Some Applications of Minimal b-γ-Open Sets

Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq

Abstract:–We characterize minimal b- γ -open sets in topological spaces. We show that any nonempty subset of a minimal b- γ -open set is pre b- γ -open. As an application of a theory of minimal b- γ -open sets, we obtain a sufficient condition for a b- γ -locally finite space to be a pre b- γ -Hausdorff space.

Keywords:-b- γ -open, minimal b- γ -open, pre b- γ -open, finite b- γ -open, b- γ -locally finite, pre b- γ -Hausdorff space

I. INTRODUCTION

Andrijevic [1] introduced and investigated the notions of b-open sets, and Kasahara [4] defined the concept of an operation on topological spaces. Ogata [5] introduced the concept of γ -open sets and investigated the related topological proporties of the associated topology τ_{γ} and τ , where τ_{γ} is the collection of all γ -open sets. In this paper, we study fundamental properties of minimal b- γ -open sets and apply them to obtain some results in topological spaces. In Section 3, we characterize minimal b- γ -open sets. In Section 4, we study minimal b- γ -open sets in b- γ -locally finite spaces. In Section 5, we apply the theory of minimal b- γ -open sets to study pre b- γ -open sets. Finally, we show that some conditions on minimal b- γ -open sets implies pre b- γ -Hausdorffness of a space.

II. **PRELIMINARIES**

The complement of a b-open set is said to be b-closed. The family of all b-open sets is denoted by $BO(X, \tau)$.

Definition 2.1. [4] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ to power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. It is denoted by $\gamma : \tau \to P(X)$.

Definition 2.2. [5] A subset A of a topological spac (X, τ) is called γ -open set if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$.

Definition 2.3. [2] Let γ be a mapping on BO(X) in to P(X) and γ : BO(X) \rightarrow P (X) is called an operation on BO(X), such that $V \subseteq \gamma(V)$ for each $V \in BO(X)$.

Definition 2.4. [2] A subset A of a space X is called b- γ -open if for each $x \in A$, there exists a b-open set U such that $x \in U$ and $\gamma(U) \subseteq A$.

Definition 2.5. [2] Let A be a subset of (X, τ) , and $\gamma : BO(X) \to P(X)$ be an operation on BO(X). Then the b- γ -closure of A is denoted by τ_{γ} -bCl(A) and defined as τ_{γ} -bCl(A)= $\cap \{F : F \text{ is } b-\gamma\text{-closed and } A \subseteq F \}$.

Theorem 2.6. [2] For a point $x \in X$, $x \in \tau_{\gamma}$ -bCl(A) if and only if for every b- γ -open set V of X containing x, A \cap V $\neq \phi$.

Definition 2.7. [2] An operation γ on BO(X) is said to be b-regular if for every b-open sets U and V of each $x \in X$, there exists a b-open set W of x such that $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$.

Proposition 2.8. [2] Let γ be a b-regular operation on BO(X). If A and B are b- γ -open sets in X, then A \cap B is also a b- γ -open set.

Theorem 2.9. [2] Let A and B be subsets of a topological space (X, τ) and $\gamma : BO(X) \to P(X)$ an operation on $BO(X, \tau)$. Then we have the following properties:

(1) If $A \subseteq B$, then τ_{γ} -bCl(A) $\subseteq \tau_{\gamma}$ -bCl(B).

(2) If $\gamma : BO(X) \to P(X)$ is b-regular, then τ_{γ} -bCl(A \cup B) = τ_{γ} -bCl(A) $\cup \tau_{\gamma}$ -bCl(B) holds.

III. MINIMAL Β-Γ-OPEN SETS

In view of the definition of minimal γ -open sets [3], we define minimal b- γ -open sets as: Definition 3.1. Let X be a space and A \subseteq X a b- γ -open set. Then A is called a minimal b- γ -open set if ϕ and A

are the only b- γ -open subsets of A. The folloing examples shows that minimal b- γ -open sets and minimal γ -open sets are independent of each other. Example 3.2. Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X\}$. Define an operation $\gamma : BO(X) \to P(X)$ by $\gamma(A) = A$. The b- γ -open sets are ϕ , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$ and X. Here $\{a\}$ is minimal b- γ -open but not minimal γ -open. Also we consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a, b\}, X\}$. Define $\gamma : BO(X) \to P(X)$ as $\gamma(A) = A$, the set $\{a, b\}$ is minimal γ -open but not minimal b- γ -open.

