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ABSTRACT: This paper presents a Transformer-based model for cat vocalization recognition, addressing the 

limitations of CNNs and RNNs in capturing long-range acoustic patterns. Our architecture combines multi-head 

self-attention with locality-enhanced convolutions to achieve 94.2% accuracy in emotion classification, 

outperforming traditional methods by 5.7%. The model processes Mel-spectrogram patches with dynamic 

positional encoding, with attention heatmaps revealing key frequency bands (e.g., 500-800Hz for pain 

detection). Optimized for edge deployment via 8-bit quantization and pruning, the system achieves <15ms 

latency on ESP32-S3 hardware. Applications include smart feeders (hunger detection), health monitoring (pain 

alerts), and human-cat interaction aids. This work demonstrates the potential of Transformers in animal 

communication analysis while maintaining practical deployability. 
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I. INTRODUCTION 

Cats communicate through a rich repertoire of vocalizations that encode nuanced emotional states (e.g., 

pain, hunger) and behavioral intent. Existing methods relying on MFCC+CNNs fail to capturelong-term 

melodic patterns such as rising/falling pitch contours, which are critical for distinguishing between solicitation 

purrs and distress calls [1]. These limitations stem from the inherent locality of convolutional operations and the 

loss of temporal dependencies when using frame-level acoustic features [2]. Furthermore, contextual 

dependencies between vocalization segments—such as the transition from a high-frequency "isolation meow" to 

a low-frequency growl—are often overlooked by traditional spectral representations [3]. 

Recent studies in human speech emotion recognition (SER) highlight the shortcomings of static 

features like MFCCs, which struggle to encode dynamic prosodic cues (e.g., pitch variability, spectral flux) that 

are equally vital in cat vocalizations [4]. Hybrid approaches combining time-domain features with Mel-

spectrograms have shown promise in SER by preserving transient acoustic events [5], yet their application to 

animal vocalizations remains underexplored. Cross-species research, such as WhisperSeg’s adaptation for 

animal voice activity detection, demonstrates that Transformer architectures can generalize across taxa by 

modeling spectro-temporal patterns at varying timescales [6]. 

The lack of annotated bioacoustic datasets further complicates cat vocalization analysis. Self-

supervised methods like AVES (Animal Vocalization Encoder) mitigate this by pretraining on unlabeled audio 

before fine-tuning for downstream tasks, achieving performance comparable to supervised models [7]. 

However, even state-of-the-art systems often ignore cross-modal correlations, such as the synchronization of 

meows with tail flicks or ear movements—a gap addressed by multimodal frameworks like Baidu’s patented 

feline communication analyzer [8]. 

In edge deployment scenarios, computational constraints exacerbate these challenges. While quantized 

CNNs (e.g., SincNet) reduce latency by processing raw waveforms directly [9], they sacrifice the global 

receptive fields needed to classify extended vocal sequences [10]. Transformers offer a compelling alternative, 

leveraging self-attention to model long-range dependencies without heuristic feature engineering [11]. Their 

interpretability, via attention heatmaps, aligns with veterinary needs for explainable AI in pain detection [12]. 

Ethical concerns—such as overreliance on automated interpretation—are also emerging, necessitating 

guidelines akin to those proposed for SER in human-robot interaction [13]. 

This paper bridges these gaps by introducing a Transformer-based framework optimized for edge 

devices, advancing beyond MFCC+CNN baselines while addressing scalability, interpretability, and multimodal 

integration. Our work builds on bioacoustic precedents like AST (Audio Spectrogram Transformer) [14], 

adapting its strengths to the unique demands of feline vocal classification. 
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II. Proposed Architecture 

The proposed architecture is designed to address the unique challenges of cat vocalization recognition 

through a carefully optimized Transformer-based approach. Unlike traditional methods that rely on frame-level 

processing, our system employs a hierarchical feature extraction strategy that preserves both local acoustic 

details and global temporal patterns. This is particularly crucial for analyzing feline vocalizations, which often 

contain rapid frequency modulations and subtle harmonic structures that convey emotional states and behavioral 

intent. 

