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Abstract: Aiming at the problems in industrial casting defect detection, such as difficulty in identifying micro-
defects, interference from the coexistence of multi-category defects, and strict real-time requirements, a casting
defect detection system based on YOLOVS is proposed. The system uses CSPDarknet53 as the backbone
network, optimizes the network structure by introducing depthwise separable convolution and Ghost module,
adopts the Task-Aligned Assigner dynamic label assignment strategy, integrates the SPPF multi-scale feature
pooling module, and abandons the traditional anchor box design to adopt an Anchor-free mechanism.
Experimental results on the industrial casting defect dataset show that the detection speed of the system reaches
120 FPS (in the Tesla T4 GPU environment), the single-frame detection time is < 50 ms after acceleration by
TensorRT, and the mAP@0.5 exceeds 90%. Compared with traditional machine vision methods, the missed
detection rate is reduced to less than 5%, and only 300-500 defect samples are needed to complete model fine-
tuning. This system effectively solves the problems of low efficiency, poor robustness, and insufficient scalability
of traditional detection methods, and meets the requirements of real-time and high-precision detection in
industrial production lines.
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I. INTRODUCTION

As core fundamental components in the machinery manufacturing industry, castings are widely used in
fields such as automotive, aerospace, and construction machinery. Their surface and internal defects (e.g.,
blowholes, cracks, inclusions, depressions, etc.) directly affect the service safety and service life of products [1].
In industrial production, casting defect detection faces three core challenges: first, defects are extremely small
(on the millimeter scale), making localization difficult against complex backgrounds; second, multiple types of
defects often coexist, requiring high fine-grained recognition capabilities from the model; third, production lines
demand millisecond-level detection speed while maintaining an accuracy rate of over 99% [2].

Traditional casting defect detection methods mainly rely on manual visual inspection and conventional
machine vision technology. Manual visual inspection depends on the experience of inspectors, with a detection
speed of only 3-5 minutes per piece; prolonged work easily leads to visual fatigue, resulting in a missed
detection rate as high as 15%-20% [3]. Conventional machine vision algorithms based on threshold
segmentation and edge detection are sensitive to interferences such as lighting changes and surface reflections,
and have poor generalization ability. Moreover, for new types of defects, feature extraction rules need to be
redesigned, leading to a development cycle of 2-3 months[4].

In recent years, deep learning-driven object detection technology has provided a new approach for
industrial defect detection. The YOLO series algorithms, leveraging the advantage of end-to-end detection,
achieve a good balance between detection speed and accuracy [5]. As one of the latest versions in this series,
YOLOVS possesses stronger feature extraction capabilities and more flexible task adaptability. Based on the
YOLOvVS model, this paper conducts targeted optimizations for the casting defect detection scenario. Through
improvements such as lightweight network design, dynamic sample assignment, and multi-scale feature fusion,
it realizes accurate recognition of micro-defects, simultaneous detection of multi-category defects, and real-time
inference, thereby providing an efficient solution for quality control of industrial castings.
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11 Improved Design of the YOLOvV8 Model

2.1 Original Core Architecture of YOLOVS

YOLOvVS8 adopts CSPDarknet53 as its backbone network, and reduces computational complexity while
enhancing feature extraction capabilities through the Cross-Stage Partial (CSP) structure [6]. Its core
architecture consists of three parts: Backbone (feature extraction), Neck (feature fusion), and Head (detection
output). It supports the integrated processing of object detection, instance segmentation, and classification tasks,
and the model output is compatible with ONNX and TensorRT formats, facilitating industrial-grade
deployment.

2.2 Lightweight Optimization of the Backbone Network

The original Backbone of YOLOv8 adopts standard convolution and the CSPDarknet53 architecture. Although
it possesses strong feature extraction capabilities, it has a large number of parameters and high computational
complexity (the original YOLOvSs has approximately 21.9 million parameters and around 28.4 GFLOPs),
making it difficult to adapt to the deployment requirements of edge computing devices (such as embedded
GPUs and FPGA5) in industrial scenarios.

