
International Journal of Engineering Inventions 

e-ISSN: 2278-7461, p-ISSN: 2319-6491 

Volume 14, Issue 9 [September 2025] PP: 64-70 

 

www.ijeijournal.com                                                                                                                                   Page | 64 

Research on AI-Based Construction of Personalized Learning 

Paths in Vocational Education 
 

Yanjun Hu 
School of Applied Engineering, Henan University of Science and Technology, Sanmenxia, 472099, China 

Corresponding Author: Yanjun Hu 

 

ABSTRACT: With the rapid advancement of artificial intelligence (AI) technology, the digital transformation of 

education has become a global trend. This study explores how AI can drive the construction of personalized 

learning paths to address the structural contradiction between "mass cultivation" and "individualized needs" in 

higher education. The research first analyzes the practical challenges faced by traditional educational models 

under the "impossible trilemma," including difficulties in identifying individual student differences, low 

precision in matching teaching resources, and the inadequacy of conventional evaluation systems in adapting to 

diverse needs. Subsequently, the paper systematically reviews the theoretical foundations supporting 

personalized learning, such as differentiated instruction, cognitive load theory, and metacognition.The core 

contribution of this study is a multi-level, adaptive framework for constructing personalized learning paths. This 

framework employs knowledge graphs for semantic modeling, formulates path optimization as a sequential 

decision-making problem using reinforcement learning, and integrates multi-algorithm fusion strategies to 

leverage the strengths of different models. The result is a dynamic, precise learning recommendation system. 

The findings demonstrate that AI, through building learner profiles, optimizing knowledge adaptation models, 

and embedding personalized service modules, can provide effective technical solutions and practical paradigms 

for individualized instruction in large-scale education. This research holds significant theoretical value and 

practical implications for advancing high-quality educational development. 
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I. INTRODUCTION 

In his congratulatory letter to the International Conference on Artificial Intelligence and Education, 

President Xi Jinping emphasized: "Artificial intelligence serves as the key driver of the new round of scientific 

and technological revolution and industrial transformation, profoundly reshaping production, lifestyles, and 

learning methods, while propelling human society into an intelligent era characterized by human-machine 

collaboration, cross-boundary integration, and co-creation/sharing" [1]. Within this context, AI has emerged as 

the core force driving profound transformations in education systems [2]. 

In April 2025, nine ministries including the Ministry of Education jointly issued the Guidelines on 

Accelerating Educational Digitalization, explicitly proposing to "advance the digital transformation and 

upgrading of curricula, teaching materials, and pedagogical practices. Improve knowledge graphs, construct 

competency frameworks, deepen the application of educational large-scale models, and promote the intelligent 

development of curriculum systems, textbook systems, and teaching systems. Comprehensively integrate AI 

technologies throughout the entire teaching-learning process to facilitate the deep convergence of STEM and 

humanities education" [3]. 

This policy aligns with the strategic directive outlined in the Education Power Construction Plan 

(2024-2035) issued by the CPC Central Committee and the State Council in January 2025, which advocates 

"building a learning society by leveraging educational digitalization to pioneer new development pathways and 

cultivate competitive advantages" [4]. These developments signify AI's formal recognition as the pivotal 

solution to resolving higher education's fundamental tension between "mass-scale cultivation" and "personalized 

needs." 

Under the theoretical framework of education's "impossible triangle," conventional models struggle to 

simultaneously achieve three objectives: high-quality knowledge delivery, large-scale educational coverage, and 

personalized learning experiences. This stems from inherent limitations in resource allocation mechanisms that 

perpetuate these structural contradictions. Traditional face-to-face teaching, constrained by instructors' temporal 

and cognitive capacities, proves inadequate for sustaining individualized learning support [5]. 

Research demonstrates that generative AI can accurately identify students' learning preferences, 
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recommend diversified learning resources, and comprehensively support teaching objectives, thereby more 

effectively promoting tailored instruction while reducing cognitive load [6]. AI technologies construct learner 

competency profiles through multidimensional data acquisition and continuously optimize knowledge 

adaptation models via intelligent algorithms. Furthermore, they embed personalized service modules within 

scalable education systems—leveraging digital platforms to extend high-quality educational resources beyond 

geographical constraints while employing adaptive learning systems to generate individualized pathways 

aligned with each student's cognitive patterns. This dual approach provides both theoretical foundations and 

practical paradigms for educational digital transformation.. 