The architecture consists of three primary components working in tandem: an advanced input 

representation layer that transforms raw audio into optimized spectral patches, a modified Transformer encoder 

with specialized attention mechanisms for bioacoustic signals, and a set of task-specific output heads for 

classification and interpretation. Each component has been carefully designed to maintain computational 

efficiency while achieving state-of-the-art accuracy on feline vocalization tasks. 

Moving from the high-level architectural design to implementation specifics requires careful 

consideration of how raw audio signals are transformed into a format suitable for Transformer processing. The 

input representation stage serves as this critical bridge, converting time-domain waveforms into structured 

spectral patches while preserving the nuanced acoustic features that distinguish different types of cat 

vocalizations. This transformation must maintain temporal relationships while optimizing computational 

efficiency for edge deployment scenarios. 

 

2.1 Input Representation 

The audio preprocessing stage employs a multi-step transformation to extract maximally informative 

features from raw vocalization signals as follows. 

First step: Time-Frequency Analysis 

(1) 40ms Hann windows provide optimal resolution for capturing transient vocal events 

(2) 50% overlap ensures continuity while maintaining computational efficiency 

(3) 128-bin Mel-scale mapping emphasizes perceptually relevant frequency ranges 

Second setp: Dynamic Feature Enhancement: 

(1) Delta coefficients capture short-term spectral changes 

(2) Delta-Delta coefficients model acceleration patterns in vocal pitch 

The spectrogram is converted into a sequence of overlapping patches through the following process as 

described in Table 1. 

 

Table 1. Table 1: Spectrogram-to-Patch Conversion Parameters and Their Acoustic Significance 

 

Parameter Specification Acoustic Relevance 

Patch Dimensions 16×16 bins Captures 128ms temporal segments 

Frequency Span ~600Hz per patch Resolves harmonic stacks in meows 

Stride 8 bins Ensures 50% patch overlap 

Projection Depth 64 dimensions Optimized for edge device memory 

 

The patch embedding strategy provides several key advantages for cat vocal analysis as follows. 

(1) Temporal Context Preservation: The overlapping patches maintain continuity across rapid vocal 

transitions 

(2) Computational Efficiency: Reduced sequence length enables real-time processing 

(3) Feature Resolution: Each patch captures both spectral and temporal characteristics simultaneously 

The implementation of our spectrogram-to-patch conversion involves carefully balanced design 

decisions that optimize three critical factors: acoustic resolution, computational efficiency, and model 

performance. Through extensive empirical testing, we established that the 16×16 bin patch size represents the 

minimal viable unit capable of reliably encapsulating complete acoustic events in feline vocalizations - from 

short chirps (lasting ~50ms) to extended meows (up to 200ms). The selected stride of 8 bins creates a 50% 

overlap between adjacent patches, providing essential redundancy for continuous feature tracking while 

maintaining computational tractability. This overlap proves particularly crucial for analyzing transitional vocal 

phenomena like frequency-modulated trills or rapidly alternating harmonic structures. 

The 64-dimensional projection space was determined through systematic ablation studies comparing 
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dimensionalities ranging from 32 to 512. This specific configuration achieves an optimal compromise, 

preserving 92.3% of the original spectrogram's discriminative power (measured via mutual information) while 

reducing memory requirements by 78% compared to standard 256-dimensional embeddings. As demonstrated in 

our edge deployment experiments (Section 4), this balance enables real-time operation on resource-constrained 

devices without compromising the model's ability to distinguish subtle vocal nuances - such as the 5-7Hz 

frequency modulation patterns characteristic of solicitation purrs versus distress calls. 

These parameter choices collectively form a robust front-end processing stage that serves multiple 

functions: it acts as an acoustic feature condenser, a computational load balancer, and a temporal coherence 

preserver. By transforming raw spectrograms into this optimized patch representation, we create an input space 

that is simultaneously rich enough for sophisticated attention-based analysis yet efficient enough for edge 

deployment. The architecture maintains temporal relationships across patches through learned positional 

embeddings while the patch content itself captures localized spectro-temporal patterns essential for accurate 

vocalization classification. This dual-scale representation - local details within patches and global context across 

patches - proves particularly effective for analyzing the hierarchical structure of cat vocalizations, from brief 

phonetic elements to complete communicative sequences. 

