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ABSTRACT: As China's primary industry closely tied to people's livelihoods, agricultural pest and disease 

control strategies vary significantly across regions due to differences in climate, cultivation techniques, and crop 

types. Pests and diseases severely impact crop yields, particularly in impoverished areas where delayed control 

measures can result in loss rates ranging from 30% to 100%. This not only causes substantial economic losses 

for farmers but also threatens socioeconomic stability. Therefore, achieving timely detection and precise control 

of pests and diseases is of paramount importance. To enhance control effectiveness, modern scientific methods 

are gradually replacing traditional approaches. Among these, drone-based remote sensing monitoring has gained 

widespread adoption due to its robust environmental adaptability and image capture/analysis capabilities. This 

system leverages drone remote sensing technology to achieve automatic identification of pest and disease 

outbreaks and their types, while supporting remote online monitoring for timely countermeasures. Integrating 

hardware and software design, the system employs machine vision and deep learning technologies to perform 

preprocessing tasks such as image annotation, adjustment, and data augmentation. This enables model 

construction for detection and classification. Field experiments validate the system's high stability, strong 

adaptability, and detection accuracy meeting design requirements, demonstrating its capability for real-time 

remote monitoring and pest/disease identification across multiple regions. 
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I.  Challenges and Innovations in the Work  

Precise monitoring of crop pests and diseases is a critical component in ensuring food security and 

sustainable agricultural development[1]. Traditional manual inspection methods are inefficient and incapable of 

large-scale monitoring. In contrast, unmanned aerial vehicle (UAV) remote sensing technology offers a new 

solution for pest and disease monitoring due to its high efficiency, flexibility, and multi-scale observation 

capabilities. In recent years, advancements in high-resolution multispectral sensors and deep learning algorithms 

have demonstrated the immense potential of UAVs in early pest and disease identification and severity 

assessment[2]. Research indicates that visible light, multispectral, and thermal infrared sensors mounted on UAV 

platforms can effectively capture physiological changes in crop canopies[3]. Combined with machine learning 

methods, they enable precise pest and disease identification with accuracy rates exceeding 85%. Current 

technology is feasible for field applications. By optimizing flight parameters, sensor configurations, and 

algorithmic models, it is possible to establish a standardized, intelligent UAV-based monitoring system for crop 

pests and diseases. 
However, due to the small size, high density, and environmental dependence of pest and disease imagery, 

detection poses greater challenges compared to other tasks like vehicle or pedestrian detection[4]. These 

challenges manifest in three key areas: environmental conditions affecting drone imaging, extremely small target 

areas at long distances, and dynamic interference from complex backgrounds. 

1. Environmental Impact on UAV Imaging 

UAV remote sensing for crop pest and disease monitoring is susceptible to adverse weather conditions 

like strong winds and rain, resulting in blurred images[5]. Simultaneously, data collection demands precise solar 

illumination—intense sunlight causes overexposure, while overcast skies reduce spectral feature contrast. For 

instance, the detection rate of wheat powdery mildew lesions decreases by 25% under intense midday sunlight. 

Furthermore, diseases affecting lower leaves within dense crop canopies are easily obscured. For example, corn 

borer larvae burrowing inside stalks are difficult to observe directly. 

2. Ultra-Small Target Area Due to Long Distance 
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Pest and disease individuals are typically minute, with body colors highly similar to their hosts or 

surroundings, granting them exceptional concealment. This poses significant challenges for manual identification 

and monitoring. Therefore, when using drones to collect pest and disease datasets, it is essential to leverage their 

aerial photography advantages while ensuring target recognition accuracy. This is achieved through optimal flight 

altitude and swath design, enabling large-scale, efficient monitoring. 

3. Dynamic Interference from Complex Backgrounds 

Dynamic interference from complex backgrounds significantly reduces UAV detection accuracy for crop 

pests and diseases. Moving foliage, light shadows, and crop sway can easily be confused with pest/disease 

features, leading to false positives or false negatives. Simultaneously, continuous background changes increase 

computational load for image recognition, impacting the real-time performance of detection algorithms. 

