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Abstract:—We characterize minimal b-y-open sets in topological spaces. We show that any nonempty subset of
a minimal b-y-open set is pre b-y-open. As an application of a theory of minimal b-y-open sets, we obtain a
sufficient condition for a b-y-locally finite space to be a pre b-y-Hausdorff space.
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l. INTRODUCTION

Andrijevic [1] introduced and investigated the notions of b-open sets, and Kasahara [4] defined the
concept of an operation on topological spaces. Ogata [5] introduced the concept of y-open sets and investigated
the related topological proporties of the associated topology t, and T, where 1, is the collection of all y-open sets.
In this paper, we study fundamental properties of minimal b-y-open sets and apply them to obtain some results
in topological spaces. In Section 3, we characterize minimal b-y-open sets. In Section 4, we study minimal b-y-
open sets in b-y-locally finite spaces. In Section 5, we apply the theory of minimal b-y-open sets to study pre b-
v-open sets. Finally, we show that some conditions on minimal b-y-open sets implies pre b-y-Hausdorffness of a
space.

. PRELIMINARIES

The complement of a b-open set is said to be b-closed. The family of all b-open sets is denoted by
BO(X, 1).
Definition 2.1. [4] Let (X, 1) be a topological space. An operation y on the topology t is a mapping from T to
power set P(X) of X such that V € y(V) for each V € 1, where y(V) denotes the value of y at V. It is denoted by
v :1— P(X).
Definition 2.2. [5] A subset A of a topological spac (X, 1) is called y-open set if for each x € A there exists an
open set U such that x € U and y(U) € A.
Definition 2.3. [2] Lety be a mapping on BO(X) in to P(X) and y : BO(X) — P (X) is called an operation on
BO(X), such that VV € y(V) for each V € BO(X).
Definition 2.4. [2] A subset A of a space X is called b-y-open if for each x € A, there exists a b-open set U such
that x € U and y(U) € A.
Definition 2.5. [2] Let A be a subset of (X, 1), and y : BO(X) — P (X) be an operation on BO(X). Then the b-y-
closure of A is denoted by 1,-bCI(A) and defined as t,-bCl(A)= N{ F : F is b-y-closed and A S F }.
Theorem 2.6. [2] For a point x € X, X € 1,-bCI(A) if and only if for every b-y-open set V of X containing x, A N
V #o.
Definition 2.7. [2] An operation y on BO(X) is said to be b-regular if for every b-open sets U and V of each x €
X, there exists a b-open set W of x such that y(W) € y(U) N y(V).
Proposition 2.8. [2] Let y be a b-regular operation on BO(X). If A and B are b-y-open sets in X, then A N B is
also a b-y-open set.
Theorem 2.9. [2] Let A and B be subsets of a topological space (X, t) and y : BO(X) — P (X) an operation on
BO(X, t). Then we have the following properties:
(1) If A € B, then 1,-bCI(A) € 1,-bCI(B).
(2) If y : BO(X) — P (X) is b-regular, then 1,-bCI(A U B) = 1,-bCI(A) U 1,-bCI(B) holds.

1. MINIMAL B-I'-OPEN SETS
In view of the definition of minimal y-open sets [3], we define minimal b-y-open sets as:
Definition 3.1. Let X be a space and A S X a b-y-open set. Then A is called a minimal b-y-open set if ¢ and A
are the only b-y-open subsets of A.
The folloing examples shows that minimal b-y-open sets and minimal y-open sets are independent of each
other.
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Example 3.2. Consider X = {a, b, ¢} with the topology T = {¢, X}. Define an operation y : BO(X) — P (X) by
v(A) = A. The b-y-open sets are ¢, {a}, {b}, {c}, {a, b}, {a, c}, {b, ¢} and X. Here {a} is minimal b-y-open but
not minimal y-open. Also we consider X = {a, b, ¢} with the topology T = {9, {a, b}, X}. Define y : BO(X) —
P (X) as y(A) = A, the set {a, b} is minimal y-open but not minimal b-y-open.
Proposition 3.3. Let X be a space. Then:
(1) Let A be a minimal b-y-open set and B a b-y-open set. Then A N B =@ or A S B, where y is b-regular.
(2) Let B and C be minimal b-y-open sets. Then B N C = ¢ or B = C, where vy is b-regular.
Proof. (1) Let B be a b-y-open set such that A N B # ¢. Since A is a minimal b-y-open setand A N B € A, we
have A N B = A. Therefore A € B.
(2) If B N C # @, then we see that B € C and C < B by (1). Therefore B = C.
Proposition 3.4. Let A be a minimal b-y-open set. If x is an element of A, then A < B for any b-y-open
neighborhood B of x, where v is b-regular.
Proof. Let B be a b-y-open neighborhood of x such that A & B. Since v is b-regular operation, then A N B is b-y-
open set such that A N B € A and A N B # ¢. This contradicts our assumption that A is a minimal b-y-open set.