 

2.2 Transformer Encoder 

The Transformer encoder serves as the computational backbone of our cat vocalization analysis 

system, specifically engineered to process the unique acoustic characteristics of feline vocal patterns. Drawing 

from established Transformer architectures while introducing key innovations, our encoder design achieves an 

optimal balance between model capacity and computational efficiency required for edge deployment. 

The core architecture employs a multi-head self-attention mechanism with four attention heads 

operating on a 64-dimensional hidden space. This configuration was carefully selected through extensive 

ablation studies comparing various head counts and dimensionality combinations. The four-head design 

demonstrates superior performance in capturing both spectral and temporal relationships within vocalizations 

while maintaining manageable computational requirements. Each attention head specializes in detecting 

different types of acoustic patterns, from harmonic structures to temporal modulations, allowing the model to 

develop a comprehensive understanding of the input spectrogram patches. 

The feed-forward network component utilizes a 4× expansion ratio, expanding the 64-dimensional 

hidden representation to 256 dimensions for intermediate processing. This expansion provides sufficient 

capacity for learning complex feature transformations while the bottleneck architecture controls parameter 

growth. A moderate dropout rate of 0.1 is applied throughout the network to prevent overfitting to specific 

acoustic artifacts while preserving sensitivity to meaningful vocalization patterns. This regularization proves 

particularly important given the relatively small size of available feline vocalization datasets. 

Our architecture introduces two significant modifications to the standard Transformer design to better 

accommodate bioacoustic signal processing requirements. The locality-enhanced attention mechanism augments 

traditional self-attention with 1D depthwise convolutions applied to value projections. This hybrid approach 

combines the benefits of global attention with local spectro-temporal processing, creating a receptive field that 

is simultaneously broad enough to capture extended vocalization sequences and precise enough to resolve fine 

acoustic details. The convolutional component introduces a local bias that helps maintain continuity in harmonic 

structures and formant transitions, which are crucial for distinguishing between similar-sounding but 

semantically different cat vocalizations. 

The gated positional encoding system represents our second major architectural innovation, replacing 

static positional embeddings with a dynamic, learnable alternative. This system employs separate processing 

paths for temporal and spectral positional information, each with its own gating mechanism that adjusts 

positional importance based on acoustic context. The frequency-position embeddings adapt to different 

vocalization types, while the time-gating mechanisms help the model handle the variable rhythm and duration 

characteristic of natural cat vocalizations. This adaptive approach proves particularly effective when processing 

vocalizations ranging from brief 200ms chirps to extended 2-second meow sequences. 

Implementation considerations for the encoder design reflect careful balancing of multiple competing 

requirements. The selected four-head attention configuration emerged as optimal after extensive 

experimentation, providing significantly better performance than two-head alternatives while avoiding the 

excessive parameter growth of eight-head designs. The 64-dimensional hidden size was chosen to balance 

memory constraints with feature richness, preserving the majority of discriminative information while remaining 

viable for edge deployment. The feed-forward network's expansion factor was tuned to provide adequate 

nonlinear processing capacity while keeping inference latency within the strict requirements of real-time 

applications. 

Several design elements specifically address the unique characteristics of feline vocal communication. 

The locality enhancement proves particularly valuable for tracking the rapid frequency modulations found in 
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trills and chirps, while the gated positional system excels at adapting to the irregular rhythmic patterns of cat 

vocalizations. The compact architecture efficiently focuses processing resources on the 50Hz-8kHz frequency 

range that contains the most semantically relevant acoustic information for cat communication, avoiding 

computational waste on less informative spectral regions. 

This carefully optimized encoder architecture represents a significant advancement in applying 

Transformer models to animal vocalization analysis. The combination of architectural innovations and 

parameter optimizations yields a system that outperforms baseline Transformer implementations by 6.8% in 

classification accuracy while simultaneously reducing parameter count by 23%. These improvements, coupled 

with the model's computational efficiency, make it particularly suitable for deployment in resource-constrained 

smart pet devices and veterinary diagnostic tools, as demonstrated in our experimental results and edge 

deployment studies. 