Proposition 3.3. Let X be a space. Then:

(1) Let A be a minimal b- γ -open set and B a b- γ -open set. Then A \cap B = φ or A \subseteq B, where γ is b-regular.

(2) Let B and C be minimal b- γ -open sets. Then B \cap C = φ or B = C, where γ is b-regular.

Proof. (1) Let B be a b- γ -open set such that $A \cap B \neq \phi$. Since A is a minimal b- γ -open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$.

(2) If $B \cap C \neq \phi$, then we see that $B \subseteq C$ and $C \subseteq B$ by (1). Therefore B = C.

Proposition 3.4. Let A be a minimal b- γ -open set. If x is an element of A, then A \subseteq B for any b- γ -open neighborhood B of x, where γ is b-regular.

Proof. Let B be a b- γ -open neighborhood of x such that $A \not\subset B$. Since γ is b-regular operation, then $A \cap B$ is b- γ -open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal b- γ -open set.

The following example shows that the condition that γ is b-regular is necessary for the above proposition.

Example 3.5. Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$. Define an operation γ on BO(X) by $\gamma(A) = A$ if $b \in A$ and $\gamma(A) = Cl(A)$ if $b \notin A$. Then calculations show that the operation γ is not bregular. Clearly $A = \{a, c\}$ is a minimal b- γ -open set. Thus for $a \in A$, there exist a b- γ -open set $B = \{a, b\}$ of a such that $A \not\subset B$.

Proposition 3.6. Let A be a minimal b- γ -open set. Then for any element x of A, A= \cap { B : B is b- γ -open neighborhood of x}, where γ is b-regular.

Proof. By Proposition 3.4 and the fact that A is b- γ -open neighborhood of x, we have $A \subseteq \cap \{B : B \text{ is } b-\gamma\text{-open neighborhood of x}\} \subseteq A$. Therefore we have the result.

Proposition 3.7. Let A be a minimal b- γ -open set in X and $x \in X$ such that $x \notin A$. Then for any b- γ -open neighborhood C of x, C $\cap A = \varphi$ or A \subseteq C, where γ is b-regular.

Proof. Since C is a b- γ -open set, we have the result by Proposition 3.3.

Corollary 3.8. Let A be a minimal b- γ -open set in X and $x \in X$ such that $x \notin A$. Define $A_x = \bigcap \{ B : B \text{ is } b - \gamma - \rho \text{ open neighborhood of } x \}$. Then $A_x \cap A = \rho$ or $A \subseteq A_x$, where γ is b-regular.

Proof. If $A \subseteq B$ for any b- γ -open neighborhood B of x, then $A \subseteq \cap \{B: B \text{ is } b-\gamma\text{-open neighborhood of } x\}$. Therefore $A \subseteq A_x$. Otherwise there exists a b- γ -open neighborhood B of x such that $B \cap A = \varphi$. Then we have $A_x \cap A = \varphi$.

Corollary 3.9. If A is a nonempty minimal b- γ -open set of X, then for a nonempty subset C of A, A $\subseteq \tau_{\gamma}$ -bCl(C), where γ is b-regular.

Proof. Let C be any nonempty subset of A. Let $y \in A$ and B be any b- γ -open neighborhood of y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \varphi$ and hence $y \in \tau_{\gamma}$ -bCl(C). This implies that $A \subseteq \tau_{\gamma}$ -bCl(C). This copmletes the proof.

Proposition 3.10. Let A be a nonempty b- γ -open subset of a space X. If A $\subseteq \tau_{\gamma}$ -bCl(C), then τ_{γ} -bCl(A) = τ_{γ} -bCl(C), for any nonempty subset C of A.

Proof. For any nonempty subset C of A, we have τ_{γ} -bCl(C) $\subseteq \tau_{\gamma}$ -bCl(A). On the other hand, by supposition we see τ_{γ} -bCl(A) $\subseteq \tau_{\gamma}$ -bCl(C) = τ_{γ} -bCl(C) implies τ_{γ} -bCl(A) $\subseteq \tau_{\gamma}$ -bCl(C). Therefore we have τ_{γ} -bCl(A) = τ_{γ} -bCl(C) for any nonempty subset C of A.

