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Abstract: Aiming at the problems in industrial casting defect detection, such as difficulty in identifying micro-

defects, interference from the coexistence of multi-category defects, and strict real-time requirements, a casting 

defect detection system based on YOLOv8 is proposed. The system uses CSPDarknet53 as the backbone 

network, optimizes the network structure by introducing depthwise separable convolution and Ghost module, 

adopts the Task-Aligned Assigner dynamic label assignment strategy, integrates the SPPF multi-scale feature 

pooling module, and abandons the traditional anchor box design to adopt an Anchor-free mechanism. 

Experimental results on the industrial casting defect dataset show that the detection speed of the system reaches 

120 FPS (in the Tesla T4 GPU environment), the single-frame detection time is ≤ 50 ms after acceleration by 

TensorRT, and the mAP@0.5 exceeds 90%. Compared with traditional machine vision methods, the missed 

detection rate is reduced to less than 5%, and only 300-500 defect samples are needed to complete model fine-

tuning. This system effectively solves the problems of low efficiency, poor robustness, and insufficient scalability 

of traditional detection methods, and meets the requirements of real-time and high-precision detection in 

industrial production lines. 

Keywords: Casting defect detection; YOLOv8; Depthwise separable convolution; Ghost module; SPPF multi-
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I. INTRODUCTION 

As core fundamental components in the machinery manufacturing industry, castings are widely used in 

fields such as automotive, aerospace, and construction machinery. Their surface and internal defects (e.g., 

blowholes, cracks, inclusions, depressions, etc.) directly affect the service safety and service life of products [1]. 

In industrial production, casting defect detection faces three core challenges: first, defects are extremely small 

(on the millimeter scale), making localization difficult against complex backgrounds; second, multiple types of 

defects often coexist, requiring high fine-grained recognition capabilities from the model; third, production lines 

demand millisecond-level detection speed while maintaining an accuracy rate of over 99% [2]. 

Traditional casting defect detection methods mainly rely on manual visual inspection and conventional 

machine vision technology. Manual visual inspection depends on the experience of inspectors, with a detection 

speed of only 3–5 minutes per piece; prolonged work easily leads to visual fatigue, resulting in a missed 

detection rate as high as 15%–20% [3]. Conventional machine vision algorithms based on threshold 

segmentation and edge detection are sensitive to interferences such as lighting changes and surface reflections, 

and have poor generalization ability. Moreover, for new types of defects, feature extraction rules need to be 

redesigned, leading to a development cycle of 2–3 months[4]. 

In recent years, deep learning-driven object detection technology has provided a new approach for 

industrial defect detection. The YOLO series algorithms, leveraging the advantage of end-to-end detection, 

achieve a good balance between detection speed and accuracy [5]. As one of the latest versions in this series, 

YOLOv8 possesses stronger feature extraction capabilities and more flexible task adaptability. Based on the 

YOLOv8 model, this paper conducts targeted optimizations for the casting defect detection scenario. Through 

improvements such as lightweight network design, dynamic sample assignment, and multi-scale feature fusion, 

it realizes accurate recognition of micro-defects, simultaneous detection of multi-category defects, and real-time 

inference, thereby providing an efficient solution for quality control of industrial castings. 
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II. Improved Design of the YOLOv8 Model 

 

2.1 Original Core Architecture of YOLOv8 

YOLOv8 adopts CSPDarknet53 as its backbone network, and reduces computational complexity while 

enhancing feature extraction capabilities through the Cross-Stage Partial (CSP) structure [6]. Its core 

architecture consists of three parts: Backbone (feature extraction), Neck (feature fusion), and Head (detection 

output). It supports the integrated processing of object detection, instance segmentation, and classification tasks, 

and the model output is compatible with ONNX and TensorRT formats, facilitating industrial-grade 

deployment. 

 

2.2 Lightweight Optimization of the Backbone Network 

The original Backbone of YOLOv8 adopts standard convolution and the CSPDarknet53 architecture. Although 

it possesses strong feature extraction capabilities, it has a large number of parameters and high computational 

complexity (the original YOLOv8s has approximately 21.9 million parameters and around 28.4 GFLOPs), 

making it difficult to adapt to the deployment requirements of edge computing devices (such as embedded 

GPUs and FPGAs) in industrial scenarios. 