To address this issue, this study implements network lightweighting while maintaining unchanged defect feature
extraction capabilities through two core modifications: replacing standard convolution with Depthwise
Separable Convolution and integrating the Ghost module.

2.2.1  Depthwise Separable Convolution

First, Depthwise Separable Convolution decomposes standard convolution into depthwise convolution and
pointwise convolution, which respectively complete spatial feature extraction and channel fusion. On the
premise of maintaining unchanged feature extraction capabilities, it reduces the number of model parameters
and computational load [7]. Their respective roles are as follows:

Depthwise convolution: An independent convolution kernel is assigned to each input channel to extract only
spatial features. At this point, the computational load is [8]:

Faw =HXW X Cin X KX K
)
Among them, H X W X Cjp represents the size of the input feature map (height x width x number of input

channels), and K X Kis the size of the convolution kernel.

Pointwise convolution: 1x71 convolution is used to fuse channel features, and the
computational load at this point is:

Fow =1 X1 X Gy X Cope xHXW

@
Among them, Cgy; represents the number of output channels.
At this point, the total computational load is:
Fao = Faw + Fpuy (3)
Whereas the computational load of standard convolution is:
Fog =KXKXCyXCop X HXW @

The ratio of the computational load between Depthwise Separable Convolution and standard
convolution is:
) ) Fas 1 1
CompressionRatio =—=—+=
Fsa  Cow K (5
When k=3 (a commonly used convolution kernel size) and Cow=64, the compression ratio is

approximately 12.3%, meaning the computational load is only about 1/8 of that of standard convolution.

2.22  Ghost Module

However,there are a large number of "redundant features" (i.e., similar feature maps) in the feature maps
generated by traditional convolution. The Ghost module generates rich feature maps at low cost through the
method of "base convolution generating core features" + "'simple linear transformation generating redundant
features (Ghost features)", further enhancing the feature expression ability oflightweight networks.
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The feature generation process of the Ghost module is divided into two steps:

®Core Feature Generation
First let the input feature map be X € RFW*Cin and then generate the core feature map Y =

Conv(X; W, ) using a small number of convolution kernels.
. . . C
Among them W, € RE¥XGnXCmidjs the core convolution keel, Y € REXW*Cmid(C_ ., = -2
5
,S is the redundancy coefficient,with a value range of 2-4), and Conv represents the standard
convolution operation.

®Ghost Feature Generation
Perform a linear transformation (e.g., 3 X 3 convolution) on each channel of the core feature map Y

to generate (s-1) similar feature maps, and finally obtainCout=S X Cmid feature maps through

concatenation.
The processing performed here is [9]:
Y;' = Linear(Y; W;) (i=12,...,Chi) (6)
Z = Concat(Y, Y1, Ya ..., Yo i) )

Compared with the standard convolution that generates the same number of feature maps, the
computational load compression ratio of the Ghost module is 1/s (with a 50% compression when s= 2).
Moreover, through the enhancement of redundant features, the robustness of defect features is
significantly improved.
2.2.3Structure of Network Lightweight Modifications

The improved network structure is as follows:

ConvDW(X) = Depthwise(X) & Pointwise(X) (8)

Ghost(X) = Conv(X) + Linear(Conv(X)) ©)
Wherein, X represents the input feature map, &) denotes element- wise multiplication, COnv stands
for the standard convolution operation, and Linear refers to linear transformation.
The specific network structure is shown in Figure 1.
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2.3 Dynamic Label Assignment Strategy

In the field of casting defect detection, scenarios such as tiny defects (e.g., 0.5-2mm air holes) and coexisting
multi-category defects pose challenges for traditional label assignment strategies (such as fixed anchor box
matching and IoU threshold filtering), which suffer from issues like "unreasonable sample matching and low
recall rate for small targets". This study introduces the Task-Aligned Assigner dynamic label assignment
strategy. By integrating the bidirectional matching logic of "localization accuracy (IoU)" and "classification
confidence", it dynamically assigns optimal training samples to casting defects of different sizes and types. The
core goal is to improve the detection performance for tiny defects and low-confidence defects.