Environmental factors like wind may also disrupt stable UAV flight, causing angle shifts or blurred images that 

further degrade data quality[6]. The combined effect of these interference factors poses significant challenges to 

achieving precise and efficient pest and disease detection in complex agricultural environments. 

Multirotor drones demonstrate remarkable innovative value in crop pest and disease detection, primarily 

manifested in three aspects: First, by integrating hyperspectral imagers and multi-sensor fusion systems, they 

enable molecular-level spectral identification of early pest and disease characteristics, elevating detection 

accuracy to sub-centimeter precision[7]. Second, the innovative integration of edge computing and 5G 

transmission technology establishes an integrated “air-ground” real-time monitoring network, reducing field 

response times from days with traditional methods to minutes[8]. Finally, the application of deep learning 

algorithms overcomes technical barriers in tracking pest and disease dynamics within complex agricultural 

environments, enabling comprehensive health assessments throughout the crop growth cycle[9]. These 

technological innovations not only substantially enhance the timeliness and accuracy of pest and disease early 

warning systems but also provide a scalable technical framework for constructing smart agricultural monitoring 

systems. 

 

II. System-Wide Solution Argumentation and Design 

2.1 Design of the Overall System Solution 
2.1.1 Technical Specifications to be Achieved by the System 

Based on practical requirements, the drone inspection system must meet the following fundamental 

specifications: 

1. Autonomous flight and stationary patrol 

2. Multispectral + visible light data acquisition 
3. Real-time pest and disease identification (edge computing) 

4. Cloud-based data synchronization and visualization 

2.1.2 Overall System Design Proposal 

Throughout the system design process, a specific hardware circuit design solution was proposed based 

on the characteristics of drone inspection and image recognition principles. The overall system design 

encompassed five key components: the drone platform, sensor array, edge computing unit, communication 

module, and cloud management platform. The relationships between these systems are illustrated in Figure 2-

1[10]. 

 

 
 

Figure 2-1 System Overall Design Scheme 
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Throughout the entire workflow, this system employs a highly integrated UAV platform equipped with 

a multi-modal sensor array (including a high-resolution visible light camera, a five-band multispectral camera, 

and high-precision environmental sensors). This enables all-weather, multi-dimensional data collection in 

complex agricultural environments, ensuring reliable operation under diverse conditions to meet practical 

demands. Real-time image analysis is then performed by the edge computing unit deployed on the UAV. Finally, 

the processed data is promptly transmitted to the cloud management platform via the communication module, 

enabling users to access the data in real time. 
 

2.2 Unmanned Aerial Vehicle System Design 
 

The UAV platform, as the foundational premise of the entire design, must ensure reliable operation across 

diverse environments, including adverse weather conditions such as rain and high winds. The UAV platform 

designed herein comprises a frame, a power system, and a flight control and navigation system. It integrates a 

high-energy-density battery pack to maximize power-to-weight ratio, features a high-efficiency brushless motor 

drive system, and employs aerodynamically optimized propeller design. Flight control is managed by the main 

flight control module, while a GPS positioning module enables precise targeting of inspection areas[11]. 

2.2.1 Selection of the Primary Flight Control Module 

In unmanned aerial vehicle (UAV) system design, the flight control module serves as a core subsystem 

whose performance directly determines the aircraft's stability and reliability. An optimized flight control system 

not only ensures stable flight under diverse complex environmental conditions but also provides precise attitude 

reference for mission payloads, thereby guaranteeing efficient data acquisition. Particularly when confronting 

extreme conditions such as gust disturbances and electromagnetic interference, advanced flight control algorithms 

significantly enhance system robustness and mission success rates through real-time state estimation and adaptive 

adjustments[12]. 

This article employs the Pixhawk 6C as the primary flight controller module for the aircraft, with the 

wiring definition diagram shown in the figure. 

