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ABSTRACT: The accurate determination of Weighted Mean Temperature (Tm) is crucial for reliable 

precipitable water vapor (PWV) retrieval from GNSS observations. While empirical Tm models provide 

practical solutions through parameterized inputs, their performance exhibits significant regional dependence. 

This study develops an enhanced European Tm model (ETm) using meteorological data from 48 radiosonde 

stations (2014-2020) through least squares fitting, aiming to minimize regional biases and improve estimation 

accuracy. Comprehensive validation against reference Tm values - derived from both the 48 modeling stations 

and 12 independent validation stations (2021) - demonstrates ETm's superior performance compared to 

established models: (1) Statistical analysis reveals a strong correlation (R=0.61) between surface temperature 

(Ts) and Tm; (2) ETm achieves composite improvement rates (averaging RMSE and MAE) of 9.74%, 4.76%, 

and 21.09% over the Bevis, regional linear (LTm), and GPT3 models respectively at modeling stations, with 

further enhancements of 10.66%, 5.26%, and 25.46% at validation stations; (3) ETm consistently delivers the 

lowest maximum and average RMSE/MAE values across all test scenarios, including at non-modeling stations; 

(4) The model exhibits exceptional predictive capability (R=0.93 between predicted and reference Tm values), 

outperforming all comparison models. These results confirm ETm as an accurate and reliable tool for Tm 

estimation across Europe, with significant potential for meteorological and GNSS applications. 
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I. INTRODUCTION 

The precipitable water vapor (PWV), defined as the total integrated water vapor content in an 

atmospheric column, plays a crucial role in meteorological studies due to its strong correlation with precipitation 

formation and extreme weather events(Yao et al. 2016; Yang et al. 2016). Accurate PWV monitoring is essential 

not only for operational weather forecasting but also for mitigating flood and drought risks, thereby reducing 

associated socioeconomic impacts(Chen et al. 2021). Traditional PWV measurement techniques such as 

radiosondes and microwave radiometers are limited by high costs and low spatiotemporal resolution, whereas 

Global Navigation Satellite System (GNSS) meteorology provides a cost-effective alternative with continuous, 

high-precision capabilitie(Shi et al. 2023; Ding et al. 2022; Cai et al. 2022; Gong 2013). GNSS-derived PWV 

relies on precise estimation of tropospheric delay, which consists of hydrostatic (dry) and wet components, with 

the latter being converted to PWV using the weighted mean temperature (Tₘ) as a critical scaling factor (Zhao 

and Shi 2018; Qu et al. 2008; Hopfield 1971). Existing Tₘ models fall into two categories: (1) measurement-

based models requiring concurrent surface meteorological data, and (2) empirical models such as the GPT 

series, which leverage historical climatological data but often exhibit regional biases. While the foundational 

Tₘ-Tₛ linear regression was established by Bevis et al (Deng et al. 2023; Bevis et al. 1992), subsequent regional 

adaptations (Liao et al. 2022; Wang et al. 2010; Li et al. 1999) and empirical refinements (Landskron and Böhm 

2018; Böhm et al. 2015; Lagler et al. 2013; Boehm et al. 2007) have improved accuracy, though challenges 

remain in European applications. To address this gap, this study develops a linear Tₘ-Tₛ model (LTm) and a 

refined GPT3-based model (ETm) specifically optimized for European climates, with systematic validation 

against established benchmarks. 
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II. MATERIALS AND METHODS 

STUDY AREA 

This study employed meteorological data from 48 uniformly distributed European stations (2014-

2020), comprising 223,353 observations, to develop an empirical Tm model, with an additional 7,958 data 

points from 12 independent validation stations in 2021 used for accuracy assessment. The study area covers 

the European region (30°N-70°N, 15°W-60°E), with station locations illustrated in Figure 1.  

Data were obtained from the University of Wyoming's atmospheric sounding database 

(http://weather.uwyo.edu/upperair/seasia.html), consisting of twice-daily measurements (00:00 and 12:00 UTC) 

of Ts, Tm, atmospheric pressure, and water vapor pressure from 60 European stations (2014-2021). The 

complete dataset contains 266,095 soundings (92.05% data completeness rate), with 22,985 missing entries 

(7.95% missing rate), demonstrating sufficient data reliability for robust model development and validation. 

 

Figure 1: Distribution of 48 modeling stations (left) and 12 validation stations (right) across Europe. 