 

II. Theoretical Foundations of Personalized Learning 

Differentiated instruction refers to the pedagogical approach wherein teachers adapt instructional 

strategies based on students' prior knowledge, interests, and learning styles. Carroll’s Model of School Learning 

posits that academic achievement depends on the time a learner requires for mastery, which is closely associated 

with individual aptitude, quality of instruction, and other factors [7]. This perspective provides a theoretical 

foundation for optimizing resource allocation in personalized learning. Bloom’s Mastery Learning Theory 

further emphasizes that nearly all students can achieve proficiency when provided with sufficient learning time 

and appropriate instructional support [8]. Therefore, in personalized learning systems, teaching progression 

should be flexibly adjusted according to individual differences, and tailored learning support should be provided 

to enhance each student’s learning efficacy. 

Human working memory has limited capacity, and learning efficiency declines when the cognitive 

demands of a task exceed available mental resources. Even when presented with identical instructional 

materials, different students may experience substantially varying cognitive loads. Thus, it is essential to 

regulate the presentation, difficulty, and pacing of learning content to maintain students’ cognitive load at an 

optimal level [9]. The Multimedia Learning Theory further explores how multiple representational formats (e.g., 

text, images, animations) can enhance learning outcomes, noting that learners may exhibit distinct preferences 

and adaptability to different media modalities. 

Learners with well-developed metacognitive abilities are capable of effectively monitoring their own 

comprehension processes, proactively selecting appropriate learning strategies, evaluating learning outcomes, 

and dynamically adjusting their learning behaviors. Personalized learning systems can further enhance learners’ 

autonomy and self-regulatory capabilities by cultivating and strengthening their metacognitive skills. At the 

same time, sociocultural theory emphasizes that personalized learning should not overlook the essential value of 

social interaction. Even in highly individualized learning environments, students still need to engage in 

meaningful communication with teachers and peers. Such social interactions play an irreplaceable role in the 

construction of knowledge and the generation of meaning. 

 

III. Practical Challenges in Building Personalized Learning Pathways in Higher Education 

3.1 Challenges in Identifying Individual Differences and Matching Educational Resources 

Higher vocational institutions commonly face the contradiction between a large student population and 

a relative shortage of high-quality teaching resources. Although intelligent monitoring systems can collect data 

related to students’ mastery of theoretical knowledge and practical skills, there are still limitations in the breadth 

and depth of the data collected. Existing knowledge graphs struggle to accurately identify students’ cognitive 

starting points and specific obstacles encountered during the learning process. Moreover, the resource system in 

vocational education is vast, frequently updated, and spans multiple disciplines, which leads to insufficient 

granularity in resource organization and quality assessment in intelligent recommendation algorithms. As a 

result, the accuracy of matching resources to learners’ actual needs remains inadequate. 

During the learning phase, students exhibit significant differences in their depth of understanding of 

core knowledge concepts, yet current intelligent content recommendation systems remain inadequate in adapting 

to the personalized needs of learners at varying cognitive levels [10]. In practical training sessions, considerable 

disparities are observed in students’ foundational skills and operational performance, while existing teaching 

resources lack the capability for precise targeting and dynamic adaptation. Furthermore, the overall level of 

intelligent development of educational resources in vocational education is relatively low. There is a scarcity of 

high-quality digital resources such as micro-lectures and virtual simulations, and knowledge graphs still fall 

short in conducting in-depth mining and correlation analysis of vocational knowledge systems. These factors 

collectively restrict the accurate construction and continuous optimization of learner profiles. 

 

3.2 The Mismatch Between Traditional Teaching Evaluation Systems and Personalized Learning 

The current evaluation system in higher vocational education suffers from multiple limitations that 

hinder its ability to accommodate personalized learning needs, as detailed in Table 1. Although smart learning 

platforms have accumulated vast amounts of learning behavior data, this data has not yet been systematically 
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integrated or applied effectively within the evaluation process. Existing assessment methods, such as 

“comprehensive course transcripts,” still show room for improvement in their practical effectiveness. The 

prevailing course evaluation mechanisms are inadequate in stimulating students’ innovative thinking and 

autonomous inquiry awareness, while the assessment of practical skills overemphasizes standardized operational 

procedures, thereby overlooking students’ individualized developmental traits and potential. 