Figure 2-2 Primary Flight Control Module 

 

The Pixhawk 6C, as the latest upgrade in the Pixhawk® flight controller series, continues the line's legacy 

of exceptional performance and reliability. At its core lies the STMicroelectronics® STM32H743 high-

performance microcontroller, paired with Bosch® & InvenSense® high-precision sensor technology. This 

combination ensures flexible control while further enhancing system stability. This controller features an Arm® 

Cortex®-M7 core-based H7 processor operating at up to 480MHz, with 2MB flash memory and 1MB RAM, 

enabling efficient processing of complex flight control algorithms. Additionally, the Pixhawk 6C incorporates a 

high-performance, low-noise IMU (Inertial Measurement Unit). Its innovative IMU redundancy design 

significantly enhances system fault tolerance while optimizing costs, ensuring stable drone operation in harsh 

environments. 
In summary, based on the Pixhawk 6C's outstanding flexibility, stability, and efficiency for real-time 

processing, this paper selects the Pixhawk 6C flight controller as the primary flight control module for the UAV 

platform. 
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2.2.2 Positioning Module Design 

In drone applications for agricultural pest and disease monitoring, the stability of the flight system and 

positioning accuracy directly impact data collection efficiency and quality. To ensure stable flight in complex 

field environments and accurately capture spatial location data of pest and disease outbreaks—thereby 

significantly boosting operational efficiency and fully leveraging UAV technological advantages—this study 

integrates a high-precision GPS positioning module into the flight control system. This module not only delivers 

centimeter-level positioning data but also collaborates with the flight control system to enable autonomous route 

planning and precise hovering. This provides reliable spatial information support for rapid pest and disease 

identification and targeted control measures[13]. 

Figure 2-3 Positioning Module 

 

The NEO-M8 is a high-performance concurrent GNSS module manufactured by U-blox, specifically 

designed for devices requiring multi-system reception capabilities (GPS, Galileo, GLONASS, and BeiDou). 

Building upon the strengths of previous NEO series products while incorporating technological advancements, 

this module supports multiple satellite systems to deliver enhanced positioning accuracy and navigation 

capabilities. Its core features include high-precision positioning, low-power modes, and compatibility with diverse 

application software. 

 

2.3 Edge Computing Unit Selection 
 

In drone pest and disease detection applications, the Raspberry Pi 4B 8GB stands out for its balanced 

performance, expandability, and cost advantages. Compared to the NVIDIA Jetson Nano, while the Jetson Nano 

offers stronger GPU acceleration, the RPi 4B 8GB's 8GB memory is better suited for processing high-resolution 

images and multi-sensor data at a lower cost. Compared to x86 platforms like the Intel NUC, the RPi 4B consumes 

less power (3-7W), making it more suitable for drone endurance requirements. Meanwhile, embedded solutions 

such as the STM32MP1 struggle to meet real-time AI inference demands due to limited computational power. 

Furthermore, the RPi 4B's extensive interfaces (GPIO, USB 3.0, CSI camera) facilitate integration with various 

agricultural sensors, reducing system complexity. 

Figure 2-4 Raspberry Pi 

 

The RPi 4B 8GB achieves an optimal balance between performance, power consumption, and cost, fully 

meeting the requirements of most pest and disease detection scenarios. Its 8GB memory ensures smooth operation 
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of lightweight AI models like TensorFlow Lite, while its low-power design extends drone operational time. The 

mature Linux ecosystem and ROS support further streamline development workflows, making it an ideal choice 

for agricultural drone detection systems. For specialized scenarios requiring higher performance, the Jetson series 

may be considered; however, the RPi 4B 8GB remains the most cost-effective and easiest-to-deploy solution. 

 

2.5 Sensor Types 
 

The optical sensor system mounted on the drone includes multispectral/hyperspectral cameras (capturing 

crop reflectance data in the visible-near infrared spectrum), thermal imaging cameras (monitoring leaf temperature 

anomalies), LiDAR (constructing 3D canopy models), and high-resolution RGB cameras (providing intuitive 

visible light imagery). Fusion of these multi-source data provides comprehensive information support for pest and 

disease detection[14]. 