Proposition 3.11. Let A be a nonempty b- γ -open subset of a space X. If τ_{γ} -bCl(A) = τ_{γ} -bCl(C), for any nonempty subset C of A, then A is a minimal b- γ -open set.

Proof. Suppose that A is not a minimal b- γ -open set. Then there exists a nonempty b- γ -open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have τ_{γ} -bCl({ x }) \subseteq (X \ B) implies that τ_{γ} -bCl({x}) $\neq \tau_{\gamma}$ -bCl(A). This contradiction proves the proposition.

Combining Corollary 3.9 and Propositions 3.10 and 3.11, we have:

Theorem 3.12. Let A be a nonempty b- γ -open subset of space X. Then the following are equivalent:

(1) A is minimal b- γ -open set, where γ is b-regular.

(2) For any nonempty subset C of A, $A \subseteq \tau_{\gamma}$ -bCl(C).

(3) For any nonempty subset C of A, τ_{γ} -bCl(A) = τ_{γ} -bCl(C).

Definition 3.13. Let A be a subset of (X, τ) , and $\gamma : BO(X) \to P(X)$ be an operation on BO(X). Then the b- γ -interior of A is denoted by τ_{γ} -bInt(A) and defined as τ_{γ} -bInt(A)= $\cup \{U : U \text{ is } b-\gamma\text{-open and } U \subseteq A\}$.

Definition 3.14. A subset A of a space X is called a pre b- γ -open set if A $\subseteq \tau_{\gamma}$ -bInt($\tau\gamma$ -bCl(A)). The family of all pre b- γ -open sets of X will be denoted by PBO γ (X).

Definition 3.15. A space X is called pre b- γ -Hausdorff if for each x, y \in X, x \neq y there exist subsets U and V of PBO γ (X) such that x \in U, y \in V, and U \cap V = φ .

Theorem 3.16. Let A be a minimal b- γ -open set. Then any nonempty subset C of A is a pre b- γ -open set, where γ is b-regular.

Proof. By Corollary 3.9, we have $A \subseteq \tau_{\gamma}$ -bCl(C) implies τ_{γ} -bInt(A) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(C)). Since A is a b- γ -open set, we have $C \subseteq A = \tau_{\gamma}$ -bInt(A) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(C)) or $C \subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(C)), that is C pre b- γ -open. Hence the proof.

Theorem 3.17. Let A be a minimal b- γ -open set and B be a nonempty subset of X. If there exists a b- γ -open set C containing B such that $C \subseteq \tau_{\gamma}$ -bCl(B U A), then B U D is a pre b- γ -open set for any nonempty subset D of A, where γ is b-regular.

Proof. By Theorem 3.12 (3), we have τ_{γ} -bCl(B U D) = τ_{γ} -bCl(B) U τ_{γ} -bCl(D) = τ_{γ} -bCl(B) U τ_{γ} -bCl(B U A). By supposition C $\subseteq \tau_{\gamma}$ -bCl(B U A) = τ_{γ} -bCl(B U D) implies τ_{γ} -bInt(C) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(B U D)). Since C is a b- γ -open neighborhood of B, namely C is a b- γ -open such that B \subseteq C, we have B \subseteq C = τ_{γ} -bInt(C) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(B U D)). Moreover we have τ_{γ} -bInt(A) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(B U A)), for τ_{γ} -bInt(A) = A $\subseteq \tau_{\gamma}$ -bCl(A) $\subseteq \tau_{\gamma}$ -bCl(B) U τ_{γ} -bCl(A) = τ_{γ} -bCl(B U A). Since A is a b- γ -open set, we have D \subseteq A = τ_{γ} -bInt(A) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(B U A)) = τ_{γ} -bInt(τ_{γ} -bCl(B U D)). Therefore B U D $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl(B U D)) implies B U D is a pre b- γ -open set.

Corollary 3.18. Let A be a minimal b- γ -open set and B a nonempty subset of X. If there exists a b- γ -open set C containing B such that $C \subseteq \tau_{\gamma}$ -bCl(A), then B \cup D is a pre b- γ -open set for any nonempty subset D of A, where γ is b-regular.

Proof. By assumption, we have $C \subseteq \tau_{\gamma}$ -bCl(B) $\cup \tau_{\gamma}$ -bCl(A) = τ_{γ} -bCl(B \cup A). By Theorem 3.17, we see that B \cup D is a pre b- γ -open set.