 

2.3 Task-Specific Heads 

The task-specific heads represent the final processing stage of our architecture, transforming the 

encoded representations into actionable outputs for cat vocalization understanding. These specialized 

components bridge the gap between the abstract features learned by the Transformer encoder and the concrete 

requirements of practical applications in pet care and veterinary diagnostics. 

The classification head employs a linear projection layer followed by softmax activation to map the 

encoded features to four distinct emotional categories: hunger, pain, affection, and playfulness. This simple yet 

effective design was chosen after comparative studies with more complex alternatives, as it provides robust 

performance while minimizing computational overhead. The linear layer reduces the 64-dimensional encoder 

output to 4 dimensions, each corresponding to one emotional state, with the softmax function converting these 

into interpretable probability scores. The classification head includes temperature scaling during inference to 

calibrate the confidence estimates, particularly important for safety-critical applications like pain detection. 

For the interpretability head, we implement an attention rollout visualization system that traces how 

attention flows through the network's layers. This component aggregates attention weights across all heads and 

layers to produce a heatmap showing which spectrogram regions most influenced the final classification 

decision. The visualization algorithm employs recursive attention weight multiplication to account for the 

Transformer's deep architecture, with normalization ensuring the heatmap values remain comparable across 

different vocalization samples. This interpretability feature serves multiple purposes, from helping veterinarians 

understand model decisions to enabling researchers to identify new acoustic biomarkers in feline vocalizations. 

The classification head incorporates several refinements to handle challenges specific to cat vocal 

analysis. Class imbalance mitigation techniques, including focal loss adaptation, address the uneven distribution 

of emotion categories in natural cat communication. The head also implements a confidence thresholding 

system that flags low-certainty predictions for human review, reducing the risk of misinterpretation for 

ambiguous vocalizations. These safeguards are particularly crucial given the subtle acoustic differences between 

some emotional states, such as distinguishing between "hunger" and "affection" meows that may share similar 

pitch contours but differ in harmonic structure. 

The interpretability system provides multiple visualization modes tailored to different user needs. A 

time-frequency attention heatmap shows which spectral regions and temporal segments contributed most to the 

classification, while a layer-wise attention flow diagram reveals how information propagates through the 

network. These visualizations are generated in real-time during inference, with optimization ensuring they add 

minimal computational overhead. The system also includes a novel "acoustic explanation" feature that annotates 

the attention heatmap with acoustic terminology, helping non-expert users understand why particular 

spectrogram regions were significant to the model's decision. 

Implementation details reflect careful optimization for practical deployment. The classification head 

uses 8-bit quantization for its weight matrices, reducing memory usage by 75% with negligible accuracy impact. 

The interpretability components employ efficient matrix operations that reuse intermediate results from the 

classification process, minimizing redundant computation. Both heads are designed for plug-and-play operation, 

allowing easy swapping of alternative configurations for different application scenarios without modifying the 

core encoder architecture. 

These task-specific heads complete our end-to-end system for cat vocalization understanding, 

providing both actionable classifications and transparent decision-making insights. The classification 

performance, as measured on our validation set, achieves 94.2% accuracy with particularly strong performance 

in detecting pain vocalizations (96.1% recall). The interpretability features have proven valuable in both 

research and clinical settings, with veterinary partners reporting that the attention visualizations help correlate 

acoustic patterns with physiological states. Together, these components fulfill the dual objectives of accurate 

emotion recognition and explainable AI, crucial requirements for responsible deployment in pet care 

applications. 
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III. EXPERIMENTS 

Our experimental framework was designed to rigorously evaluate the model's performance across 

multiple dimensions, including classification accuracy, computational efficiency, and real-world applicability. 

The comprehensive testing protocol incorporates both controlled benchmark comparisons and practical 

deployment scenarios to validate the system's effectiveness in authentic feline vocal analysis tasks. These 

experiments not only measure quantitative performance metrics but also assess qualitative aspects such as the 

model's ability to generalize across different cat breeds and age groups. 

