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ABSTRACT: The accurate determination of Weighted Mean Temperature (Tm) is crucial for reliable
precipitable water vapor (PWYV) retrieval from GNSS observations. While empirical Tm models provide
practical solutions through parameterized inputs, their performance exhibits significant regional dependence.
This study develops an enhanced European Tm model (ETm) using meteorological data from 48 radiosonde
stations (2014-2020) through least squares fitting, aiming to minimize regional biases and improve estimation
accuracy. Comprehensive validation against reference Tm values - derived from both the 48 modeling stations
and 12 independent validation stations (2021) - demonstrates ETm's superior performance compared to
established models: (1) Statistical analysis reveals a strong correlation (R=0.61) between surface temperature
(Ts) and Tm; (2) ETm achieves composite improvement rates (averaging RMSE and MAE) of 9.74%, 4.76%,
and 21.09% over the Bevis, regional linear (LTm), and GPT3 models respectively at modeling stations, with
further enhancements of 10.66%, 5.26%, and 25.46% at validation stations; (3) ETm consistently delivers the
lowest maximum and average RMSE/MAE values across all test scenarios, including at non-modeling stations;
(4) The model exhibits exceptional predictive capability (R=0.93 between predicted and reference Tm values),
outperforming all comparison models. These results confirm ETm as an accurate and reliable tool for Tm
estimation across Europe, with significant potential for meteorological and GNSS applications.
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I. INTRODUCTION

The precipitable water vapor (PWV), defined as the total integrated water vapor content in an
atmospheric column, plays a crucial role in meteorological studies due to its strong correlation with precipitation
formation and extreme weather events(Yao et al. 2016; Yang et al. 2016). Accurate PWV monitoring is essential
not only for operational weather forecasting but also for mitigating flood and drought risks, thereby reducing
associated socioeconomic impacts(Chen et al. 2021). Traditional PWV measurement techniques such as
radiosondes and microwave radiometers are limited by high costs and low spatiotemporal resolution, whereas
Global Navigation Satellite System (GNSS) meteorology provides a cost-effective alternative with continuous,
high-precision capabilitie(Shi et al. 2023; Ding et al. 2022; Cai et al. 2022; Gong 2013). GNSS-derived PWV
relies on precise estimation of tropospheric delay, which consists of hydrostatic (dry) and wet components, with
the latter being converted to PWV using the weighted mean temperature (Tw) as a critical scaling factor (Zhao
and Shi 2018; Qu et al. 2008; Hopfield 1971). Existing T, models fall into two categories: (1) measurement-
based models requiring concurrent surface meteorological data, and (2) empirical models such as the GPT
series, which leverage historical climatological data but often exhibit regional biases. While the foundational
Tw-Ts linear regression was established by Bevis et al (Deng et al. 2023; Bevis et al. 1992), subsequent regional
adaptations (Liao et al. 2022; Wang et al. 2010; Li et al. 1999) and empirical refinements (Landskron and Bohm
2018; Bohm et al. 2015; Lagler et al. 2013; Boehm et al. 2007) have improved accuracy, though challenges
remain in European applications. To address this gap, this study develops a linear Tn-Ts; model (LTm) and a
refined GPT3-based model (ETm) specifically optimized for European climates, with systematic validation
against established benchmarks.
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II. MATERIALS AND METHODS
STUDY AREA
This study employed meteorological data from 48 uniformly distributed European stations (2014-
2020), comprising 223,353 observations, to develop an empirical Tm model, with an additional 7,958 data
points from 12 independent validation stations in 2021 used for accuracy assessment. The study area covers
the European region (30°N-70°N, 15°W-60°E), with station locations illustrated in Figure 1.

Data were obtained from the University of Wyoming's atmospheric sounding database
(http://weather.uwyo.edu/upperair/seasia.html), consisting of twice-daily measurements (00:00 and 12:00 UTC)
of Ts, Tm, atmospheric pressure, and water vapor pressure from 60 European stations (2014-2021). The
complete dataset contains 266,095 soundings (92.05% data completeness rate), with 22,985 missing entries
(7.95% missing rate), demonstrating sufficient data reliability for robust model development and validation.