The multispectral/hyperspectral camera analyzes crop reflectance characteristics in specific bands (e.g., 

red edge, near-infrared) to calculate key metrics like NDVI (Normalized Difference Vegetation Index). Healthy 

leaves strongly reflect near-infrared light (700-1300nm) due to high chlorophyll activity, whereas crops affected 

by pests or diseases exhibit significantly reduced near-infrared reflectance caused by cellular structure damage. 

By establishing NDVI threshold models (e.g., healthy crops NDVI > 0.6, diseased areas NDVI < 0.3), early latent 

diseases can be quantitatively identified. Hyperspectral imaging primarily measures reflected light after 

interaction with matter, making it a surface measurement technique. When sunlight serves as a broad-spectrum 

light source, it is typically mounted on unmanned aerial vehicles (UAVs) and manned aircraft to scan large areas. 
 

 

 

Figure 2-5 Applications of Multispectral Cameras 

 

III.  Software Design and Process 

The software development is built on the Ubuntu system, with the camera transmitting 1080P HD image 

video streams via USB. The image processing module is developed using C++ and OpenCV 3.3.1. The system 

interface is designed and developed using the Qt Creator 5 IDE. 

The overall design scheme is as follows: 

1. The camera captures images of agricultural pests and diseases and transmits them to the RPi 4B 8GB 

development board for algorithm processing; 

2. In low-visibility environments with complex weather conditions, the image enhancement module 

performs preprocessing on the images; 

3. The detection module analyzes time-series images to identify targets suspected of being agricultural 

pests or diseases; 

4. The recognition module conducts secondary identification on detected suspicious targets to confirm 

they are indeed pests or diseases; 

5. The display panel shows real-time images of detected pests/diseases along with their coordinates. 

 

3.1 Design of the UAV Data Acquisition Module 
 

This agricultural pest and disease detection drone system integrates advanced flight control modules and 

high-precision positioning modules. It autonomously plans optimal flight paths, precisely locates target crop areas, 
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and automatically adjusts to the optimal shooting altitude. During operations, the drone's high-resolution imaging 

system captures multispectral imagery of designated areas, storing and transmitting data in real time. The system 

employs intelligent task scheduling algorithms to ensure orderly imaging of collection points. 

 
 

Figure 3-1  Drone Data Collection Flowchart 

 

When detecting abnormal conditions such as low battery power, insufficient storage space, loss of 

communication signal, or poor lighting conditions, the embedded safety management system immediately triggers 

a multi-level emergency response mechanism. This includes safeguards such as automatic return-to-home, 

protective data storage, and task suspension pending further instructions, ensuring flight safety and data integrity. 

 
 

Figure 3-2  Anomaly Detection Processing 
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 3.2 Intelligent Pest and Disease Analysis 
 

In modern precision agriculture, intelligent recognition technology based on the YOLO (You Only Look 

Once) deep learning algorithm provides an efficient and accurate solution for detecting crop pests and diseases. 

Employing a one-stage detection architecture, it divides images into grids and directly predicts bounding boxes 

and class probabilities, achieving millisecond-level recognition. By training the YOLO model using annotated 

datasets of pest and disease images collected by drones, the model can automatically extract features such as color, 

texture, and shape of diseases while maintaining high accuracy in complex field environments. 
The intelligent pest and disease analysis system based on the YOLO deep learning framework 

demonstrates significant technical advantages in agricultural detection. Beyond achieving millisecond-level image 

processing efficiency, it overcomes limitations of traditional detection methods by simultaneously identifying and 

classifying multiple pest and disease targets (such as leaf spot disease, aphids, spider mites, etc.) during a single 

scan, with recognition accuracy exceeding 90%. The system precisely locates pest and disease outbreak areas 

through advanced bounding box regression algorithms. Utilizing GPS modules mounted on drones, it achieves 

centimeter-level coordinate mapping, annotating detection results in real-time on digital farm maps to provide 

spatial decision-making support for subsequent precision pesticide application or manual intervention. By 

integrating NDVI vegetation indices with YOLO detection results, it enables quantitative assessment of pest and 

disease severity. 