23.1  Coreldea

The Task-Aligned Assigner measures the matching degree between the predicted bounding boxes and the
ground-truth boxes through the "Task-Aligned Score", which takes both localization accuracy and classification
confidence into account. It achieves the following:

. Assigning more high-quality positive samples to tiny defects to improve the recall rate;

. Filtering background interference samples with "high IoU but low classification confidence" to reduce
the false detection rate;

. Adaptively accommodating the feature differences of multi-category defects to avoid sample assignment
being biased towards a certain type of defect.

2.3.2  Mathematical Principles

The task-aligned score is used to comprehensively consider the IoU value (localization accuracy) between the
predicted bounding box and the ground-truth box, as well as the classification score

(category confidence). The formula is as follows [10]:

Score(i,j)=axIoU(i,j)+(1—a)xClassScore(i,j) (10)

In the formula, i denotes the predicted bounding box, j denotes the ground-truth box,a is the balance
coefficient (with a wvalue of 0O.5) that balances the weights of localization and
classification,IoU(i,j) represents the Intersection over Union between the predicted bounding box and the ground-
truth box, and ClassScore(i,j) denotes the classification confidence score.

First, calculate the task-aligned score between each predicted bounding box and all ground-truth boxes;

Second, for each ground- truth box, select the top-k predicted bounding boxes with thehighest scores as positive
samples (k is adaptively adjusted according to the number of defects in the image - the more defects there are, the
larger k becomes);

Finally, set a score threshold of Threshold=0.3,and filter out predicted bounding boxes with scores

> the threshold as supplementary positive samples to ensure that tiny defects have sufficient sample support.
This strategy effectively improvest the recall rate of tiny defects (such as punctate air holes and fine cracks) and
solves the problem of unreasonable sample matching in traditional anchor box assignment.

24 SPPF Multi-Scale Feature Pooling Module

The SPPF (Spatial Pyramid Pooling Fast) module is a lightweight multi-scale feature fusion component
optimized based on SPP (Spatial Pyramid Pooling). The original SPP module uses parallel pooling kernels of
sizes 1x1,5x5,9x9, and 13 x13. Although it can expand the receptive field, it has computational redundancy.
SPPF is optimized through "serial pooling + shared convolution", reducing the computational load by 60%
while maintaining an equivalent receptive field. Its core function is to expand the network's receptive field via
multi-scale pooling operations, enabling the model to simultaneously capture both "tiny details" (such as 0.5mm
air holes) and "global features" (such as sand holes larger than Smm) in casting defects, thus addressing the
issue of unbalanced response to defect features of different sizes in the original YOLOv8 model.

With reference to the official implementations and principle analyses of YOLOvVS5/YOLOVS, the pooling
equivalence and fusion logic of the SPPF module are implemented as follows: the multi-scale pooling results
are concatenated with the original feature map, then dimension reduction and fusion are performed through 1x1
convolution, and finally the fused features are output:

Y = Conv(Concat(X,P1(X),P2(X),P3(X)),k=1,s=1 (10)

Among them, Concat refers to concatenation along the channel dimension, and Conv denotes 1x1 convolution.
The structure of the newly added SPPF (Spatial Pyramid Pooling Fast) module is shown in Figure 2:
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Figure 2. SPPF (Spatial Pyramid Pooling Fast) Module

Compared with the original SPP, the SPPF module reduces the computational load by 60% (from 1.2G GFLOPs
to 0.48G) and the number of parameters by 55% (from 0.8M to 0.36M). On the NVIDIA Jetson Xavier NX edge
device, its inference latency only increases by 0.8ms (from 12.3ms to 13.1ms), which fully meets the real-time
detection requirement of <50ms for industrial production lines.

2.5 Anchor-free Detection Mechanism

This system abandons the traditional Anchor-based design and adopts the Anchor-free mechanism to directly
predict the coordinates of the target center point, as well as the width and height of the target. This avoids the
problem of missing tiny defects caused by mismatched anchor box sizes [11]. It outputs the target bounding box
through key point regression (based on the CenterNet idea), reducing dependence on prior boxes. This
mechanism is particularly suitable for detecting defects with irregular shapes (such as curved cracks and
irregular inclusions).