Furthermore, there is still a lack of scientific and effective assessment tools and methods for cultivating 

higher-order competencies such as complex problem-solving skills and critical thinking among vocational 

students. As a result, evaluation outcomes provide limited support for optimizing personalized learning 

pathways. The application of intelligent assessment tools remains insufficient, leading to low efficiency in the 

collection and analysis of learning data. This inefficiency prevents real-time diagnosis of student learning issues 

and precise feedback, ultimately constraining the continuous improvement of personalized learning outcomes. 

 
Table 1. Comparative Analysis of Traditional Evaluation Systems in Higher Vocational Education and 

the Requirements of Personalized Learning 

Evaluation 

Dimension 

Characteristics of Traditional 

Evaluation System 

Actual Needs of Personalized Learning 

Evaluation 

Content 

based -Focuses on final exams and skill

assessments; emphasizes knowledge 

point testing. 

dimensional assessment -Requires holistic and multi

that values knowledge construction and 

competency development. 

Evaluation 

Method 

Uniform standards; primarily manual 

evaluation; relies on singular 

quantitative metrics. 

Calls for differentiated criteria, diversified 

-intelligent evaluation tools, and a multi

dimensional indicator system. 

Evaluation 

Timeliness 

Dominated by summative assessment; 

feedback is often delayed. 

time -Emphasizes process evaluation and real

feedback with guidance. 

Evaluation 

Indicators 

Measures subject knowledge mastery 

and standardized skill performance. 

dimensional indicators including -Requires multi

learning behaviors, cognitive traits, and ability 

improvement. 

Use of 

Evaluation 

Results 

Used for semester grading and 

graduation qualification. 

Should guide the optimization of personalized 

learning paths and the recommendation of learning 

resources. 

Data Analysis Relies mainly on total and average 

depth analysis.-scores; lacks in 

based analysis of learning -Requires big data

trajectories and predictive analytics. 

Evaluation 

Participants 

centered evaluation; lacks -Teacher

diverse involvement. 

Needs the integration of intelligent tools to 

student mutual evaluation and -facilitate teacher

assessment.-self 

 

IV. Construction of AI-Powered Personalized Learning Pathways 

An AI-driven personalized learning pathway refers to a dynamically adapted knowledge acquisition 

sequence tailored to individual learners through intelligent algorithms. The system leverages machine learning 

techniques to construct accurate learner models, analyzing in real-time multidimensional characteristics such as 

knowledge mastery, cognitive style, and learning pace. Integrated with the semantic relationships of educational 

knowledge graphs, it generates highly customized learning plans. 

Compared to traditional fixed pathways, its core advantage lies in a “dynamic adjustment” mechanism: 

by continuously collecting data on exercise performance, time investment, and interactive behaviors, and 

employing algorithms such as reinforcement learning and collaborative filtering to iteratively optimize path 

planning, it ensures both the logical coherence of the knowledge structure and alignment with individual learner 

adaptability. This approach effectively mitigates issues of cognitive load imbalance, thereby enhancing learning 

efficiency and personalization (see Fig. 1). 

 

4.1Knowledge Graph Representation and Modeling 

Constructing a comprehensive educational knowledge graph requires the deep integration of domain 

expertise, textbook content structure, and practical teaching experience. The graph represents knowledge or skill 

points as nodes and various semantic relationships as edges. In addition to common relationships such as 

prerequisite, part–whole, and similarity, several education-specific relationship types should be defined, 

including common misconception associations, cross-domain application associations, and thinking mode 

associations. This facilitates theoretical support for multidimensional collaborative decision-making in complex 

environments. 

The granularity design of the knowledge graph is critical: excessively coarse granularity may reduce 

the accuracy of learning path planning, while overly fine granularity can significantly increase the complexity of 
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the graph, posing challenges for maintenance and management [11]. Therefore, a multi-level representation 

mechanism should be adopted while maintaining consistency across hierarchies. This involves macroscopically 

partitioning knowledge domains and microscopically refining knowledge points. When classifying knowledge 

points, it is essential to consider both the diversity of teaching objectives and students' cognitive characteristics. 