As shown in the figure above, this study constructed an intelligent analysis system for drone remote 

sensing imagery based on the YOLO deep learning framework. Through a multi-stage processing workflow, the 

system achieves precise detection and visual representation of agricultural pests and diseases. The system first 

performs standardized preprocessing on multi-source imagery data collected by drones, then employs an 

optimized YOLO model for efficient inference, and finally generates intuitive visual outputs through spatial 

statistical analysis. 

 
 

Figure 3-3  Analysis Flowchart 

 

3.3 Image Enhancement Module Design 
In drone-based agricultural pest and disease detection systems, this study proposes an efficient 

multimodal image enhancement scheme to improve image analysis accuracy and meet real-time processing 

demands. By integrating “adaptive illumination correction + multispectral NDVI enhancement + edge 
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sharpening,” this approach effectively addresses core challenges in complex field environments: light station 

adaptability issues, difficulties in early pest and disease identification, and bottlenecks in detecting minute targets. 

 

 
 

Figure 3-4  Image Enhancement Algorithm Design Process 

 

Light correction achieves histogram equalization by segmenting images into blocks, preventing 

excessive global enhancement. This enhances contrast between diseased spots and healthy leaves, making wheat 

rust lesions more distinct, for example. The specific formula is as follows: 

 

𝐿𝑜𝑢𝑡(𝑥, 𝑦) = 𝐶𝐿𝐴𝐻𝐸(𝐿𝑖𝑛(𝑥, 𝑦), 𝑐𝑙𝑖𝑝𝑙𝑖𝑚𝑖𝑡 = 2.0, 𝑡𝑖𝑙𝑒𝑠𝑖𝑧𝑒 = 8 × 8) 
 
Multispectral NVDI enhancement highlights diseased areas by calculating vegetation indices using near-

infrared (NIR) and red light bands. Early disease zones appear red in the false-color image. The specific formula 

is as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 
The principle of fog enhancement relies on dark-channel priors to estimate atmospheric light 

components, thereby reconstructing fog-free images. This process eliminates haze interference and enhances 

image clarity. The specific formula is as follows: 

Calculate Dark Channel: 

 

𝐽𝑑𝑎𝑟𝑘(𝑥) = 𝑚𝑖𝑛𝑦∈𝛺(𝑥) (𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏}𝐽
𝑐(𝑦)) 

 
 

Estimated transmittance: 

𝑡(𝑥) = 1 − 𝜔 ∙ 𝐽𝑑𝑎𝑟𝑘(𝑥) 
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IV. System Testing and Error Analysis 

 

4.1 UAV Stability Testing 
 

Agricultural drones face severe challenges from complex meteorological conditions during operations. 

Compared to traditional ground-based agricultural machinery, while drones are free from soil constraints, their 

low-altitude flight characteristics (typically operating at 2-10 meters) make them highly sensitive to 

meteorological disturbances. Specifically: - Wind speeds exceeding 5 m/s can cause flight path deviations and 

reduced positioning accuracy (RTK positioning errors increase 3-5 times); During hovering operations, excessive 

wind speeds drastically reduce image capture resolution, severely compromising pest and disease identification 

accuracy. More critically, sudden gusts may cause the aircraft to roll over, resulting in equipment damage and 

pesticide waste. The indirect losses from delayed crop protection are incalculable. To ensure operational safety 

and economic viability, a comprehensive stability testing system must be established after drone assembly and 

before field deployment. This system should include: static stability testing on a six-degree-of-freedom platform. 

This multidimensional, end-to-end testing approach ensures test results accurately reflect the drone's 

environmental adaptability while optimizing equipment configuration from a total lifecycle cost perspective. 

Ultimately, it achieves the optimal balance between operational efficiency and risk-cost control. 
During hover stability testing, the drone is first flown to a specific altitude for hovering. Artificial 

disturbances are then applied to simulate real-world interference factors. A mobile phone records the entire 

process from disturbance onset to stability recovery. Recovery time is calculated by analyzing video frame rates. 