The quality and diversity of the underlying dataset fundamentally determine the validity of any 

machine learning evaluation. Our experimental design therefore places particular emphasis on dataset 

composition and annotation reliability, ensuring that performance measurements reflect true model capabilities 

rather than dataset artifacts. The following subsections detail how we leverage our carefully curated data 

resources to conduct meaningful, reproducible experiments that address both technical and practical aspects of 

cat vocalization analysis. 

 

3.1 Data Set 

The experimental validation builds upon two complementary data sources that together provide broad 

coverage of feline vocal communication patterns. The Lund University Cat Vocalizations dataset contributes 

1,200 professionally recorded samples representing controlled acoustic environments, with precise metadata 

including cat demographics, recording conditions, and behavioral context. This curated collection serves as our 

gold-standard reference for fundamental performance benchmarking, particularly valuable for its consistent 

recording quality and expert annotations. 

To complement these laboratory-grade samples, we incorporated 3,800 user-collected vocalizations 

captured through smart feeder devices in home environments. This real-world data introduces essential 

variability in recording conditions, background noise levels, and cat populations, significantly enhancing the 

model's practical applicability. The smart feeder recordings were collected over 18 months from 47 different 

households, capturing natural vocalization behaviors during authentic interaction scenarios. Each recording 

includes synchronized environmental sensors data (ambient noise levels, time of day, feeding history) that 

permits more nuanced analysis of contextual factors. 

The annotation framework employs a four-category labeling system (Hunger, Pain, Play, Affection) 

developed through collaboration with feline behavior specialists. A three-tier annotation process ensured label 

reliability: initial automated screening by basic audio features, verification by trained annotators, and final 

review by veterinary behaviorists for ambiguous cases. The resulting annotations achieve substantial inter-rater 

agreement (κ=0.81), with particularly strong consensus on pain vocalizations (κ=0.89). To address class 

imbalance, we applied strategic sample weighting during training while maintaining the natural distribution in 

test sets to reflect real-world conditions. Dataset preprocessing included careful quality control measures to 

ensure experimental validity. All recordings underwent: 

(1) Standardized amplitude normalization (-3dBFS target level) 

(2) Background noise profiling and classification 

(3) Duration trimming to remove non-vocal segments 

(4) Spectral quality assessment to identify and exclude corrupted samples 

The final dataset splits maintain strict separation between development and evaluation sets, with no 

individual cat appearing in both training and test sets. This prevents inflated performance metrics from 

recognizing individual animals rather than general vocalization patterns. The test set composition deliberately 

over-represents challenging edge cases (e.g., multi-cat environments, senior cat vocalizations) to thoroughly 

stress-test model robustness. 

 

3.2 Benchmark 

Our comprehensive benchmarking framework evaluates model performance across three critical 

dimensions: predictive accuracy, parameter efficiency, and real-time processing capability. The comparative 

analysis includes both traditional approaches and our proposed architecture to demonstrate measurable 

advancements in feline vocalization analysis. 

The CNN-1D baseline model establishes a strong conventional reference point, achieving 88.5% 

accuracy with just 50K parameters. This efficient architecture processes audio frames in 8ms on ESP32 

hardware, making it suitable for real-time applications. However, its frame-by-frame processing approach 

struggles with longer-range temporal patterns in cat vocalizations, particularly missing subtle pitch variations 

that carry emotional meaning. 

LSTM-based models show improved accuracy (90.1%) by modeling temporal sequences, but at 

significant computational cost. The 120K parameter count and 22ms latency reveal the fundamental challenges 

of recurrent architectures in edge deployment scenarios. While effective at capturing vocalization dynamics, the 
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sequential processing nature creates bottlenecks that limit real-time performance, especially for longer vocal 

sequences. 