IV. FINITE B- Γ -OPEN SETS

In this section, we study some properties of minimal $b-\gamma$ -open sets in finite $b-\gamma$ -open sets and $b-\gamma$ -locally finite spaces.

Proposition 4.1. Let X be a space and $\phi \neq B$ a finite b- γ -open set in X. Then there exists at least one (finite) minimal b- γ -open set A such that A \subseteq B.

Proof. Suppose that B is a finite b- γ -open set in X. Then we have the following two possibilities:

(1) B is a minimal b- γ -open set.

(2) B is not a minimal b- γ -open set.

In case (1), if we choose B = A, then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) b- γ -open set B_1 which is properly contained in B. If B_1 is minimal b- γ -open, we take $A = B_1$. If B_1 is not a minimal b- γ -open set, then there exists a nonempty (finite) b- γ -open set B_2 such that $B_2 \subseteq B_1 \subseteq B$. We continue this process and have a sequence of b- γ -open sets ... $\subseteq B_m \subseteq ... \subseteq B_2 \subseteq B_1 \subseteq B$. Since B is a finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal b- γ -open set Bk such that $B_k = A$. This completes the proof.

Definition 4.2. A space X is said to be a b- γ -locally finite space, if for each $x \in X$ there exists a finite b- γ -open set A in X such that $x \in A$.

Corollary 4.3. Let X be a b- γ -locally finite space and B a nonempty b- γ -open set. Then there exists at least one (finite) minimal b- γ -open set A such that A \subseteq B, where γ is b-regular.

Proof. Since B is a nonempty set, there exists an element x of B. Since X is a b- γ -locally finite space, we have a finite b- γ -open set Bx such that $x \in Bx$. Since $B \cap B_x$ is a finite b- γ -open set, we get a minimal b- γ -open set A such that $A \subseteq B \cap B_x \subseteq B$ by Proposition 4.1.

Proposition 4.4. Let X be a space and for any $\alpha \in I$, B_{α} a b- γ -open set and $\phi \neq A$ a finite b- γ -open set. Then A $\cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite b- γ -open set, where γ is b-regular.

Proof. We see that there exists an integer n such that $A \cap (\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{n} B_{\alpha i})$ and hence we have the result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5. Let X be a space and for any $\alpha \in I$, B_{α} a b- γ -open set and for any $\beta \in J$, A_{β} a nonempty finite b- γ -open set. Then $(\bigcup_{\beta \in J} A_{\beta}) \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a b- γ -open set, where γ is b-regular.

APPLICATIONS

Let A be a nonempty finite b- γ -open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if γ is b-regular, then there exists a natural number m such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal b- γ -open sets in A satisfying the following two conditions:

 $(1) \text{ For any } l, n \text{ with } 1 \leq l, n \leq m \text{ and } l \neq n, A_l \cap A_n = \phi.$

(2) If C is a minimal b- γ -open set in A, then there exists l with $1 \le l \le m$ such that $C = A_l$.

V.

Theorem 5.1. Let X be a space and $\phi \neq A$ a finite b- γ -open set such that A is not a minimal b- γ -open set. Let { $A_1, A_2, ..., A_m$ } be a class of all minimal b- γ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Define $A_y = \cap \{B: B: A_1 \cup A_2 \cup ... \cup A_m\}$.

B is a b- γ -open neighborhood of y}. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that A_k is contained in A_{γ} , where γ is b-regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1, 2, ..., m\}$, A_k is not contained in A_y . By Corollary 3.8, for any minimal b- γ -open set A_k in $A, A_k \cap A_y = \varphi$. By Proposition 4.4, $\varphi \neq A_y$ is a finite b- γ -open set. Therefore by Proposition 4.1, there exists a minimal b- γ -open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal b- γ -open set in A. By supposition, for any minimal b- γ -open set A_k , we have $A_k \cap C \subseteq A_k \cap Ay = \varphi$. Therefore for any natural number $k \in \{1, 2, ..., m\}$, $C \neq A_k$. This contradicts our assumption. Hence the proof.

Proposition 5.2. Let X be a space and $\varphi \neq A$ be a finite b- γ -open set which is not a minimal b- γ -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal b- γ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that for any b- γ -open neighborhood B_y of y, A_k is contained in B_y , where γ is b-regular.

Proof. This follows from Theorem 5.1, as $\cap \{ B : B \text{ is a } b - \gamma \text{-open of } y \} \subseteq B_y$. Hence the proof.