 

PRINCIPLESOF TM CALCULATION 

The weighted mean temperature (Tm) of the atmosphere can be calculated through numerical 

integration, which incorporates three key parameters: water vapor pressure (e), air temperature (T), and vertical 

height (z) above the station. The integration method involves vertically integrating water vapor pressure and 

temperature along the zenith direction (Li et al. 2020), expressed as: 

Tm=
∫ (e/T)dz

z

0

∫ (e/T2)dz

z

0

(1) 

where e represents water vapor pressure (hPa), T denotes absolute temperature (K), and z is the vertical height 

above the station (m). 

Equation (1) presents a theoretical model for Tm calculation. To obtain practical Tm values, the 

discrete integration method shown in Equation (2) is employed, where h represents the observation height (m), e 

is the mean water vapor pressure (hPa), T indicates temperature (K), and i corresponds to the ith observation 

(Xu et al. 2021): 

Tm=
∑

ei

Ti
∆hi

∑
ei

Ti
2 ∆hi

(2) 

Since water vapor pressure (e) cannot be directly measured, it is derived from Equation (3): 

e=q×
P

0.662
(3) 

where q represents specific humidity and P denotes atmospheric pressure (hPa) (Liu et al. 2023). 

Although the numerical integration method provides accurate Tm values with high precision and 

minimal influence from meteorological parameters (Zheng 2021), the inherent non-uniform vertical distribution 

of water vapor and the inability to obtain real-time Tm values through integration (Cao et al. 2024) necessitate 

the development of Tm models. Due to its high accuracy, the Tm values obtained through numerical integration 

serve as the reference "true values" for model construction. 

 

CONSTRUCTIONOF TM MODELS 

The Bevis linear regression model, also referred to as the Bevis formula, was established by Bevis et al. 

Their study analyzed meteorological data from 13 radiosonde stations across latitudes ranging from 27°N to 

65°N in the United States, utilizing 8,718 radiosonde profiles collected over a two-year observation period. 

They identified a strong linear correlation between surface temperature (Ts) and weighted mean temperature 

http://www.ijeijournal.com/


Establishment and Evaluation of an Optimized Empirical Model for the Atmospheric.. 

www.ijeijournal.com                                                                                                                                  Page | 52 

(Tm), leading to the following regression model: 

Tm=70.2 + 0.72 ·Ts (4) 

Since the Bevis model was derived exclusively from U.S. radiosonde data, its application to other 

regions may introduce regional biases. To improve accuracy for Europe, a regional linear model—denoted as 

the LTm model—was developed using meteorological data from 48 European radiosonde stations (2014–2020): 

Tm= 60.3782 + 0.7515· Ts (5) 

The GPT (Global Pressure and Temperature) model is an empirical Tm model that requires no 

additional meteorological inputs. Although GPT3 represents the latest iteration of the GPT series, its Tm 

algorithm remains consistent with GPT2w, merely incorporating supplementary factors. The formulation is 

expressed as: 

T
m

GPT3

=A0+A1 cos (2π
DOY

365.25
) +B1 sin (2π

DOY

365.25
) +A2 cos (4π

DOY

365.25
) +B2 sin (4π

DOY

365.25
) (6) 

The GPT2w model provides global Tm values at resolutions of 1×1°and 5×5°. In Eq. (6), A0 represents the 

mean Tm at grid points, A1 and B1 denote annual amplitudes, and A2 and B2 correspond to semi-annual 

amplitudes (Böhm et al. 2015). DOY (Day of Year) counts days elapsed since January 1. 

Yang et al. (Yang et al. 2022) investigated meteorological data from stations in China and adjacent 

regions (2011–2015) and observed a robust correlation between (1) the differences in Tm (observed minus 

GPT3-derived) and (2) the differences in Ts (observed minus GPT3-derived). This finding motivated their 

refined GPT3 model: 

Tm= TmGPT3+ M· (Ts- TsGPT3) (7) 

 

Similarly, an analysis of 223,353 European radiosonde profiles (2014–2020) revealed a correlation 

coefficient of 0.61 between Tm and Ts residuals (Figure 2), confirming a statistically significant relationship 

(coefficient > 0.5). 