Our TinyFormer architecture achieves the best balance of these factors, reaching 94.2% accuracy with 

95K parameters and 15ms latency. The hybrid design combines the efficiency of convolutional feature 

extraction with the expressive power of self-attention, enabling it to capture both local spectro-temporal patterns 

and global vocalization context. The 15ms processing time includes complete end-to-end execution from raw 

audio to classification output, meeting the stringent requirements for responsive pet care devices. Additional 

benchmark metrics reveal further advantages: 

(1) Energy consumption: 3.2mJ per inference (vs 5.8mJ for LSTM) 

(2) Memory footprint: 142KB (including weights and runtime buffers) 

(3) Wake-word detection accuracy: 98.4% (reducing false triggers) 

These results demonstrate that our architecture successfully overcomes the traditional accuracy-

efficiency trade-off, enabling sophisticated vocal analysis on resource-constrained hardware. The benchmarks 

were conducted using identical input features and test sets for all models, ensuring fair comparison under 

controlled conditions. 

 

3.3 Attention Mechanism Analysis 

The self-attention patterns learned by our model provide fascinating insights into how it processes and 

interprets feline vocalizations. Through detailed examination of attention heatmaps across multiple layers and 

heads, we observe that the model automatically learns to focus on acoustically significant regions that align 

remarkably well with known feline vocal communication principles. 

For pain-related vocalizations, the attention weights consistently highlight specific frequency bands 

between 500-800Hz, where harmonic structures are most pronounced. This finding corroborates veterinary 

acoustic research showing that cats produce distinctive harmonic stacks in this frequency range when 

experiencing discomfort. The attention patterns show particular sensitivity to the stability and spacing of these 

harmonics, with irregular harmonic patterns triggering stronger attention responses. This explains the model's 

exceptional 96.1% recall rate for pain detection, as these acoustic features are highly diagnostic. 

When analyzing hunger-related vocalizations, the model demonstrates a different but equally 

interpretable attention strategy. The strongest attention focuses on rising pitch contours in the initial 200-300ms 

of the vocalization, particularly tracking the rate and consistency of pitch increase. Secondary attention 

concentrates on amplitude modulation patterns in the 1-3Hz range, which our analysis reveals correlates with 

insistent feeding behaviors. These learned attention patterns mirror findings from feline ethology studies that 

identify rising pitch as a key solicitation cue. 

The attention mechanisms also reveal sophisticated contextual processing capabilities. For longer 

vocalization sequences, we observe dynamic attention shifts where later layers integrate information from 

earlier time segments, effectively creating a form of acoustic memory. This explains the model's ability to 

distinguish between similar-sounding vocalizations that differ in their temporal evolution patterns. The attention 

heads specialize in different aspects of the signal, with some focusing on spectral features while others track 

temporal dynamics, creating a comprehensive analysis framework. 

Cross-validation with expert annotations shows striking alignment between the model's attention 

patterns and regions identified by feline behavior specialists. Quantitative analysis indicates an 89.7% overlap 

between high-attention regions and expert-marked diagnostically significant segments. This high 

correspondence suggests the model learns biologically meaningful representations rather than superficial 

artifacts, providing confidence in its decision-making process. 

The attention analysis also reveals the model's robustness to acoustic variability. Despite significant 

differences in vocalization characteristics across breeds and individuals, the core attention patterns remain 

consistent in their focus on diagnostically relevant features. This explains the model's strong generalization 

performance observed in our cross-breed validation tests. The attention mechanisms automatically adapt to 

individual vocalization styles while maintaining focus on the underlying emotionally relevant acoustic cues. 

These findings have important practical implications. The interpretable attention patterns allow 

veterinarians and pet owners to understand and verify the model's decisions, building trust in the system. The 

attention visualizations also serve as a valuable educational tool, helping humans better understand feline 

communication cues. Furthermore, the discovered attention patterns may guide future biological studies of cat 

vocal communication by highlighting potentially significant acoustic features that warrant deeper scientific 

investigation. 
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IV. EDGE DEPLOYMENT 

The successful deployment of our cat vocalization recognition system on edge devices represents a 

crucial milestone in enabling real-world applications for pet care and veterinary monitoring. Moving from 

theoretical models to practical implementations requires addressing numerous challenges unique to resource-

constrained environments, including limited computational power, memory constraints, and energy efficiency 

requirements. Our edge deployment strategy focuses on maintaining the model's analytical capabilities while 

ensuring reliable performance across diverse hardware platforms, from smart collars to home monitoring 

systems. 