The improved YOLOvVS8 adopts an Anchor-free scheme of "center point + four-side distances" (referring to the
core logic of FCOS). The core is to transform defect detection into two major tasks: "center point judgment +
boundary regression". The specific principle is as follows:

. Core Prediction Targets.

Each pixel (%, y) in the feature map needs to predict 5 categories of information to directly output the complete
information of defects:

. Center point confidence: Determines whether the pixel is the center point of a defect (value range: 0-1;
the closer the value is to 1, the higher the probability that the pixel is the center point);

. Four-side distances: The distances from the pixel to the left (L), top (T), right (R), and bottom (B)
boundaries of the defect;

. Category probability: The classification probabilities of 6 types of casting defects (such as air holes,
cracks, etc.).

2. Coordinate Decoding Logic
Assume the coordinate of a certain pixel on the feature map is (x0, y0), and the predicted four-side distances are
(L, T, R, B). Then the real coordinates of the defect in the original image are calculated as follows:

. Left boundary: XL = (x0 - L)xdownsampling factor

. Top boundary: YT =(y0 - T) xdownsampling factor

. Right boundary: XR = (x0 + R) Xdownsampling factor

. Bottom boundary: YB = (y0 + B) xdownsampling factor

Example: If the downsampling factor of the feature map is 8, and the predicted distances for the pixel (20, 30)
are L=2, T=3, R=4, B=5, then the coordinates of the defect bounding box in the original image range from ((20-
2) x 8,(30-3)x 8))to ((20+4) x 8, (30+5)x 8)\), i.e., (144, 216) — (192, 280).
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3. Positive and Negative Sample Selection

To address the issue of "imbalance between positive and negative samples caused by excessive background
pixels", a "central region selection" strategy is adopted:

. Positive samples: Only pixels within the ground-truth defect box are regarded as positive samples,

which participate in the training of center points and boundary distances;

. Negative samples: Pixels outside the defect box are negative samples, which only participate in the
training of center point confidence (to suppress background interference);

. Central offset correction: By additionally predicting the center point offset (dx, dy), the coordinate error
caused by downsampling is corrected, ensuring the localization accuracy is < 0.1lmm.

Traditional Anchor-based methods (such as YOLOvS and Faster R-CNN) need to preset a large number of
anchor boxes with fixed sizes and aspect ratios on the feature map, and then learn the offset between the anchor
boxes and the ground-truth defect boxes. In contrast, the Anchor-free mechanism completely eliminates the
anchor box design. The core differences between the two are as Table 1:

Table 1.Comparison Table of Anchor-based and Anchor-free

Comparison
Dimensions Anchor-based (with anchor boxes) Anchor-free (without anchor boxes)
Source of Candidate | Preset anchor boxes with fixed sizes/ratios (manual [Every pixel on the feature map is a candidate point (no
Regions parameter tuning required) prior dependence).
The offset of anchor boxes relative to ground-truth | The coordinates of the target center point, four-side
Prediction Targets boxes, confidence, and category. distances, confidence, and category.
It relies on the matching between anchor box sizes
. and defects, and tiny dgfects are prone to being It adapts to defects of all sizes and requires no
Adaptability missed. .
manual parameter tuning.
. A large number of redundant anchor boxes result in No anchor box redundancy, resulting in a
Computational . . . . o
. high computational load. computational load reduction of more than 30%.
Efficiency
(Comparison
IDimensions |JAnchor-based (with anchor boxes) |Anchor-free (without anchor boxes)
Anchor box parameters are sensitive, requiring It has strong generalization ability and is suitable for
Industrial Pain Points redesign when the scenario changes. detection scenarios of multiple types of casting
defects.

Resolution of Core Pain Points:Casting defects exhibit extremely large size variations (ranging from 0.5mm to
10mm) and irregular shapes. The fixed anchor boxes of the Anchor-based method struggle to cover all defect
sizes, which easily leads to missed detections of tiny defects (such as 0.5mm air holes) due to the lack of
matching anchor boxes. In contrast, the Anchor-free mechanism, through pixel-level dense prediction, can adapt
to defects of most sizes and basically requires no manual parameter tuning.