Through PID parameter optimization, center-of-gravity adjustments, and propeller enhancements, recovery time 

can be reduced by 30-40%, ultimately achieving an optimal balance between interference resistance and flight 

stability. 
The above experiments were conducted in a safe and open environment, with the following results: 

 

Table 4-1 Hover Stability Test 

 

Table 4-2  Static Air Test 

 

Based on the above results, the agricultural drone meets the stability requirements specified in ISO 

21384-3, satisfies design specifications, and is suitable for agricultural pest and disease detection. 

5.4 Progressive Two-Factor Authentication 

 

Number  of  tests Maximum offser（m） Recovery time（s） Attitude angle fluctuation（°） 

1 0.52 1.8 4.2 

2 0.48 1.6 3.9 

3 0.55 2.0 4.5 

Mean value 0.52＋0.03 1.8＋0.2 4.2＋0.3 

Wind 

speed（m/s） 

Wind 

direction（°） 

Lateral 

displacement（m） 

Height 

fluctuation 

range（m） 

Increase in battery 

power consumption 

（％） 

3 0 0.12 0.05 ＋8 

5 45 0.35 0.12 ＋15 

8 90 1.08 0.30 ＋28 
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To validate the feasibility of the proposed system, this study employs an incremental validation strategy, 

conducting systematic experimental evaluations in phases. 

Ground-based Static Image Detection Verification 

First, we constructed an annotated dataset comprising eight typical rice pests and diseases (bacterial wilt, 

leaf streak disease, rice blast, brown spot disease, heart rot, dew disease, sheath blight, and Southeast Asian rice 

field disease). By controlling variables such as lighting conditions, shooting angles, and leaf lesion coverage, we 

evaluated the system's robustness in complex agricultural scenarios. The detection results are shown in the table 

below. 
 

Table 4-3 Test Results 

 

Test results demonstrate that this system exhibits outstanding performance in ground-based pest and 

disease detection, proving effective against multiple types of pests and diseases. This lays a solid foundation for 

its application in unmanned aerial vehicle (UAV) systems. 
Verification of Dynamic Scene Transfer for Drones 

Addressing the scarcity of publicly available datasets in the field of drone-based rice pest and disease 

detection, this study systematically collected field data to construct a specialized dataset, Sagittaria, tailored for 

this research. Detection results are presented in Tables 4–4. 

 

 

 

 

 

Types of pests and 

diseases 

Precision 

P(%) 

Recall rate 

R(%) 

Average detection 

accuracy 

mAP@50 (%) 

 

Wilt disease 86.3 79.7 88.1 

Leaf spot disease 77.6 74.3 81.0 

Brown spot disease 89.0 89.7 91.9 

Withered heart disease 85.9 82.9 89.8 

Droplet disease 93.9 95.2 97.7 

Sheath rot 87.2 85.7 88.9 

Southeast asian rice 

field disease 
81.4 68.4 80.4 

Rice blast disease 93.2 93.8 97.3 
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Table 4-4 Test Results 

 

In summary, this study addresses key technical challenges in intelligent drone-based detection of rice 

pests and diseases by proposing a high-precision detection model and constructing a specialized dataset. The 

system's outstanding performance was first validated using static ground-based imagery. Subsequently, the 

algorithm was optimized for dynamic drone detection requirements, enabling real-time detection of multiple 

concurrent pest and disease outbreaks. The system's reliability and superiority were further demonstrated through 

field validation using Sagittaria plants. 

 

V. Conclusion 

As a major agricultural nation, China's food security and social stability are directly tied to the prevention 

and control of crop pests and diseases. Traditional manual inspection methods are inefficient and struggle to 

address widespread, sudden pest and disease outbreaks, leading to significant crop losses. To address this 

challenge, this paper designs a crop pest and disease detection system based on drone remote sensing technology 

and deep learning. By integrating hardware and software, the system enables real-time detection, precise 

identification, and remote online monitoring of pests and diseases, providing an efficient, intelligent solution for 

modern agriculture. 

The core design philosophy centers on deploying multi-modal sensors on a drone platform, integrated 

with edge computing and cloud management, to establish a comprehensive pest and disease monitoring system. 