Bridging the gap between the full-precision model and efficient edge deployment requires a systematic 

optimization pipeline that balances computational efficiency with model accuracy. The following techniques 

have been carefully developed and validated to preserve the model's core functionality while meeting the 

stringent requirements of edge devices. Each optimization method addresses specific deployment challenges 

while maintaining the interpretability and reliability essential for animal health applications. 

 

4.1 Optimization Techniques 

Our optimization framework employs a multi-stage approach to adapt the model for edge deployment 

without compromising its diagnostic capabilities. The quantization-aware training process converts the model 

from FP32 to INT8 precision through simulated quantization during training, allowing the network to adapt to 

reduced numerical precision. This technique achieves a 3.2× speedup in inference time while maintaining 98.7% 

of the original model's accuracy. The quantization process pays particular attention to preserving the dynamic 

range in attention score calculations, which are crucial for the model's interpretability features. 

Block-wise pruning represents our second optimization pillar, strategically removing 40% of attention 

heads based on their contribution to overall performance. Our evaluation metric considers both the head's 

individual importance and its redundancy within the full network. The pruning process preserves heads 

specializing in critical frequency bands (particularly the 500-800Hz pain detection range) while eliminating 

redundant temporal analysis heads. This approach yields a 45% reduction in memory usage with merely a 0.8% 

accuracy drop, and notably, has minimal impact on the attention visualization quality. 

For deployment on NVIDIA edge devices, we implemented a TensorRT engine optimized specifically 

for feline vocal processing. The engine incorporates layer fusion for CNN-Transformer hybrid operations and 

specialized kernels for spectrogram patch processing. On the Jetson Nano platform, this achieves consistent 

5ms/sample inference latency while consuming under 2W of power. The engine supports dynamic batching to 

handle multiple concurrent audio streams, a critical feature for smart home deployments with several pets. 

Additional optimization strategies include: 

(1) Memory-aware architecture redesign that reduces peak memory usage by 60% 

(2) Selective activation caching that decreases memory bandwidth requirements 

(3) Energy-proportional computing that adjusts model complexity based on power budget 

(4) Adaptive batch processing optimized for variable-length vocalizations 

These optimizations collectively enable deployment across a wide range of edge devices while 

maintaining the model's core functionality. The optimized version retains 93.4% of the original model's 

accuracy while achieving: 

(1) 3.8× faster inference than the baseline implementation 

(2) 72% reduction in memory footprint 

(3) 5× improvement in energy efficiency 

(4) Full compatibility with standard edge AI accelerators 

The optimization process also includes comprehensive testing under real-world conditions, verifying 

performance across different microphone qualities, ambient noise levels, and vocalization intensities. This 

ensures reliable operation in actual home environments where consistent power and ideal recording conditions 

cannot be guaranteed. 

 

4.2 Memory-Efficient Variant 

To address the stringent memory constraints of ultra-low-power devices like the ESP32-S3 with its 

limited 320KB PSRAM, we developed specialized model variants through innovative architectural refinements. 

These solutions enable sophisticated cat vocal analysis on resource-constrained hardware while maintaining 

clinically relevant accuracy levels through careful balancing of model complexity and performance. 

The Distilled TinyFormer represents our most compact architecture, achieving a remarkable reduction 

to just 48K parameters while maintaining 87.6% classification accuracy. This was accomplished through a novel 

layer-wise distillation process that carefully preserves the most crucial aspects of our full-sized model's 

knowledge. The distillation maintains the original model's interpretability by emphasizing attention-map 

matching during training, ensuring the compact version still focuses on biologically meaningful acoustic 
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features. Emotion-specific distillation weights help the smaller network preserve its diagnostic capability for 

critical conditions like pain detection, while progressive layer shrinking optimizes the architecture for memory 

efficiency without abrupt performance degradation. 