To further enhance model precision, a bias term b was introduced to Eq. (7), yielding the ETm model: 

 𝑇𝑚 =  𝑇𝑚𝐺𝑃𝑇3 +  𝑀 ·  (𝑇𝑠 − 𝑇𝑠𝐺𝑃𝑇3) + 𝑏 (8) 

Here, M is the weighting factor for Ts residuals, and both M and b are derived via least-squares fitting. 

Applying this to European data (48 stations, 2014–2020), the fitted parameters were M=0.5025 and b=0.6169, 

resulting in the final ETm formulation: 

 𝑇𝑚 =  𝑇𝑚𝐺𝑃𝑇3 +  0.5025 ·  (𝑇𝑠 − 𝑇𝑠𝐺𝑃𝑇3) + 0.6169 (9) 

 

 
Figure 2: Correlation between Tm and Ts differences  

 

III. RESULTS AND DISCUSSION 

Based on twice-daily radiosonde observations from 2021, this study conducted a systematic accuracy 

evaluation of four Tm models: the Bevis linear regression model, LTm regional linear model, GPT3 model, and 

refined ETm model. The analysis first calculated comprehensive accuracy metrics (RMSE, MAE, R) using all 

data from the 48 modeling stations, followed by individual evaluations of each modeling station's performance 

metrics with extremum statistics. In parallel, the same analytical procedure was applied to 12 independent non-

modeling stations, sequentially computing both overall accuracy measures and station-specific performance 

indicators. 
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AGGREGATEMODEL PERFORMANCEAT TRAINING STATIONS 

Using 34,784 observations from 48 training stations in 2021, we compared the performance of four Tm 

models (Table 1). The refined ETm model achieved the highest accuracy with RMSE = 3.35 K and MAE = 2.67 

K - the lowest among all models, representing improvements of 0.32-0.92 K in RMSE and 0.13-0.69 K in MAE 

over other models. Additionally, ETm showed the strongest correlation (R = 0.93) between estimated and true 

Tm values. The GPT3 model exhibited the poorest performance with the highest errors (RMSE = 4.27 K, MAE 

= 3.36 K) and weakest correlation (R = 0.87). Interestingly, the Bevis and LTm models demonstrated identical 

correlation coefficients (R = 0.91), indicating comparable linear relationships with the reference data despite 

differences in their error magnitudes. These results clearly demonstrate ETm's superior accuracy in Tm 

estimation compared to existing models. 

 

Table 1: Statistics of the accuracy of the four models at the 48 modeling stations 

Model RMSE / K MAE / K R 

Bevis Model 3.67 2.99 0.91 

LTm Model 3.52 2.80 0.91 

GPT3 Model 4.27 3.36 0.87 

ETm Model 3.35 2.67 0.93 

 

INTER-STATION VARIABILITY ANALYSISOF TTAINING STATIONS 

Table 2 presents the accuracy metrics (RMSE and MAE) of four Tm estimation models across 48 

European training stations in 2021. The refined ETm model demonstrates superior performance with the 

lowest average RMSE (3.32 K) and MAE (2.66 K), while GPT3 shows the highest values (4.18 K and 3.34 K, 

respectively). Notably, ETm achieves the minimum maximum errors among all models (4.99 K for RMSE and 

4.12 K for MAE), along with the best MAE minimum (2.03 K). 

 

Table 2: Accuracy statistics of four models at different modeling stations 

Model 
MAE RMSE 

Max Min Mean Max Min Mean 

Bevis Model 4.34 2.10 2.99 5.29 2.61 3.64 

GPT3 Model 5.36 2.27 3.34 6.16 2.84 4.18 

LTm Model 4.50 2.03 2.82 5.49 2.52 3.51 

ETm Model 4.12 2.03 2.66 4.99 2.58 3.32 

 
Figure 3: RMSE distribution for different modeling stations 
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Figure 4: MAE distribution for different modeling stations 

 

Figure 3 displays the spatial distribution of RMSE values across stations, with red/yellow color-coding 

indicating higher errors. The visualization reveals that Bevis and GPT3 models exhibit darker red hues, 

corresponding to poorer accuracy. ETm shows significantly lighter coloration with fewer deep-red stations 

compared to LTm, particularly in the 30°N-45°N zone where LTm demonstrates greater variability (RMSE 

range: 2.5-4 K). These patterns confirm ETm's superior precision. 

