 3.749%, respectively, 

which are within the acceptable range of error, indicating that the model has good prediction results. 

 

Table 6. Results of confirmation experiments and their comparison with predicted values. 
Exp.No. Design Parameters Ra（μm） Fx（N） 

v

（r/min） 

f

（mm） 

ap

（mm/r） 

Exp. Predicated Error

（%） 

Exp. Predicated Error

（%） 

1 1000 0.2 0.1 1.541 1.574 2.14% 19.16 18.95 1.096% 
2 1000 0.15 0.15 1.364 1.385 1.54% 36.24 36.95 1.959% 

3 1250 0.2 0.15 1.588 1.604 1.01% 40.09 39.91 2.872% 

4 1250 0.15 0.2 1.398 1.417 1.36% 49.53 50.92 2.806% 
5 1600 0.2 0.1 1.852 1.804 2.59% 21.87 21.05 3.749% 

6 1600 0.15 0.15 1.429 1.442 1.62% 38.42 38.02 1.041% 

 

The normal probability distributions of the Ra and Fx residuals are plotted in Figure 3. From Figure 3, it 

can be seen that most of the residuals are tightly clustered around a straight line, which indicates that the model 

is well adapted. Figure 4 depicts a perturbation plot showing the effect of cutting parameters on Ra and Fx. The 

results show that the feed has a significant effect on the surface roughness and the spindle speed has the least 

effect on the surface roughness; this is mainly due to the fact that too large a feed will lead to increased friction, 

heat generation and a decrease in the surface roughness, and the change in feed will also affect the size and 

shape of the chips produced during the cutting process, and the optimum chip formation is essential for 

obtaining a smooth surface roughness. The depth of cut has the most significant effect on the cutting force, 

while the spindle speed and feed have less effect on the cutting force. The main reason for this is that as the 

depth of cut increases, the contact area between the tool and the material increases, resulting in greater cutting 

forces. 

 

    
Figure 3. Normal plot of Ra and Fx . 
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(a) Perturbation plots of Ra (b) Perturbation plots of Fx 

Figure 4. Perturbation plots of Ra and Fx . 

 

The three-dimensional stereo response surface of the effect of cutting parameters on surface roughness 

(cutting force) is shown in Figures 5-7. Examining the cutting parameters of a factor fixed in the center value of 

the case of constant, the interaction of the other two factors on the surface roughness (cutting force). Figure 5 

shows the effect of spindle speed and feed on the surface roughness (cutting force) while the depth of cut is kept 

at the center level. From Figure 5(a), it can be seen that surface roughness increases with increase in feed and 

spindle speed and from Figure 5(b), it can be seen that cutting force increases with increase in feed and spindle 

speed. Figure 6 shows the effect of spindle speed and depth of cut on surface roughness (cutting force) with feed 

kept at intermediate level. From Figure 6(a), it can be seen that when the spindle speed is higher and the depth 

of cut is smaller, the surface roughness is larger, but with the increase of depth of cut, the surface roughness 

decreases gradually. From Figure 6(b), it can be seen that the cutting force increases with the increase of spindle 

speed and depth of cut. Figure 8 shows the effect of feed and depth of cut on surface roughness (cutting force) 

with spindle speed kept at intermediate level. From Figure 7(a), it can be seen that the surface roughness 

increases when the feed is larger and the depth of cut is smaller, and from Figure 7(b), it can be seen that the 

cutting force increases with the increase of feed and depth of cut. 

 

  
(a) RSM interaction surface plot between Ra Vs 

v and f 

(b) RSM interaction surface plot between Fx Vs 

v and f 

Figure 5. Influence of feed rate and Spindle speed on Ra and Fx . 
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(a) RSM interaction surface plot between Ra Vs 

v and ap 

(b) RSM interaction surface plot between Fx Vs 

v and ap 

Figure 6. Influence of depth of cut and Spindle speed on Ra and Fx. 

 

  
(a) RSM interaction surface plot between Ra Vs 

f and ap 

(b) RSM interaction surface plot between Fx Vs f 

and ap 

Figure 7. Influence of feed rate and depth of cut on Ra and Fx . 

 

The optimum combination of turning parameters is derived from the three-dimensional response 

surface. The schematic representation of the optimum parameters is shown in Figure 8, which shows that in 

order to obtain a surface roughness of 1.39065μm and a cutting force of 29.9846 N, a spindle speed of 1280 

r/min, a feed of 0.106 mm/r, and a depth of cut of 0.185mm are recommended. 

 

 
Figure 8. Optimum conditions for Ra and Fx. 

 

IV. Conclusions 

In this paper, the response surface method is used to establish the regression model of surface 

roughness and cutting force in the turning process of bearing steel, and the constructed regression model is used 

as an adaptive function, and the optimal combination of cutting dosage is preferred according to the adaptive 

function and constraints. It is found through the study: 
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1. The effect of cutting parameters on cutting force and surface roughness was analyzed by RSM and it was 

found that the feed had the most significant effect on surface roughness followed by depth of cut and spindle 

speed had the least effect on surface roughness. The most significant effect on cutting force is depth of cut 

followed by feed and spindle speed has the least effect. 

2. In this paper, the response surface method (RSM) is used to establish a quadratic polynomial regression 

model of cutting parameters and surface roughness (cutting force). Through ANOVA analysis and experimental 

verification, the constructed regression model can respond to the relationship between the cutting parameters 

and the surface roughness (cutting force), and improve the machining efficiency as much as possible under the 

premise of guaranteeing the machining accuracy, which provides a theoretical basis for the subsequent 

production of parts. 
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