 

 
Fig. 1 Research Workflow Diagram 

 

Item Response Theory provides a method for quantifying the difficulty of knowledge points, enabling 

an objective comparison between the difficulty of knowledge points and learners' abilities on a unified scale. 

Furthermore, the temporal dynamics of knowledge cannot be overlooked, as the importance or accuracy of 

certain knowledge may change over time and should be dynamically reflected in the graph. 

Traditional static knowledge graphs struggle to capture the dynamic nature of knowledge, such as its 

timeliness, popularity, and other time-sensitive attributes. By incorporating a temporal dimension for analyzing 

instructional content over time, it becomes possible to trace the evolution of knowledge and predict its 

developmental trends. Through a crowdsourcing mechanism, teachers and learners can collaboratively 

participate in the refinement of the knowledge graph, leveraging collective intelligence to identify new 

connections or correct existing relationships. 

The weights assigned to knowledge associations must be dynamically adjusted according to different 

learning objectives and application scenarios. For example, in interest-driven learning contexts, greater weight 

should be given to interest-oriented associations. The interaction between the knowledge graph and the learner 

model constitutes the core mechanism for enabling personalized recommendations: the system must 

continuously compare the learner’s current state with the competency requirements specified in the knowledge 

graph to identify the most suitable subsequent learning targets. This comparison process encompasses not only 

knowledge mastery, but also multiple factors such as cognitive load balance and learning style alignment. 

In the design of knowledge graph traversal algorithms, it is essential to balance efficiency and 

recommendation quality, avoiding both local optima and excessive computational complexity. As learning 

progresses, the system should be capable of dynamically adjusting the graph structure by strengthening 

important associations, weakening less critical ones, and even uncovering entirely new and more effective 

learning paths. 

 

4.2 Learning Path Optimization Objective Setting 

Learning path optimization is inherently a multi-criteria decision-making problem that requires finding 

an optimal balance among multiple competing objectives. Maximizing learning effectiveness constitutes the 

primary goal, which can be measured through multidimensional indicators such as the breadth and depth of 

knowledge mastery, as well as transfer ability: breadth reflects the scope of knowledge covered by the learner, 

depth evaluates the understanding of core concepts, and transfer ability indicates the learner’s capacity to apply 

http://www.ijeijournal.com/


Enhancement Of Solar Water Distillatory Using Spherical Dome 

www.ijeijournal.com                                                                                                                                   Page | 68 

acquired knowledge to new contexts [12]. The weight assignments for each objective in learning path 

optimization are presented in Table 2. 

 
Table 2. Weight Allocation of Learning Path Optimization Objectives 

Optimization Objective 
Term Weight -Short

1)–(0 

Term -Medium

1)–Weight (0 

Term -Long

1)–Weight (0 

Dynamic Adjustment 

Threshold 

Breadth of Knowledge 

Mastery 
0.35 0.28 0.20 0.15 

Depth of Understanding 0.40 0.35 0.30 0.20 

Knowledge Transfer 

Ability 
0.25 0.37 0.50 0.25 

 

Long-term memory retention represents another critical dimension of optimization. Based on the 

Ebbinghaus forgetting curve, scientifically scheduling review intervals is essential for knowledge consolidation. 

The system should be capable of predicting individual learners’ forgetting patterns and initiating reinforcement 

exercises at optimal times to facilitate long-term knowledge retention. 

Learning efficiency optimization aims to help learners achieve the best possible outcomes within 

limited time, with its core lying in the scientific sequencing of learning activities. An effective learning 

sequence should align with principles of cognitive development, establishing foundational concepts before 

progressing to more advanced content. Cognitive load management serves as a key aspect of efficiency 

optimization; the system must ensure that the difficulty of learning tasks matches the learner’s current ability 

level, avoiding loss of interest due to tasks that are too simple or frustration caused by excessive challenge. 