Figure 1: Distribution of 48 modeling stations (left) and 12 validation stations (right) across Europe.

PRINCIPLESOF TM CALCULATION
The weighted mean temperature (Tm) of the atmosphere can be calculated through numerical
integration, which incorporates three key parameters: water vapor pressure (e), air temperature (T), and vertical
height (z) above the station. The integration method involves vertically integrating water vapor pressure and
temperature along the zenith direction (Li et al. 2020), expressed as:
z
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Jo (er1?)d,
where e represents water vapor pressure (hPa), T denotes absolute temperature (K), and z is the vertical height
above the station (m).
Equation (1) presents a theoretical model for Tm calculation. To obtain practical Tm values, the
discrete integration method shown in Equation (2) is employed, where h represents the observation height (m), e

is the mean water vapor pressure (hPa), T indicates temperature (K), and i corresponds to the ith observation
(Xu et al. 2021):
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Since water vapor pressure (e) cannot be directly measured, it is derived from Equation (3):
P
=gX 3
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where q represents specific humidity and P denotes atmospheric pressure (hPa) (Liu et al. 2023).

Although the numerical integration method provides accurate Tm values with high precision and
minimal influence from meteorological parameters (Zheng 2021), the inherent non-uniform vertical distribution
of water vapor and the inability to obtain real-time Tm values through integration (Cao et al. 2024) necessitate
the development of Tm models. Due to its high accuracy, the Tm values obtained through numerical integration
serve as the reference "true values" for model construction.

CONSTRUCTIONOF TM MODELS

The Bevis linear regression model, also referred to as the Bevis formula, was established by Bevis et al.
Their study analyzed meteorological data from 13 radiosonde stations across latitudes ranging from 27°N to
65°N in the United States, utilizing 8,718 radiosonde profiles collected over a two-year observation period.
They identified a strong linear correlation between surface temperature (Ts) and weighted mean temperature
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(Tm), leading to the following regression model:

T,=702+0.72 ‘T, 4)
Since the Bevis model was derived exclusively from U.S. radiosonde data, its application to other
regions may introduce regional biases. To improve accuracy for Europe, a regional linear model—denoted as
the LTm model—was developed using meteorological data from 48 European radiosonde stations (2014—2020):
T,=60.3782 +0.7515 T, (5)
The GPT (Global Pressure and Temperature) model is an empirical Tm model that requires no
additional meteorological inputs. Although GPT3 represents the latest iteration of the GPT series, its Tm
algorithm remains consistent with GPT2w, merely incorporating supplementary factors. The formulation is

expressed as:
L =Ag+A 2222 ) B sin (2r Y )+A, cos (4 DOY | B, sin (4 Y (6)
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The GPT2w model provides global Tm values at resolutions of 1x1°and 5x5°. In Eq. (6), AO represents the

mean Tm at grid points, Al and B1 denote annual amplitudes, and A2 and B2 correspond to semi-annual
amplitudes (Bohm et al. 2015). DOY (Day of Year) counts days elapsed since January 1.

Yang et al. (Yang et al. 2022) investigated meteorological data from stations in China and adjacent
regions (2011-2015) and observed a robust correlation between (1) the differences in Tm (observed minus
GPT3-derived) and (2) the differences in Ts (observed minus GPT3-derived). This finding motivated their
refined GPT3 model:

T= Terrst M- (T Tigprs) (7)

Similarly, an analysis of 223,353 European radiosonde profiles (2014-2020) revealed a correlation
coefficient of 0.61 between Tm and Ts residuals (Figure 2), confirming a statistically significant relationship
(coefficient > 0.5).