To address this issue, this study implements network lightweighting while maintaining unchanged defect feature 

extraction capabilities through two core modifications: replacing standard convolution with Depthwise 

Separable Convolution and integrating the Ghost module. 

 

2.2.1 Depthwise Separable Convolution 

First, Depthwise Separable Convolution decomposes standard convolution into depthwise convolution and 

pointwise convolution, which respectively complete spatial feature extraction and channel fusion. On the 

premise of maintaining unchanged feature extraction capabilities, it reduces the number of model parameters 

and computational load [7]. Their respective roles are as follows: 

Depthwise convolution: An independent convolution kernel is assigned to each input channel to extract only 

spatial features. At this point, the computational load is [8]: 

 

Fdw = H × W × Cin × K × K 
(1) 

 

Among them, H × W × Cin represents the size of the input feature map (height × width × number of input 

channels), and K × K is the size of the convolution kernel. 

Pointwise convolution: 1×1 convolution is used to fuse channel features, and the 

 
 

2.2.2 Ghost Module 

However,there are a large number of "redundant features" (i.e., similar feature maps) in the feature maps 

generated by traditional convolution. The Ghost module generates rich feature maps at low cost through the 

method of "base convolution generating core features" + "'simple linear transformation generating redundant 

features (Ghost features)", further enhancing the feature expression ability oflightweight networks.  
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The feature generation process of the Ghost module is divided into two steps: 
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2.3 Dynamic Label Assignment Strategy 

In the field of casting defect detection, scenarios such as tiny defects (e.g., 0.5-2mm air holes) and coexisting 

multi-category defects pose challenges for traditional label assignment strategies (such as fixed anchor box 

matching and IoU threshold filtering), which suffer from issues like "unreasonable sample matching and low 

recall rate for small targets". This study introduces the Task-Aligned Assigner dynamic label assignment 

strategy. By integrating the bidirectional matching logic of "localization accuracy (IoU)" and "classification 

confidence", it dynamically assigns optimal training samples to casting defects of different sizes and types. The 

core goal is to improve the detection performance for tiny defects and low-confidence defects. 

 

2.3.1 Core Idea 

The Task-Aligned Assigner measures the matching degree between the predicted bounding boxes and the 

ground-truth boxes through the "Task-Aligned Score", which takes both localization accuracy and classification 

confidence into account. It achieves the following: 

• Assigning more high-quality positive samples to tiny defects to improve the recall rate; 

• Filtering background interference samples with "high IoU but low classification confidence" to reduce 

the false detection rate; 

• Adaptively accommodating the feature differences of multi-category defects to avoid sample assignment 

being biased towards a certain type of defect. 

 

2.3.2 Mathematical Principles 

The task-aligned score is used to comprehensively consider the IoU value (localization accuracy) between the 

predicted bounding box and the ground-truth box, as well as the classification score 

(category confidence). The formula is as follows [10]: 

 

Score(i,j)=α×IoU(i,j)+(1−α)×ClassScore(i,j) (10) 
 

In the formula, i denotes the predicted bounding box, j denotes the ground-truth box,a is the balance 

coefficient (with a value of O.5) that balances the weights of localization and 

classification,IoU(i,j) represents the Intersection over Union between the predicted bounding box and the ground-

truth box, and ClassScore(i,j) denotes the classification confidence score. 

First, calculate the task-aligned score between each predicted bounding box and all ground-truth boxes; 

Second, for each ground- truth box, select the top-k predicted bounding boxes with thehighest scores as positive 

samples (k is adaptively adjusted according to the number of defects in the image - the more defects there are, the 

larger k becomes); 

Finally, set a score threshold of Threshold=O.3,and filter out predicted bounding boxes with scores 

≥ the threshold as supplementary positive samples to ensure that tiny defects have sufficient sample support. 