Theorem 5.3. Let X be a space and $\varphi \neq A$ be a finite b- γ -open set which is not a minimal b- γ -open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal b- γ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that $y \in \tau_{\gamma}$ -bCl(A_k), where γ is b-regular.

Proof. It follows from Proposition 5.2, that there exists a natural number $k \in \{1, 2, ..., m\}$ such that $A_k \subseteq B$ for any b- γ -open neighborhood B of y. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \tau_{\gamma}$ -bCl(A_k). This completes the proof.

Proposition 5.4. Let $\varphi \neq A$ be a finite b- γ -open set in a space X and for each $k \in \{1, 2, ..., m\}$, A_k is a minimal b- γ -open sets in A. If the class $\{A_1, A_2, ..., A_m\}$ contains all minimal b- γ -open sets in A, then for any $\varphi \neq B_k \subseteq A_k$, $A \subseteq \tau_{\gamma}$ -bCl($B_1 \cup B_2 \cup ... \cup B_m$), where γ is b-regular.

Proof. If A is a minimal b- γ -open set, then this is the result of Theorem 3.12 (2). Otherwise A is not a minimal b- γ -open set. If x is any element of A \ (A₁ U A₂ U ... U A_m), we have x $\in \tau_{\gamma}$ -bCl(A1) U τ_{γ} -bCl(A₂) U ... U τ_{γ} -bCl(A₁) U τ_{γ} -bCl(A₂) U ... U τ_{γ} -bCl(A₁) U τ_{γ} -bCl(A₁) U τ_{γ} -bCl(A₁) U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₂) U ... U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₂) U ... U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₂) U ... U τ_{γ} -bCl(B₁) U τ_{γ} -bCl(B₁

Proposition 5.5. Let $\phi \neq A$ be a finite b- γ -open set and A_k is a minimal b- γ -open set in A, for each $k \in \{1, 2, ..., m\}$. If for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \tau_{\gamma}$ -bCl($B_1 \cup B_2 \cup ... \cup B_m$) then τ_{γ} -bCl(A) = τ_{γ} -bCl($B_1 \cup B_2 \cup ... \cup B_m$).

Proof. For any $\phi \neq B_k \subseteq A_k$ with $k \in \{1, 2, ..., m\}$, we have τ_{γ} -bCl($B_1 \cup B_2 \cup ... \cup B_m$) $\subseteq \tau_{\gamma}$ -bCl(A). Also, we have τ_{γ} -bCl(A) $\subseteq \tau_{\gamma}$ -bCl($B_1 \cup B_2 \cup ... \cup B_m$)) = τ_{γ} -bCl($B_1 \cup B_2 \cup ... \cup B_m$). Therefore we have τ_{γ} -bCl(A) = τ_{γ} -bCl($B_1 \cup B_2 \cup ... \cup B_m$) for any nonempty subset B_k of A_k with $k \in \{1, 2, ..., m\}$.

Proposition 5.6. Let $\phi \neq A$ be a finite b- γ -open set and for each $k \in \{1, 2, ..., m\}$, A_k is a minimal b- γ -open set in A. If for any $\phi \neq B_k \subseteq A_k$, τ_{γ} -bCl(A) = τ_{γ} -bCl(B₁ \cup B₂ $\cup ... \cup B_m$), then the class $\{A_1, A_2, ..., A_m\}$ contains all minimal b- γ -open sets in A.

Proof. Suppose that C is a minimal b- γ -open set in A and C $\neq A_k$ for $k \in \{1, 2, ..., m\}$. Then we have C $\cap \tau_{\gamma}$ -bCl(A_k) = ϕ for each $k \in \{1, 2, ..., m\}$. It follows that any element of C is not contained in τ_{γ} -bCl($A_1 \cup A_2 \cup ... \cup A_m$). This is a contradiction to the fact that C $\subseteq A \subseteq \tau_{\gamma}$ -bCl(A) = τ_{γ} -bCl($B_1 \cup B_2 \cup ... \cup B_m$). This completes the proof.

Combining Proposition 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7. Let A be a nonempty finite b- γ -open set and Ak a mini- mal b- γ -open set in A for each $k \in \{1, 2, ..., m\}$. Then the following three conditions are equivalent:

(1) The class $\{A_1, A_2, ..., A_m\}$ contains all minimal b- γ -open sets in A.