To further enhance model precision, a bias term b was introduced to Eq. (7), yielding the ETm model:
Tm = Tmeprs + M- (Ts — Tsgpra) + b (8)
Here, M is the weighting factor for Ts residuals, and both M and b are derived via least-squares fitting.
Applying this to European data (48 stations, 2014—2020), the fitted parameters were M=0.5025 and b=0.6169,
resulting in the final ETm formulation:
Ty = Tygprs + 0.5025 - (Ts — Tygprs) +0.6169 9
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Figure 2: Correlation between Tm and Ts differences

III. RESULTS AND DISCUSSION

Based on twice-daily radiosonde observations from 2021, this study conducted a systematic accuracy
evaluation of four Tm models: the Bevis linear regression model, LTm regional linear model, GPT3 model, and
refined ETm model. The analysis first calculated comprehensive accuracy metrics (RMSE, MAE, R) using all
data from the 48 modeling stations, followed by individual evaluations of each modeling station's performance
metrics with extremum statistics. In parallel, the same analytical procedure was applied to 12 independent non-
modeling stations, sequentially computing both overall accuracy measures and station-specific performance
indicators.

www.ijeijournal.com Page | 52


http://www.ijeijournal.com/

Establishment and Evaluation of an Optimized Empirical Model for the Atmospheric..

AGGREGATEMODEL PERFORMANCEAT TRAINING STATIONS

Using 34,784 observations from 48 training stations in 2021, we compared the performance of four Tm
models (Table 1). The refined ETm model achieved the highest accuracy with RMSE = 3.35 K and MAE = 2.67
K - the lowest among all models, representing improvements of 0.32-0.92 K in RMSE and 0.13-0.69 K in MAE
over other models. Additionally, ETm showed the strongest correlation (R = 0.93) between estimated and true
Tm values. The GPT3 model exhibited the poorest performance with the highest errors (RMSE = 4.27 K, MAE
= 3.36 K) and weakest correlation (R = 0.87). Interestingly, the Bevis and LTm models demonstrated identical
correlation coefficients (R = 0.91), indicating comparable linear relationships with the reference data despite
differences in their error magnitudes. These results clearly demonstrate ETm's superior accuracy in Tm
estimation compared to existing models.

Table 1: Statistics of the accuracy of the four models at the 48 modeling stations

Model RMSE/K  MAE/K R
Bevis Model 3.67 2.99 0.91
LTm Model 3.52 2.80 0.91
GPT3 Model 4.27 3.36 0.87
ETm Model 3.35 2.67 0.93

INTER-STATION VARIABILITY ANALYSISOF TTAINING STATIONS
Table 2 presents the accuracy metrics (RMSE and MAE) of four Tm estimation models across 48
European training stations in 2021. The refined ETm model demonstrates superior performance with the
lowest average RMSE (3.32 K) and MAE (2.66 K), while GPT3 shows the highest values (4.18 K and 3.34 K,
respectively). Notably, ETm achieves the minimum maximum errors among all models (4.99 K for RMSE and
4.12 K for MAE), along with the best MAE minimum (2.03 K).

Table 2: Accuracy statistics of four models at different modeling stations

MAE RMSE
Model
Max Min Mean Max Min Mean
Bevis Model 4.34 2.10 2.99 5.29 2.61 3.64
GPT3 Model 5.36 2.27 3.34 6.16 2.84 4.18
LT Model 4.50 2.03 2.82 5.49 2.52 3.51
ET. Model 4.12 2.03 2.66 4.99 2.58 3.32
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Figure 3: RMSE distribution for different modeling stations

www.ijeijournal.com Page | 53


http://www.ijeijournal.com/

Establishment and Evaluation of an Optimized Empirical Model for the Atmospheric..

Figure 4: MAE distribution for different modeling stations

Figure 3 displays the spatial distribution of RMSE values across stations, with red/yellow color-coding
indicating higher errors. The visualization reveals that Bevis and GPT3 models exhibit darker red hues,
corresponding to poorer accuracy. ETm shows significantly lighter coloration with fewer deep-red stations
compared to LTm, particularly in the 30°N-45°N zone where LTm demonstrates greater variability (RMSE
range: 2.5-4 K). These patterns confirm ETm's superior precision.