The allocation of attentional resources also significantly influences learning efficiency. Research 

indicates that learners’ sustained attention is limited; thus, it is essential to scientifically structure intervals 

between focused learning and rest. In multi-task learning scenarios, the cognitive cost associated with attention 

switching must also be taken into account. According to the challenge-skill balance theory, a flow state is most 

likely to be achieved when task difficulty slightly exceeds the learner’s current ability level [13]. Therefore, 

personalized systems should dynamically adjust difficulty progression to provide each learner with an 

appropriate level of challenge. 

Interest maintenance constitutes another critical aspect. By analyzing learners’ emotional feedback and 

behavioral data, the system can identify individual interest patterns and recommend relevant learning materials. 

Furthermore, the sense of autonomy also markedly influences the learning experience: studies show that 

intrinsic motivation tends to be stronger when learners possess a degree of control over the learning process. 

Hence, the system should provide adequate opportunities for choice and self-regulation to enhance learner 

autonomy and engagement. 

 

4.3 Reinforcement Learning-Based Pathway Generation 

Within the reinforcement learning (RL) framework, the problem of learning path optimization can be 

naturally modeled as a sequential decision-making process. In this framework, an agent (i.e., the 

recommendation system) continuously interacts with the environment (the learner and their learning context) to 

progressively optimize its recommendation policy. The design of the state space is particularly critical and must 

incorporate sufficient information to characterize the learning context, typically including the learner’s current 

knowledge state, cognitive traits, and historical behaviors [14]. 

To address the complexity arising from high-dimensional state representations, deep reinforcement 

learning (DRL) often employs neural networks as function approximators to autonomously learn efficient state 

representations. In practical applications, partial observability is a common challenge: since the system cannot 

directly access the learner’s full internal state (such as emotional status or cognitive load), it often relies on 

observation histories to perform probabilistic inference. 

In reinforcement learning-driven learning path recommendation, the design of the action space plays a 

critical role in system performance. A discrete action space treats each knowledge point or learning activity as 

an independent action, which is simple and intuitive but limited in scalability. A continuous action space can 

express richer recommendation strategies, such as using continuous values to control the mixing ratio of 

different knowledge points. A hierarchical action space combines the advantages of both: a high-level policy 

selects macro-learning goals, while a low-level policy determines specific learning activities or resources. 

Composite actions enable the system to recommend multiple learning elements simultaneously, such as 

combinations of content type, difficulty level, and media format. A well-designed action space can significantly 

improve the precision and adaptability of recommendations. 

The sparse reward problem is prevalent in educational settings, as learning outcomes often take 
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considerable time to manifest. To address this issue, dense intermediate reward signals can be designed based on 

short-term feedback such as learners’ interaction engagement or quiz performance. In the context of multi-

objective optimization, reward signals from different objectives must be carefully combined. Since these 

objectives may vary in scale, normalization is typically required. Furthermore, incorporating intrinsically 

motivated reward mechanisms based on psychological principles can encourage exploratory behaviors and 

prevent the system from converging prematurely to local optima. Inverse reinforcement learning techniques can 

infer latent reward functions from exemplary teaching practices, enabling the system to imitate the decision-

making patterns of expert educators. 

In personalized learning scenarios, excessive exploration may lead to unstable learning experiences, 

while over-exploitation can cause recommendations to become rigid. To ensure stable policy updates, trust 

region methods constrain the magnitude of policy changes, preventing significant deviations from the currently 

effective strategy. Model-based reinforcement learning improves sample efficiency by first learning a model of 

environmental dynamics and then performing policy planning based on this model. In a multi-agent framework, 

instructors can also be modeled as agents, enabling human-AI collaborative teaching decisions. Furthermore, 

meta-reinforcement learning techniques can extract shared patterns across multiple learners, allowing the system 

to adapt quickly to new users and thereby enhancing the efficiency and adaptability of the personalization 

process. 

 

4.4 Optimization Through Multi-Algorithm Fusion 

A single algorithm often struggles to fully address the complex challenges involved in learning path 

optimization, whereas a multi-algorithm fusion framework can effectively integrate the complementary 

strengths of diverse methods. The concept of ensemble learning can be introduced into this domain, combining 

outputs from multiple base recommenders to form more reliable final decisions [15]. Weighted averaging 

represents the simplest fusion strategy, while more refined approaches such as stacked generalization can learn 

the relative reliability of different algorithms in specific contexts, enabling more adaptive integration. 