Our Hybrid CNN-Transformer approach takes a complementary route to memory efficiency by 

strategically blending convolutional and attention mechanisms. The design centers around an initial CNN layer 

that performs intelligent sequence length reduction while preserving spectro-temporal relationships. Using 

depthwise separable convolutions with large 8×8 kernels and learned pooling, this layer achieves a 4:1 reduction 

ratio before the signal reaches the transformer blocks. This architectural choice dramatically decreases memory 

requirements for subsequent attention computations while maintaining the model's ability to capture both local 

and global vocalization patterns. 

Memory optimization permeates every aspect of these variants, from sparse attention patterns in higher 

layers to dynamic memory allocation strategies that adapt to variable-length inputs. The implementations feature 

flash-based parameter storage and streaming spectrogram processing to maximize the limited available memory. 

Attention cache optimization and selective layer loading further reduce peak memory usage below 280KB 

during inference, leaving necessary headroom for other system operations. 

These memory-conscious designs maintain the original model's clinically valuable interpretability 

features through carefully preserved attention mechanisms that still highlight diagnostic frequency bands. The 

compressed versions generate compatible visualization outputs, enabling continued use in veterinary and pet 

owner applications. Field testing across 120+ household deployments has demonstrated the variants' reliability 

in real-world conditions, with consistent 87-88% accuracy across different cat breeds and environments. 

The memory-efficient implementations open new possibilities for deployment in ultra-low-power 

devices like smart collars and distributed home sensors, where they operate on minimal power budgets while 

providing advanced vocal analysis capabilities. This technological advancement makes sophisticated AI-based 

animal health monitoring accessible on affordable, widely available hardware platforms, potentially 

transforming how we understand and respond to feline communication needs. 

 

V. CONCLUSIONS 

This work demonstrates that Transformer architectures represent a significant advancement in cat 

vocalization recognition, providing context-aware analysis that surpasses traditional RNN and CNN approaches. 

The self-attention mechanism's ability to model long-range dependencies in spectro-temporal features proves 

particularly effective for capturing the nuanced acoustic patterns in feline communication. Our experiments 

show consistent improvements across multiple metrics, with the Transformer-based model achieving superior 

accuracy while maintaining computational efficiency suitable for edge deployment. 

The success of our approach stems from several key innovations. The locality-enhanced attention 

mechanism bridges the gap between global context modeling and local spectro-temporal pattern recognition, 

crucial for analyzing brief yet complex cat vocalizations. The gated positional encoding system adapts to 

variable-length vocalizations while preserving temporal relationships. Together, these advancements enable 

more biologically faithful interpretation of feline vocal signals compared to frame-based conventional methods. 

Looking forward, three important research directions emerge from this work. First, multimodal 

Transformer architectures combining audio with visual inputs could significantly enhance interpretation 

accuracy by incorporating complementary behavioral cues like ear position and tail movements. Preliminary 

experiments suggest such multimodal approaches might resolve current ambiguities between similar-sounding 

vocalizations with different meanings. Second, few-shot adaptation techniques need development to personalize 

models for individual cats, whose vocal signatures can vary substantially. This capability would be particularly 

valuable for monitoring pets with chronic conditions requiring precise vocal change detection. 

Finally, the growing capability of AI-based pet interpretation systems necessitates parallel development 

of ethical guidelines. Important considerations include establishing reliability standards for health-related 

interpretations, protecting pet privacy in cloud-based systems, and preventing over-reliance on automated 

interpretation at the expense of human-animal interaction. The attention visualization features in our system 

represent an initial step toward explainable AI for pet owners and veterinarians. 

The broader implications of this work extend beyond technical achievements. By providing more 

accurate tools for understanding feline communication, we enable earlier detection of health issues, improved 

human-animal bonding, and potentially new insights into feline cognition and emotion. The successful 

deployment on edge devices makes these benefits accessible to everyday pet owners, not just research settings. 

As the field progresses, maintaining scientific rigor while ensuring practical utility will remain paramount in 

developing AI systems that truly enhance our understanding and care of companion animals. 
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