The Anchor-free mechanism is implemented in the Head module of YOLOvVS, adopting a "shared features +
branch decoupling" structure. It operates in parallel with the detection and classification branches, and its
specific structure is shown in Figure 3.
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Figure 3. Anchor-free
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2.6 Multi-Task Integration Design

On the basis of the detection branch, a segmentation branch and a classification branch are added:

. The segmentation branch adopts a lightweight variant of Mask R-CNN to realize pixel-level annotation
of defect regions.
. The classification branch uses a decoupled head to separate classification and regression tasks,

avoiding feature conflicts and improving the classification accuracy of multi-category defects.

Its core logic is to realize three major tasks — defect detection (localization), instance segmentation (region
quantification), and category classification (recognition) — in parallel within a single network architecture. This
design abandons the complex process of traditional "multi-model series connection" and solves the pain points
of "information fragmentation, delay accumulation, and error amplification" in industrial casting detection.
Through the architecture of "shared feature backbone + decoupled task head", this design enables the
synchronous output of comprehensive defect information including "location-region-type".

The multi-task integration design adopts a "one inference, full-task output" mode. While the network shares
deep-level features, it completes the three major tasks in parallel. This not only ensures information consistency
but also improves inference efficiency, perfectly meeting the "high precision + high real-time" requirements of
industrial production lines.

To ensure this requirement, a unified loss function is needed to guide the network to optimize the three tasks
simultaneously, preventing the excessive performance of one task from suppressing the others.

2.6.1  Feature Synergy: Attention Gating Mechanism

To avoid conflicts in feature requirements among different tasks, an attention gating is inserted between the
shared feature layer and the task heads to dynamically adjust feature responses [12]:

Frask = 0(Wtask X Fshare +btask ) O Fspare (11)
Fshare: Shared Feature Map
Wtask~ btask: Task-Specific Weights and Biases (one set each for detection or segmentation or
classification)
o: Sigmoid Activation Function, Outputting Attention Weights in the Range of 0-1;
©: Element-wise Multiplication,It reinforces task-relevant features and suppresses irrelevant features through
attention weights.

2.6.2  Loss Function Synergy: Multi-Task Joint Loss
A joint loss function based on weighted summation is adopted to balance the training priorities of the three
major tasks:

Ltotal =a - Ldet + B Lseg + V- Lcls (12)

Ldet: Detection task loss (CIoU loss): measures the matching degree between the detection box and the ground
truth box.

Lseg: Segmentation task loss (Dice loss): optimizes pixel-level segmentation accuracy.

Lcls: Classification task loss (Cross-Entropy Loss): improves category recognition accuracy.

Weight Coefficients: a= 0.4, = 0.3, y=0.3 (optimized through experiments to adapt to casting defect scenarios)
The model integrates three branches: detection, segmentation, and classification. After extracting features via
the Backbone, the features are fused through the SPPF module and the Neck. Finally, the model outputs
information about the defect's location, region, and type, as shown in Figure 4:
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1. Experimental Results and Analysis
3.1 Experimental Environment
The specific configuration of the experimental environment is as Table 2:

Table 2. Experimental Environment Configuration

Software Configuration Details
Operating System Windows 11
GPU NVIDIA RTX 4090 (32GB)
Framework PyTorch 2.7.1, CUDA 12.6
Accelerator TensorRT 8.6

32 Dataset Construction

The experimental dataset includes 6 common defect types of industrial castings: Blowhole, Crack, Inclusion,
Depression, Sand Hole, and Scratch. Each defect type has 300 samples, totaling 1,800 images, with the image
resolution uniformly adjusted to 640 x 640. The dataset is divided into a training set, validation set, and test set
in an 8:1:1 ratio. The training set is expanded to 5,400 images using data augmentation techniques such as
random flipping, brightness adjustment, and Gaussian blur.

33 Evaluation Metrics and Model Performance Comparison

Commonly used evaluation metrics in the field of industrial defect detection are adopted:

. Precision: The proportion of correctly detected defects among all detection results.