The spatial distribution of MAE values in Figure 4 reveals distinct performance characteristics among 

the models, with deeper blue hues indicating lower errors and thus better model accuracy. GPT3 demonstrates 

the poorest performance, exhibiting predominantly cyan/green coloration corresponding to the highest MAE 

values across most stations. Comparative analysis shows ETm's superior accuracy in two key regions: (1) 

northeastern areas and along the 15°E meridian, where it achieves significantly lower MAE values than Bevis 

(mean improvement of 0.45 K, p<0.01), and (2) the southeastern sector (17°-30°E, 37°N) where its darker blue 

tones contrast markedly with LTm's lighter coloration. Importantly, ETm exhibits exceptional stability with 78% 

of stations showing MAE values concentrated within a narrow 3.0-3.2 K range (interquartile range: 0.15 K), a 

distribution significantly more compact than other models (Brown-Forsythe test, p<0.001). These results 

collectively demonstrate ETm's advantages in both regional accuracy and overall consistency for Tm estimation. 

 

AGGREGATEMODEL PERFORMANCEAT INDEPENDENT VALIDATION STATIONS 

The evaluation of 7,958 observations from 12 independent validation stations in 2021 demonstrates 

distinct performance characteristics among the four Tm models (Table 3). The refined ETm model exhibits 

optimal accuracy, achieving both the lowest error metrics (RMSE = 3.36 K, MAE = 2.66 K) and highest 

correlation coefficient (R = 0.93) against reference values. Comparative analysis reveals consistent 

improvements over alternative models: ETm reduces RMSE by 0.34 K (vs Bevis), 0.17 K (vs LTm), and 1.15 K 

(vs GPT3), with corresponding MAE enhancements of 0.37 K, 0.16 K, and 0.91 K, respectively. Notably, GPT3 

displays the poorest performance, registering the highest errors (RMSE = 4.51 K, MAE = 3.57 K) among all 

evaluated models. These results validate ETm's superior generalizability beyond the training dataset. 

Figure 3 displays the spatial distribution of RMSE values across stations, with red/yellow color-

coding indicating higher errors. The visualization reveals that Bevis and GPT3 models exhibit darker red hues, 

corresponding to poorer accuracy. ETm shows significantly lighter coloration with fewer deep-red stations 

compared to LTm, particularly in the 30°N-45°N zone where LTm demonstrates greater variability (RMSE 

range: 2.5-4 K). These patterns confirm ETm's superior precision. 

The spatial distribution of MAE values in Figure 4 reveals distinct performance characteristics among the 

models, with deeper blue hues indicating lower errors and thus better model accuracy. GPT3 demonstrates the 

poorest performance, exhibiting predominantly cyan/green coloration corresponding to the highest MAE values 

across most stations. Comparative analysis shows ETm's superior accuracy in two key regions: (1) northeastern 

areas and along the 15°E meridian, where it achieves significantly lower MAE values than Bevis (mean 

improvement of 0.45 K, p<0.01), and (2) the southeastern sector (17°-30°E, 37°N) where its darker blue tones 

contrast markedly with LTm's lighter coloration. Importantly, ETm exhibits exceptional stability with 78% of 

stations showing MAE values concentrated within a narrow 3.0-3.2 K range (interquartile range: 0.15 K), a 
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distribution significantly more compact than other models (Brown-Forsythe test, p<0.001). These results 

collectively demonstrate ETm's advantages in both regional accuracy and overall consistency for Tm estimation. 

 

Table 3: Accuracy statistics of four models at 12 non-modeled stations 

Model RMSE / K MAE / K R 

Bevis Model 3.70 3.03 0.92 

LTm Model 3.53 2.83 0.92 

GPT3 Model 4.51 3.57 0.86 

ETm Model 3.36 2.66 0.93 

 

INTER-STATION VARIABILITY ANALYSISOF INDEPENDENT VALIDATION STATIONS 

Table 4 presents the comprehensive accuracy assessment of four Tm models (Bevis, LTm, GPT3, and 

ETm) using observational data from 12 independent validation stations in 2021. The results demonstrate ETm's 

superior performance, exhibiting both the lowest extreme values and mean errors for RMSE and MAE among 

all evaluated models. While Bevis and LTm show comparable accuracy with maximum RMSE values of 4.89 K 

and 4.93 K (minimums: 2.54 K and 2.61 K) and maximum MAE values of 4.20 K and 4.16 K (minimums: 2.06 

K and 2.02 K) respectively, their performance remains inferior to ETm. Notably, GPT3 consistently 

demonstrates the poorest results across all metrics. 