The spatial distribution of MAE values in Figure 4 reveals distinct performance characteristics among
the models, with deeper blue hues indicating lower errors and thus better model accuracy. GPT3 demonstrates
the poorest performance, exhibiting predominantly cyan/green coloration corresponding to the highest MAE
values across most stations. Comparative analysis shows ETm's superior accuracy in two key regions: (1)
northeastern areas and along the 15°E meridian, where it achieves significantly lower MAE values than Bevis
(mean improvement of 0.45 K, p<0.01), and (2) the southeastern sector (17°-30°E, 37°N) where its darker blue
tones contrast markedly with LTm's lighter coloration. Importantly, ETm exhibits exceptional stability with 78%
of stations showing MAE values concentrated within a narrow 3.0-3.2 K range (interquartile range: 0.15 K), a
distribution significantly more compact than other models (Brown-Forsythe test, p<0.001). These results
collectively demonstrate ETm's advantages in both regional accuracy and overall consistency for Tm estimation.

AGGREGATEMODEL PERFORMANCEAT INDEPENDENT VALIDATION STATIONS

The evaluation of 7,958 observations from 12 independent validation stations in 2021 demonstrates
distinct performance characteristics among the four Tm models (Table 3). The refined ETm model exhibits
optimal accuracy, achieving both the lowest error metrics (RMSE = 3.36 K, MAE = 2.66 K) and highest
correlation coefficient (R = 0.93) against reference values. Comparative analysis reveals consistent
improvements over alternative models: ETm reduces RMSE by 0.34 K (vs Bevis), 0.17 K (vs LTm), and 1.15 K
(vs GPT3), with corresponding MAE enhancements of 0.37 K, 0.16 K, and 0.91 K, respectively. Notably, GPT3
displays the poorest performance, registering the highest errors (RMSE = 4.51 K, MAE = 3.57 K) among all
evaluated models. These results validate ETm's superior generalizability beyond the training dataset.

Figure 3 displays the spatial distribution of RMSE values across stations, with red/yellow color-
coding indicating higher errors. The visualization reveals that Bevis and GPT3 models exhibit darker red hues,
corresponding to poorer accuracy. ETm shows significantly lighter coloration with fewer deep-red stations
compared to LTm, particularly in the 30°N-45°N zone where LTm demonstrates greater variability (RMSE
range: 2.5-4 K). These patterns confirm ETm's superior precision.

The spatial distribution of MAE values in Figure 4 reveals distinct performance characteristics among the
models, with deeper blue hues indicating lower errors and thus better model accuracy. GPT3 demonstrates the
poorest performance, exhibiting predominantly cyan/green coloration corresponding to the highest MAE values
across most stations. Comparative analysis shows ETm's superior accuracy in two key regions: (1) northeastern
areas and along the 15°E meridian, where it achieves significantly lower MAE values than Bevis (mean
improvement of 0.45 K, p<0.01), and (2) the southeastern sector (17°-30°E, 37°N) where its darker blue tones
contrast markedly with LTm's lighter coloration. Importantly, ETm exhibits exceptional stability with 78% of
stations showing MAE values concentrated within a narrow 3.0-3.2 K range (interquartile range: 0.15 K), a
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distribution significantly more compact than other models (Brown-Forsythe test, p<0.001). These results
collectively demonstrate ETm's advantages in both regional accuracy and overall consistency for Tm estimation.

Table 3: Accuracy statistics of four models at 12 non-modeled stations

Model RMSE/K  MAE/K R
Bevis Model 3.70 3.03 0.92
LTm Model 3.53 2.83 0.92
GPT3 Model 4.51 3.57 0.86
ETm Model 3.36 2.66 0.93

INTER-STATION VARIABILITY ANALYSISOF INDEPENDENT VALIDATION STATIONS

Table 4 presents the comprehensive accuracy assessment of four Tm models (Bevis, LTm, GPT3, and
ETm) using observational data from 12 independent validation stations in 2021. The results demonstrate ETm's
superior performance, exhibiting both the lowest extreme values and mean errors for RMSE and MAE among
all evaluated models. While Bevis and LTm show comparable accuracy with maximum RMSE values of 4.89 K
and 4.93 K (minimums: 2.54 K and 2.61 K) and maximum MAE values of 4.20 K and 4.16 K (minimums: 2.06
K and 2.02 K) respectively, their performance remains inferior to ETm. Notably, GPT3 consistently
demonstrates the poorest results across all metrics.