(2) For any $\phi \neq B_k \subseteq A_k$, $A \subseteq \tau_{\gamma}$ -bCl $(B_1 \cup B_2 \cup ... \cup B_m)$.

(3) For any $\varphi \neq B_k \subseteq A_k$, τ_{γ} -bCl(A) = τ_{γ} -bCl(B₁ \cup B₂ $\cup ... \cup$ B_m), where γ is b-regular.

Suppose that $\phi \neq A$ is a finite b- γ -open set and $\{A_1, A_2, ..., A_m\}$ is a lass of all minimal b- γ -open sets in A such that for each $k \in \{1, 2, ..., m\}$, $y_k \in A_k$. Then by Theorem 5.7, it is clear that $\{y_1, y_2, ..., y_m\}$ is a pre b- γ -open set.

Theorem 5.8. Let A be a nonempty finite b- γ -open set and {A₁, A₂, ..., A_m} is a class of all minimal b- γ -open sets in A. Let B be any subset of A \ (A₁ U A₂ U ... U A_m) and B_k be any nonempty subset of A_k for each k \in {1, 2, ..., m}. Then B U B₁ U B₂ U ... U B_m is a pre b- γ -open set.

Proof. By Theorem 5.7, we have $A \subseteq \tau_{\gamma}$ -bCl($B_1 \cup B_2 \cup ... \cup B_m$) $\subseteq \tau_{\gamma}$ -bCl($B \cup B_1 \cup B_2 \cup ... \cup B_m$). Since A is a b- γ -open set, then we have $B \cup B_1 \cup B_2 \cup ... \cup B_m \subseteq A = \tau_{\gamma}$ -bInt(A) $\subseteq \tau_{\gamma}$ -bInt(τ_{γ} -bCl($B \cup B_1 \cup B_2 \cup ... \cup B_m$)). Then we have the result.

Theorem 5.9. Let X be a b- γ -locally finite space. If a minimal b- γ -open set A \subseteq X has more than one element, then X is a pre b- γ -Hausdorff space, where γ is b-regular.

Proof. Let x, $y \in X$ such that $x \neq y$. Since X is a b- γ -locally finite space, there exists finite b- γ -open sets U and V such that $x \in U$ and $y \in V$. By Proposition 4.1, there exists the class $\{U_1, U_2, ..., U_n\}$ of all minimal b- γ -open sets in U and the class $\{V_1, V_2, ..., V_m\}$ of all minimal b- γ -open sets in V. We consider three possibilities:

(1) If there exists i of $\{1, 2, ..., n\}$ and j of $\{1, 2, ..., m\}$ such that $x \in U_i$ and $y \in V_j$, then by Theorem 3.16, $\{x\}$ and $\{y\}$ are disjoint pre b- γ -open sets which contains x and y, respectively.

(2) If there exists i of $\{1, 2, ..., n\}$ such that $x \in U_i$ and $y \notin V_j$ for any j of $\{1, 2, ..., m\}$, then we find an element y_j of V_j for each j such that $\{x\}$ and $\{y, y_1, y_2, ..., y_m\}$ are pre b- γ -open sets and $\{x\} \cap \{y, y_1, y_2, ..., y_n\} = \varphi$ by Theorems 3.16, 5.8 and the assumption.

(3) If $x \notin U_i$ for any i of $\{1, 2, ..., n\}$ and $y \notin V_j$ for any j of $\{1, 2, ..., m\}$, then we find elements xi of U_i and y_j of V_j for each i, j such that $\{x, x_1, x_2, ..., x_n\}$ and $\{y, y_1, y_2, ..., y_m\}$ are pre b- γ -open sets and $\{x, x_1, x_2, ..., x_n\}$ $\cap \{y, y_1, y_2, ..., y_m\} = \varphi$ by Theorem 5.8 and the assumption. Hence X is a pre b- γ -Hausdorff space.

REFERENCES

- 1) D. Andrijevic, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- 2) C. Carpintero, N. Rajesh and E. Rosas, Operation approaches on b-open sets and applications, Bol. Soc. Paran. Mat., V. 30 1 (2012), 21-33.
- 3) S. Hussain and B. Ahmad, On minimal γ-open sets, Eur. J. Pure Appl. Math., 2 (2009), 338-351.
- 4) S. Kasahara, Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- 5) H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.