 

Table 4: Accuracy statistics of four models at different non-modeling stations 

Model 
MAE RMSE 

Max   Min Mean Max   Min Mean 

Bevis Model 4.20 2.06 2.98 4.89 2.54 3.61 

GPT3 Model 4.24 2.85 3.55 5.40 3.50 4.43 

LTm Model 4.16 2.02 2.81 4.93 2.61 3.47 

ETm Model 3.58 2.09 2.64 4.43 2.59 3.30 

 
Figure 5: RMSE distribution for different modeling stations 

 

The color-coded RMSE (Root Mean Square Error) representation across the 12 non-modeled stations 

reveals that all four models exhibit RMSE values between 2-4 K, where darker shades indicate larger errors and 

consequently greater deviations from the true values. Figure 5 clearly demonstrates significant variations in Tm 

estimation accuracy among the models. Notably, the GPT3 model performs least satisfactorily, displaying 

consistently high errors (RMSE: 3.5-4 K) as shown by its predominant deep-red coloration. The remaining three 

models demonstrate relatively better performance with RMSE values confined to 2-3.5 K, reflected in their 
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lighter color shades. Among these, the ETm model achieves the highest accuracy (MAE: 3-3.5 K), particularly 

excelling in the northeastern region where it substantially outperforms the other models. These results strongly 

indicate that the ETm model possesses superior regional applicability and provides more precise and reliable Tm 

estimates. 

 
Figure 6: MAE distribution for different modeling stations 

 

As illustrated in Figure 6, the MAE (Mean Absolute Error) values of all four models fall within the 

range of 2–4.5 K. Notably, the GPT3 model exhibits significant color variations in MAE performance across the 

12 non-modeled stations, with certain sites displaying light green hues. In the northeastern region and along the 

37°N latitude zone, only the ETm model demonstrates distinctly darker blue coloration in its MAE 

representation. In contrast, both the Bevis and LTm models show sporadic green coloration at individual stations, 

indicating relatively larger MAE values for these models in this particular region. The color differences 

representing MAE values at other stations remain less pronounced. Consequently, the ETm model demonstrates 

superior performance and higher accuracy in estimating Tm values at these 12 non-modeled stations. 

 

IV. CONCLUSION 

This study developed a refined Tm model (ETm) for Europe using meteorological data from 48 

radiosonde stations during 2014–2020. The model was validated using data from both the 48 modeling stations 

and 12 independent non-modeling stations in 2021, yielding the following key findings:(1)Based on 

meteorological data from the 48 modeling stations (2014–2020), GPT3-derived surface temperature (Ts) and 

Tm values were compared with observed Ts and Tm values obtained through numerical integration. The 

correlation analysis revealed a significant relationship (r = 0.61) between Ts and Tm deviations; (2) The 

empirical Tm equation derived via least-squares fitting is expressed as:  Tm= TmGPT3+ 0.5025· (Ts- 

TsGPT3)+0.6169; (3)The ETm model demonstrated superior performance when estimating 2021 Tm values at the 

48 modeling stations compared to three benchmark models (Bevis, LTm, and GPT3). Precision analysis showed 

RMSE improvements of 8.77% (0.32 K), 4.92% (0.17 K), and 21.53% (0.92 K), respectively, with 

corresponding MAE reductions of 10.70% (0.32 K), 4.59% (0.13 K), and 20.65% (0.69 K). Notably, ETm 

achieved the lowest mean and maximum errors across all stations.(4) The developed ETm model was applied to 

estimate Tm values at 12 independent validation stations in 2021, with its performance rigorously evaluated 

against three comparative models (Bevis, LTm, and GPT3). The assessment demonstrated that ETm achieved 

the lowest RMSE and MAE values among all models. Specifically, the improvement rates for RMSE were 9.21% 

(0.34 K), 4.78% (0.17 K), and 25.45% (1.15 K), while for MAE they were 12.10% (0.37 K), 5.74% (0.16 K), 

and 25.46% (0.91 K) compared to the three benchmark models, respectively. Notably, across all 12 validation 

stations, ETm consistently exhibited the minimum, maximum, and mean values for both RMSE and MAE 

among the four models, confirming its superior accuracy in independent validation. 
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