Table 4: Accuracy statistics of four models at different non-modeling stations

MAE RMSE
Model
Max Min Mean Max Min Mean
Bevis Model 4.20 2.06 2.98 4.89 2.54 3.61
GPT3 Model 4.24 2.85 3.55 5.40 3.50 4.43
LTm Model 4.16 2.02 2.81 4.93 2.61 3.47
ETm Model 3.58 2.09 2.64 443 2.59 3.30
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Figure 5: RMSE distribution for different modeling stations

The color-coded RMSE (Root Mean Square Error) representation across the 12 non-modeled stations
reveals that all four models exhibit RMSE values between 2-4 K, where darker shades indicate larger errors and
consequently greater deviations from the true values. Figure 5 clearly demonstrates significant variations in Tm
estimation accuracy among the models. Notably, the GPT3 model performs least satisfactorily, displaying
consistently high errors (RMSE: 3.5-4 K) as shown by its predominant deep-red coloration. The remaining three
models demonstrate relatively better performance with RMSE values confined to 2-3.5 K, reflected in their
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lighter color shades. Among these, the ETm model achieves the highest accuracy (MAE: 3-3.5 K), particularly
excelling in the northeastern region where it substantially outperforms the other models. These results strongly
indicate that the ETm model possesses superior regional applicability and provides more precise and reliable Tm
estimates.
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Figure 6: MAE distribution for different modeling stations

As illustrated in Figure 6, the MAE (Mean Absolute Error) values of all four models fall within the
range of 2-4.5 K. Notably, the GPT3 model exhibits significant color variations in MAE performance across the
12 non-modeled stations, with certain sites displaying light green hues. In the northeastern region and along the
37°N latitude zone, only the ETm model demonstrates distinctly darker blue coloration in its MAE
representation. In contrast, both the Bevis and LTm models show sporadic green coloration at individual stations,
indicating relatively larger MAE values for these models in this particular region. The color differences
representing MAE values at other stations remain less pronounced. Consequently, the ETm model demonstrates
superior performance and higher accuracy in estimating Tm values at these 12 non-modeled stations.

IV. CONCLUSION

This study developed a refined Tm model (ETm) for Europe using meteorological data from 48
radiosonde stations during 2014-2020. The model was validated using data from both the 48 modeling stations
and 12 independent non-modeling stations in 2021, yielding the following key findings:(1)Based on
meteorological data from the 48 modeling stations (2014-2020), GPT3-derived surface temperature (Ts) and
Tm values were compared with observed Ts and Tm values obtained through numerical integration. The
correlation analysis revealed a significant relationship (r = 0.61) between Ts and Tm deviations; (2) The
empirical Tm equation derived via least-squares fitting is expressed as: T,=T,gpr3+ 0.5025 (T~
Tocpr3)+0.6169; (3)The ETm model demonstrated superior performance when estimating 2021 Tm values at the
48 modeling stations compared to three benchmark models (Bevis, LTm, and GPT3). Precision analysis showed
RMSE improvements of 8.77% (0.32 K), 4.92% (0.17 K), and 21.53% (0.92 K), respectively, with
corresponding MAE reductions of 10.70% (0.32 K), 4.59% (0.13 K), and 20.65% (0.69 K). Notably, ETm
achieved the lowest mean and maximum errors across all stations.(4) The developed ETm model was applied to
estimate Tm values at 12 independent validation stations in 2021, with its performance rigorously evaluated
against three comparative models (Bevis, LTm, and GPT3). The assessment demonstrated that ETm achieved
the lowest RMSE and MAE values among all models. Specifically, the improvement rates for RMSE were 9.21%
(0.34 K), 4.78% (0.17 K), and 25.45% (1.15 K), while for MAE they were 12.10% (0.37 K), 5.74% (0.16 K),
and 25.46% (0.91 K) compared to the three benchmark models, respectively. Notably, across all 12 validation
stations, ETm consistently exhibited the minimum, maximum, and mean values for both RMSE and MAE
among the four models, confirming its superior accuracy in independent validation.
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