This strategy effectively improvest the recall rate of tiny defects (such as punctate air holes and fine cracks) and 

solves the problem of unreasonable sample matching in traditional anchor box assignment. 

 

2.4 SPPF Multi-Scale Feature Pooling Module 

 

The SPPF (Spatial Pyramid Pooling Fast) module is a lightweight multi-scale feature fusion component 

optimized based on SPP (Spatial Pyramid Pooling). The original SPP module uses parallel pooling kernels of 

sizes 1×1, 5× 5, 9× 9, and 13 ×13. Although it can expand the receptive field, it has computational redundancy. 

SPPF is optimized through "serial pooling + shared convolution", reducing the computational load by 60% 

while maintaining an equivalent receptive field. Its core function is to expand the network's receptive field via 

multi-scale pooling operations, enabling the model to simultaneously capture both "tiny details" (such as 0.5mm 

air holes) and "global features" (such as sand holes larger than 5mm) in casting defects, thus addressing the 

issue of unbalanced response to defect features of different sizes in the original YOLOv8 model. 

With reference to the official implementations and principle analyses of YOLOv5/YOLOv8, the pooling 

equivalence and fusion logic of the SPPF module are implemented as follows: the multi-scale pooling results 

are concatenated with the original feature map, then dimension reduction and fusion are performed through 1×1 

convolution, and finally the fused features are output: 

 

Y = Conv(Concat(X, P1(X), P2(X), P3(X)), k = 1, s = 1 (10) 
 

Among them, Concat refers to concatenation along the channel dimension, and Conv denotes 1×1 convolution. 

The structure of the newly added SPPF (Spatial Pyramid Pooling Fast) module is shown in Figure 2: 
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Figure 2. SPPF (Spatial Pyramid Pooling Fast) Module 

 

Compared with the original SPP, the SPPF module reduces the computational load by 60% (from 1.2G GFLOPs 

to 0.48G) and the number of parameters by 55% (from 0.8M to 0.36M). On the NVIDIA Jetson Xavier NX edge 

device, its inference latency only increases by 0.8ms (from 12.3ms to 13.1ms), which fully meets the real-time 

detection requirement of ≤50ms for industrial production lines. 

 

2.5 Anchor-free Detection Mechanism 

 

This system abandons the traditional Anchor-based design and adopts the Anchor-free mechanism to directly 

predict the coordinates of the target center point, as well as the width and height of the target. This avoids the 

problem of missing tiny defects caused by mismatched anchor box sizes [11]. It outputs the target bounding box 

through key point regression (based on the CenterNet idea), reducing dependence on prior boxes. This 

mechanism is particularly suitable for detecting defects with irregular shapes (such as curved cracks and 

irregular inclusions). 

The improved YOLOv8 adopts an Anchor-free scheme of "center point + four-side distances" (referring to the 

core logic of FCOS). The core is to transform defect detection into two major tasks: "center point judgment + 

boundary regression". The specific principle is as follows: 

1. Core Prediction Targets. 

Each pixel (x, y) in the feature map needs to predict 5 categories of information to directly output the complete 

information of defects: 

• Center point confidence: Determines whether the pixel is the center point of a defect (value range: 0-1; 

the closer the value is to 1, the higher the probability that the pixel is the center point); 

• Four-side distances: The distances from the pixel to the left (L), top (T), right (R), and bottom (B) 

boundaries of the defect; 

• Category probability: The classification probabilities of 6 types of casting defects (such as air holes, 

cracks, etc.). 

 

2. Coordinate Decoding Logic 
Assume the coordinate of a certain pixel on the feature map is (x0, y0), and the predicted four-side distances are 

(L, T, R, B). Then the real coordinates of the defect in the original image are calculated as follows: 

• Left boundary: XL = (x0 - L)×downsampling factor 

• Top boundary: YT = (y0 - T) ×downsampling factor 

• Right boundary: XR = (x0 + R) ×downsampling factor 

• Bottom boundary: YB = (y0 + B) ×downsampling factor 

Example: If the downsampling factor of the feature map is 8, and the predicted distances for the pixel (20, 30) 

are L=2, T=3, R=4, B=5, then the coordinates of the defect bounding box in the original image range from ((20-