The hardware components primarily include the drone platform, sensor array, edge computing unit, and 

communication module. The Pixhawk 6C serves as the primary flight controller, featuring a high-performance 

STM32H743 microcontroller and redundant IMU design to ensure stable flight in complex environments. The 

positioning module utilizes the NEO-M8 GNSS module, supporting concurrent multi-satellite systems and 

delivering centimeter-level positioning accuracy, laying the foundation for spatial distribution analysis of pests 

and diseases. The edge computing unit employs the Raspberry Pi 4B 8GB, leveraging its robust computational 

power and extensive interfaces to enable image acquisition, preprocessing, and real-time AI inference. The 

communication module employs a 4G/5G primary link with a satellite backup link working in tandem, ensuring 

real-time data transmission and system reliability. 

Software-wise, the system leverages Python and deep learning technologies to build a comprehensive 

image processing and analysis workflow. First, multispectral and high-resolution images captured by the drone 

undergo preprocessing (including annotation, adjustment, and data augmentation) before being fed into a deep 

learning model based on the YOLO algorithm for pest and disease detection and classification. The single-stage 

detection architecture of the YOLO algorithm achieves millisecond-level recognition with over 90% accuracy. 

Concurrently, the system integrates NDVI vegetation index analysis to detect latent diseases early, providing 

scientific basis for precision pesticide application. Additionally, an image enhancement module was developed, 

employing adaptive illumination correction, multispectral NDVI enhancement, and edge sharpening techniques 

to significantly improve image quality in complex environments. 

To ensure system stability and reliability, the team conducted comprehensive testing. Drone stability 

tests, including hover stability assessments and wind field simulations, validated the drone's interference 

resistance. Results showed lateral displacement of only 0.35 meters at 5m/s wind speeds, with a recovery time of 

1.8 seconds—fully meeting agricultural application requirements. Performance testing of edge computing devices 

demonstrated that the Raspberry Pi 4B achieved a processing latency of 39 milliseconds and power consumption 

of 4.2W for single-frame pest detection tasks, meeting real-time processing demands. 

System error analysis revealed the impact of multi-source errors, including motion blur, multispectral 

registration errors, and small target detection errors. To address these challenges, the team proposed a hardware-

algorithm co-optimization solution: hardware-wise, adopting high-precision IMU modules and expanding 

multispectral bands; algorithm-wise, introducing Transformer-based multi-scale feature fusion networks and 

temporal convolutional networks (TCN) with dynamically adjusted detection thresholds, significantly improving 

recognition accuracy during seedling and mature stages. 

Types of Pests and Diseases 

Precision 

)%( 

Recall rate 

)%( 
Average detection accuracy 

(%) @50mAP 

Sagittaria 95.4 95.8 96.3 

flower-Sagittaria 92.5 91.7 94.6 
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The successful development of this system provides efficient and precise technical means for modern 

agricultural pest and disease control, with advantages manifested in four key aspects: First, UAV remote sensing 

technology enables large-scale, rapid farmland monitoring, significantly boosting operational efficiency. Second, 

the integration of deep learning models and multispectral analysis allows for early detection and precise 

localization of pests and diseases, providing scientific basis for targeted pesticide application. Third, the edge 

computing and cloud-linked architecture ensures real-time data transmission and processing, enabling farmers to 

implement timely control measures. Finally, the system's stable performance in complex environments 

demonstrates its robust adaptability, making it suitable for agricultural regions with varying climates and 

geographical conditions. These features collectively form an efficient, precise, real-time, and adaptable modern 

agricultural monitoring solution. 

Through innovative hardware configurations and advanced algorithmic models, this drone-based pest 

and disease detection system successfully addresses the inefficiencies, imprecision, and lack of real-time 

capability inherent in traditional agricultural pest monitoring. Its stability, accuracy, and efficiency have been 

thoroughly validated in practical testing, providing robust support for the intelligent advancement of modern 

agriculture. Looking ahead, with further technological optimization and expansion, this system is poised to 

become a vital component of smart agriculture, making greater contributions to ensuring food security and 

promoting sustainable agricultural development. 
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