. Recall: The proportion of correctly detected defects among the total number of actual defects.

. mAP@Q0.5: The mean of Average Precision (AP) across all categories when the Intersection over Union
(IoU) threshold is set to 0.5.

. Detection Speed (FPS): The number of images that can be processed per unit time.

The improved YOLOvV8 model is compared with traditional machine vision methods, YOLOvS, and YOLOvV7,
and the results are shown in Table 3:
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Table 3. Performance Comparison of Different Detection Methods

Single- Frame
Detection Time Missed Detection
IDetection Method  [Precision (%) IRecall (%) mAP@0.5 Detection Speed (ms) Rate
(%) (FPS) (%)
Traditional Machine
[Vision
85.3 78.6 72.1 15 66.7 18.2
[YOLOvS5s 91.5 89.2 88.5 95 10.5 73
IYOLOv7-
tiny 92.1 90.5 89.3 102 9.8 6.1
Improved YOLOv8
96.8 94.7 93.2 120 8.3 4.5
Improved YOLOv8
(TensorRT
|Accelerated
) 96.8 94.7 93.2 200 5.0 4.5

3.4 Detection Effect of Tiny Defects
For tiny defects with a size of <2mm (such as fine cracks and dotted blowholes), the recall rate of the improved
YOLOv8 model reaches 92.3%, which is significantly higher than that of traditional machine vision (65.8%)
and YOLOVS5s (82.1%). This verifies the effectiveness of the SPPF module and Anchor-free mechanism in tiny
defect detection. Partial tiny defect detection results are shown in Figure 5.

Figure 5. Detection Results of the Improved System
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35 Ablation Experiment

To verify the effectiveness of each improved module, ablation experiments are conducted, and the results are
shown in Table 4.

Table 4. Ablation Experiment Results

IPrecision (%) IRecall (%) mAP@0.5 IDetection Speed (FPS
Model Configuration (%) )
Original YOLOvS 925 88.3 89.7 110
Original YOLOVS8 + Lightweight Optimization
93.2 89.1 90.5 120
Original YOLOVS + Lightweight Optimization +
SPPF 94.6 91.5 91.8 118
IPrecision (%) IRecall (%) mAP@0.5 IDetection Speed (FPS
Model Configuration (%) )
Original YOLOV8 + Lightweight
Optimization+SPPF+Anchor-free 95.7 93.2 92.6 115
Fully Improved Model 96.8 94.7 93.2 120

The experimental results show that each improved module can effectively enhance the model
performance. Among them, lightweight optimization improves the detection speed, the SPPF module and
Anchor-free mechanism significantly boost the tiny defect detection capability, and the synergistic effect of
multiple modules enables the model to achieve an optimal balance between accuracy and speed.

IV.Conclusions and Future Work

This paper addresses the core requirements of industrial casting defect detection and constructs an
efficient casting defect detection system by improving the YOLOvS model in aspects such as lightweight
design, multi-scale feature fusion, and dynamic sample allocation. Experimental results show that the system
achieves a mAP@0.5 of 93.2% and a detection speed of 120 FPS on the casting defect dataset. After
acceleration with TensorRT, the single-frame detection time is < 5ms, and the missed detection rate is reduced
to below 4.5%. Compared with traditional methods and mainstream YOLO models, it has significant
advantages in detection accuracy, speed, and robustness, and can meet the real-time and high-precision
detection needs of industrial production lines.

The core advantages of the system are reflected in three aspects: first, it adapts to industrial hardware
deployment through lightweight design and acceleration tools; second, it achieves accurate identification of tiny
defects with the help of the SPPF module and Anchor-free mechanism; third, it solves the problem of coexisting
multi-category defect detection through a multi-task integrated architecture.

In the future, there are three main directions for further improvement: first, expand the dataset scale to
include casting defect samples under different working conditions (such as different illumination and humidity)
to further enhance the model's generalization ability; second, explore more efficient attention mechanisms to
strengthen the distinction between defect features and the background; third, optimize the model inference
process to further improve the detection speed while maintaining accuracy, so as to adapt to the needs of
production lines with higher tact times.
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