The Bayesian framework offers a principled approach to multi-algorithm fusion by treating different 

algorithms as distinct information sources and combining them organically through probabilistic inference. A 

key advantage of this method lies in its ability to explicitly handle uncertainty: when the confidence in an 

algorithm’s output is low, the system can automatically reduce its decision weight, thereby enhancing the 

robustness and accuracy of recommendations. 

At the base level, multiple specialized submodules handle distinct tasks: the cognitive diagnosis 

module assesses the learner’s knowledge mastery, the interest prediction module analyzes content preferences, 

and the affect recognition module monitors learning-related emotions in real time. A coordinator in the middle 

layer integrates outputs from these modules and resolves potential decision conflicts. For example, when the 

cognitive module suggests advancing to more complex topics while the affect module detects learner anxiety, 

the coordinator may adjust the recommendation strategy to balance cognitive and emotional needs. At the top 

level, a meta-controller monitors long-term learning progress and triggers strategy adjustments or signals the 

need for human intervention when necessary. This hierarchical architecture maintains the independence of 

specialized modules while ensuring effective global coordination. 

A multi-stage processing mechanism facilitates optimized allocation of computational resources. 

During the cold-start phase, when data are scarce, content-based recommendation or transfer learning techniques 

can be employed to leverage experiences from similar learners. As data accumulate, the system can gradually 

transition to more sophisticated methods such as collaborative filtering and knowledge tracing. In the real-time 

interaction phase, lightweight models are used to ensure responsiveness, while during offline periods, 

computationally intensive algorithms are executed for in-depth analysis and large-scale optimization. This 

phased approach enables efficient use of backend resources without compromising user experience. 

Furthermore, the incorporation of incremental learning allows models to be updated continuously without 

complete retraining, significantly enhancing the system’s adaptability and scalability. 

 

V. Conclusion 

This study addresses the core question of how artificial intelligence can enable the construction of 

personalized learning pathways through systematic discussion and framework design. The main conclusions are 

as follows: 

First, AI technologies are key to resolving the traditional "impossible triangle" dilemma in education. It 

has been demonstrated that through generative AI, learning analytics, and other techniques, multi-dimensional 

perception of learners’ cognitive states, interest preferences, and emotional states can be achieved. This makes it 

feasible to provide personalized services in large-scale educational settings, effectively compensating for the 

limitations of traditional face-to-face instruction in terms of scalability and depth of support. 

Second, a successful personalized learning system must be grounded in solid educational theoretical 
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foundations. This study integrates theories such as differentiated instruction, cognitive load, and metacognition, 

ensuring that technological applications not only pursue efficiency but also align with the principles of human 

cognitive development and the essence of social learning. This approach mitigates the potential risks of over-

reliance on technology at the expense of fundamental educational values. 

Third, the artificial intelligence-based framework proposed in this study demonstrates significant 

systemic advantages. By integrating dynamic semantic representation through knowledge graphs, sequential 

decision optimization via reinforcement learning, and collaborative computation from multi-algorithm fusion, 

the framework forms a coherent system that effectively balances knowledge structure, individual adaptability, 

and operational efficiency. Its hierarchical architecture and multi-stage processing mechanism successfully 

reconcile computational complexity with real-time responsiveness, providing strong feasibility for practical 

implementation. 

Fourth, the deep application of artificial intelligence is reshaping instructional assessment and 

intervention models. Intelligent evaluation tools not only facilitate a shift from "summative assessment" to 

"formative assessment," but also provide precise feedback for dynamic learning path adjustments through the 

evaluation of higher-order thinking skills. This establishes a closed loop of "assessment–diagnosis–

optimization," continuously enhancing personalized learning outcomes. 

Looking forward, AI-driven personalized learning still faces multiple challenges, such as data privacy 

and ethics, the delineation of authority and responsibility in human–AI collaboration, and the quality and equity 

of digital resources. Future research should further explore the deep integration of multimodal data, the 

application of explainable artificial intelligence (XAI) in educational decision-making, and the effective 

embedding of teachers’ experiential wisdom into intelligent systems. Ultimately, these efforts will contribute to 

building a new future educational ecosystem characterized by human–AI symbiosis and collaborative evolution. 
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