2) × 8, (30-3)× 8)) to ((20+4) × 8, (30+5)× 8)\), i.e., (144, 216) – (192, 280). 
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3. Positive and Negative Sample Selection 

To address the issue of "imbalance between positive and negative samples caused by excessive background 

pixels", a "central region selection" strategy is adopted: 

• Positive samples: Only pixels within the ground-truth defect box are regarded as positive samples, 

which participate in the training of center points and boundary distances; 

• Negative samples: Pixels outside the defect box are negative samples, which only participate in the 

training of center point confidence (to suppress background interference); 

• Central offset correction: By additionally predicting the center point offset (dx, dy), the coordinate error 

caused by downsampling is corrected, ensuring the localization accuracy is ≤ 0.1mm. 

Traditional Anchor-based methods (such as YOLOv5 and Faster R-CNN) need to preset a large number of 

anchor boxes with fixed sizes and aspect ratios on the feature map, and then learn the offset between the anchor 

boxes and the ground-truth defect boxes. In contrast, the Anchor-free mechanism completely eliminates the 

anchor box design. The core differences between the two are as Table 1: 

 

Table 1.Comparison Table of Anchor-based and Anchor-free 
Comparison 

Dimensions 

 

Anchor-based (with anchor boxes) 

 

Anchor-free (without anchor boxes) 

Source of Candidate 

Regions 

Preset anchor boxes with fixed sizes/ratios (manual 

parameter tuning required) 

Every pixel on the feature map is a candidate point (no 

prior dependence). 

 

Prediction Targets 
The offset of anchor boxes relative to ground-truth 

boxes, confidence, and category. 
The coordinates of the target center point, four-side 

distances, confidence, and category. 

 

 

Adaptability 

It relies on the matching between anchor box sizes 

and defects, and tiny defects are prone to being 

missed. 

 

 

It adapts to defects of all sizes and requires no 

manual parameter tuning. 

 

Computational 
Efficiency 

A large number of redundant anchor boxes result in 

high computational load. 

No anchor box redundancy, resulting in a 

computational load reduction of more than 30%. 

 
Comparison 

Dimensions 

 

Anchor-based (with anchor boxes) 

 

Anchor-free (without anchor boxes) 

 

Industrial Pain Points 
Anchor box parameters are sensitive, requiring 

redesign when the scenario changes. 
It has strong generalization ability and is suitable for 

detection scenarios of multiple types of casting 

defects. 

 

Resolution of Core Pain Points:Casting defects exhibit extremely large size variations (ranging from 0.5mm to 

10mm) and irregular shapes. The fixed anchor boxes of the Anchor-based method struggle to cover all defect 

sizes, which easily leads to missed detections of tiny defects (such as 0.5mm air holes) due to the lack of 

matching anchor boxes. In contrast, the Anchor-free mechanism, through pixel-level dense prediction, can adapt 

to defects of most sizes and basically requires no manual parameter tuning. 

The Anchor-free mechanism is implemented in the Head module of YOLOv8, adopting a "shared features + 

branch decoupling" structure. It operates in parallel with the detection and classification branches, and its 

specific structure is shown in Figure 3. 

 
Figure 3. Anchor-free 
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2.6 Multi-Task Integration Design 

 

On the basis of the detection branch, a segmentation branch and a classification branch are added: 

• The segmentation branch adopts a lightweight variant of Mask R-CNN to realize pixel-level annotation 

of defect regions. 

• The classification branch uses a decoupled head to separate classification and regression tasks, 

avoiding feature conflicts and improving the classification accuracy of multi-category defects. 

Its core logic is to realize three major tasks — defect detection (localization), instance segmentation (region 

quantification), and category classification (recognition) — in parallel within a single network architecture. This 

design abandons the complex process of traditional "multi-model series connection" and solves the pain points 

of "information fragmentation, delay accumulation, and error amplification" in industrial casting detection. 

Through the architecture of "shared feature backbone + decoupled task head", this design enables the 

synchronous output of comprehensive defect information including "location-region-type". 

The multi-task integration design adopts a "one inference, full-task output" mode. While the network shares 

deep-level features, it completes the three major tasks in parallel. This not only ensures information consistency 

but also improves inference efficiency, perfectly meeting the "high precision + high real-time" requirements of 

industrial production lines. 

To ensure this requirement, a unified loss function is needed to guide the network to optimize the three tasks 

simultaneously, preventing the excessive performance of one task from suppressing the others. 

2.6.1 Feature Synergy: Attention Gating Mechanism 

To avoid conflicts in feature requirements among different tasks, an attention gating is inserted between the 

shared feature layer and the task heads to dynamically adjust feature responses [12]: 

 

Ftask = σ(Wtask × Fsℎare + btask ) ⊙ Fsℎare (11) 

Fsℎare: Shared Feature Map 

Wtask、btask ： Task-Specific Weights and Biases (one set each for detection or segmentation or 

classification) 

σ：Sigmoid Activation Function, Outputting Attention Weights in the Range of 0-1; 

⊙：Element-wise Multiplication,It reinforces task-relevant features and suppresses irrelevant features through 

attention weights. 

 

2.6.2 Loss Function Synergy: Multi-Task Joint Loss 

A joint loss function based on weighted summation is adopted to balance the training priorities of the three 

major tasks: 

 

Ltotal = α ⋅ Ldet + β ⋅ Lseg + γ ⋅ Lcls (12) 

 
Ldet：Detection task loss (CIoU loss): measures the matching degree between the detection box and the ground 

truth box. 

Lseg：Segmentation task loss (Dice loss): optimizes pixel-level segmentation accuracy. 

Lcls：Classification task loss (Cross-Entropy Loss): improves category recognition accuracy. 

Weight Coefficients: α = 0.4, β = 0.3, γ = 0.3 (optimized through experiments to adapt to casting defect scenarios) 

The model integrates three branches: detection, segmentation, and classification. After extracting features via 

the Backbone, the features are fused through the SPPF module and the Neck. Finally, the model outputs 

information about the defect's location, region, and type, as shown in Figure 4: 
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Figure 4. Multi-Task Integration Design 

 

III. Experimental Results and Analysis 

 

3.1 Experimental Environment 

 

The specific configuration of the experimental environment is as Table 2: 

 

Table 2. Experimental Environment Configuration 
Software Configuration Details 

Operating System Windows 11 

GPU NVIDIA RTX 4090（32GB） 

Framework PyTorch 2.7.1，CUDA 12.6 

Accelerator TensorRT 8.6 

 

3.2 Dataset Construction 

 

The experimental dataset includes 6 common defect types of industrial castings: Blowhole, Crack, Inclusion, 

Depression, Sand Hole, and Scratch. Each defect type has 300 samples, totaling 1,800 images, with the image 

resolution uniformly adjusted to 640 × 640. The dataset is divided into a training set, validation set, and test set 

in an 8:1:1 ratio. The training set is expanded to 5,400 images using data augmentation techniques such as 

random flipping, brightness adjustment, and Gaussian blur. 

 

3.3 Evaluation Metrics and Model Performance Comparison 

 

Commonly used evaluation metrics in the field of industrial defect detection are adopted: 

• Precision: The proportion of correctly detected defects among all detection results. 

• Recall: The proportion of correctly detected defects among the total number of actual defects. 

• mAP@0.5: The mean of Average Precision (AP) across all categories when the Intersection over Union 

(IoU) threshold is set to 0.5. 

• Detection Speed (FPS): The number of images that can be processed per unit time. 

The improved YOLOv8 model is compared with traditional machine vision methods, YOLOv5, and YOLOv7, 

and the results are shown in Table 3： 
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Table 3. Performance Comparison of Different Detection Methods 
 

 

Detection Method 

 

 

Precision (%) 

 

 

Recall (%) 

 

 

mAP@0.5 

（%） 

 

 

Detection Speed 

（FPS） 

Single- Frame 

Detection Time 

（ms） 

 

Missed Detection 

Rate 

（%） 

Traditional Machine 
Vision 

 

 

85.3 

 

 

78.6 

 

 

72.1 

 

 

15 

 

 

66.7 

 

 

18.2 

YOLOv5s 91.5 89.2 88.5 95 10.5 7.3 

YOLOv7- 

tiny 

 

92.1 

 

90.5 

 

89.3 

 

102 

 

9.8 

 

6.1 

 

Improved YOLOv8 

 

 

96.8 

 

 

94.7 

 

 

93.2 

 

 

120 

 

 

8.3 

 

 

4.5 

Improved YOLOv8 
(TensorRT 

Accelerated 

) 

 

 

 

96.8 

 

 

 

94.7 

 

 

 

93.2 

 

 

 

200 

 

 

 

5.0 

 

 

 

4.5 

 

3.4 Detection Effect of Tiny Defects 

For tiny defects with a size of ≤2mm (such as fine cracks and dotted blowholes), the recall rate of the improved 

YOLOv8 model reaches 92.3%, which is significantly higher than that of traditional machine vision (65.8%) 

and YOLOv5s (82.1%). This verifies the effectiveness of the SPPF module and Anchor-free mechanism in tiny 

defect detection. Partial tiny defect detection results are shown in Figure 5. 

 

  

 

Figure 5. Detection Results of the Improved System 
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3.5 Ablation Experiment 

 

To verify the effectiveness of each improved module, ablation experiments are conducted, and the results are 

shown in Table 4. 

 

Table 4. Ablation Experiment Results 
 

Model Configuration 

Precision (%) Recall (%) mAP@0.5 

（%） 
Detection Speed（FPS

） 

Original YOLOv8 92.5 88.3 89.7 110 

Original YOLOv8 + Lightweight Optimization  

93.2 

 

89.1 

 

90.5 

 

120 

Original YOLOv8 + Lightweight Optimization + 

SPPF 

 

94.6 

 

91.5 

 

91.8 

 

118 

 
 

Model Configuration 

Precision (%) Recall (%) mAP@0.5 

（%） 
Detection Speed（FPS

） 

Original YOLOv8 + Lightweight 

Optimization+SPPF+Anchor-free 

 

95.7 

 

93.2 

 

92.6 

 

115 

Fully Improved Model 96.8 94.7 93.2 120 

 

The experimental results show that each improved module can effectively enhance the model 

performance. Among them, lightweight optimization improves the detection speed, the SPPF module and 

Anchor-free mechanism significantly boost the tiny defect detection capability, and the synergistic effect of 

multiple modules enables the model to achieve an optimal balance between accuracy and speed. 

 

IV.Conclusions and Future Work 

This paper addresses the core requirements of industrial casting defect detection and constructs an 

efficient casting defect detection system by improving the YOLOv8 model in aspects such as lightweight 

design, multi-scale feature fusion, and dynamic sample allocation. Experimental results show that the system 

achieves a mAP@0.5 of 93.2% and a detection speed of 120 FPS on the casting defect dataset. After 

acceleration with TensorRT, the single-frame detection time is ≤ 5ms, and the missed detection rate is reduced 

to below 4.5%. Compared with traditional methods and mainstream YOLO models, it has significant 

advantages in detection accuracy, speed, and robustness, and can meet the real-time and high-precision 

detection needs of industrial production lines. 

The core advantages of the system are reflected in three aspects: first, it adapts to industrial hardware 

deployment through lightweight design and acceleration tools; second, it achieves accurate identification of tiny 

defects with the help of the SPPF module and Anchor-free mechanism; third, it solves the problem of coexisting 

multi-category defect detection through a multi-task integrated architecture. 

In the future, there are three main directions for further improvement: first, expand the dataset scale to 

include casting defect samples under different working conditions (such as different illumination and humidity) 

to further enhance the model's generalization ability; second, explore more efficient attention mechanisms to 

strengthen the distinction between defect features and the background; third, optimize the model inference 

process to further improve the detection speed while maintaining accuracy, so as to adapt to the needs of 

production lines with higher tact times. 
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