The following example shows that the condition that y is b-regular is necessary for the above
proposition.
Example 3.5. Consider X = {a, b, c} with the topology t = {9, {a}, {b}, {a, b}, {a, ¢}, X}. Define an operation y
on BO(X) by y(A) = Aifb € A and y(A) = CI(A) if b€ A. Then calculations show that the operation vy is not b-
regular. Clearly A = {a, c} is a minimal b-y-open set. Thus for a € A, there exist a b-y-open set B = {a, b} of a
such that A ¢ B.
Proposition 3.6. Let A be a minimal b-y-open set. Then for any element x of A, A= N{ B : B is b-y-open
neighborhood of x}, where vy is b-regular.
Proof. By Proposition 3.4 and the fact that A is b-y-open neighborhood of x, we have A € N{ B : B is b-y-open
neighborhood of x } € A. Therefore we have the result.
Proposition 3.7. Let A be a minimal b-y-open set in X and x € X such that x ¢ A. Then for any b-y-open
neighborhood C ofx, CN A =¢ or A € C, where v is b-regular.
Proof. Since C is a b-y-open set, we have the result by Proposition 3.3.
Corollary 3.8. Let A be a minimal b-y-open setin X and x € X such that x ¢ A. Define Ay=N{ B: B isb-y-
open neighborhood of x}. Then A, N A = or A € A, where v is b-regular.
Proof. If A c B for any b-y-open neighborhood B of x, then A € N{ B: B is b-y-open neighborhood of x}.
Therefore A € A,. Otherwise there exists a b-y-open neighborhood B of x such that B N A = ¢. Then we have
AcNA=o.
Corollary 3.9. If A is a nonempty minimal b-y-open set of X, then for a nonempty subset C of A, A € 1,-bCI(C),
where v is b-regular.
Proof. Let C be any nonempty subset of A. Lety € A and B be any b-y-open neighborhood of y. By
Proposition 3.4, we have ASB and C=A N CEBNC. Thus we have B N C # ¢ and hence y € 1,-bCI(C).
This implies that A € t,-bCI(C). This copmletes the proof.
Proposition 3.10. Let A be a nonempty b-y-open subset of a space X. If A € 7,-bCI(C), then t,-bCl(A) = 1,-
bCI(C), for any nonempty subset C of A.
Proof. For any nonempty subset C of A, we have 1,-bCI(C) < t,-bCI(A). On the other hand, by supposition we
see 1,-bCI(A) € 1,-bCl(t,-bCI(C)) = 1,-bCI(C) implies t,-bCI(A) € 1,-bCI(C). Therefore we have 1,-bCI(A) =
7,-bCI(C) for any nonempty subset C of A.
Proposition 3.11. Let A be a nonempty b-y-open subset of a space X. If 1,-bCI(A) = 1,-bCI(C), for any
nonempty subset C of A, then A is a minimal b-y-open set.
Proof. Suppose that A is not a minimal b-y-open set. Then there exists a nonempty b-y-open set B such that B
A and hence there exists an element x € A such that x ¢ B.Then we have t,-bCI({ x } ) € (X \ B) implies that t,
-bClI({x}) # 7,-bCI(A). This contradiction proves the proposition.

Combining Corollary 3.9 and Propositions 3.10 and 3.11, we have:
Theorem 3.12. Let A be a nonempty b-y-open subset of space X. Then the following are equivalent:
(1) A'is minimal b-y-open set, where v is b-regular.
(2) For any nonempty subset C of A, A € 1,-bCI(C).
(3) For any nonempty subset C of A, 1,-bCl(A) = 1,-bCI(C).
Definition 3.13. Let A be a subset of (X, 1), and y : BO(X) — P (X) be an operation on BO(X). Then the b-y-
interior of A is denoted by t,-bInt(A) and defined as t,-bInt(A)= U{U : U is b-y-open and U € A}.
Definition 3.14. A subset A of a space X is called a pre b-y-open set if A S t,-bInt(ty -bCI(A)). The family of
all pre b-y-open sets of X will be denoted by PBOy(X).
Definition 3.15. A space X is called pre b-y-Hausdorff if for each X, y € X, x # y there exist subsets U and V of
PBOy(X) suchthatx e U,y € V,andU NV =g.
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Theorem 3.16. Let A be a minimal b-y-open set. Then any nonempty subset C of A is a pre b-y-open set, where
v is b-regular.

Proof. By Corollary 3.9, we have A < 1,-bCl(C) implies t,-bInt(A) € t,-bInt(t,-bCI(C)). Since A is a b-y-open
set, we have C € A = t,-bInt(A) € t,-bInt(t,-bCI(C)) or C < 1,-bInt(z,-bCI(C)), that is C pre b-y-open. Hence
the proof.

Theorem 3.17. Let A be a minimal b-y-open set and B be a nonempty subset of X. If there exists a b-
y-open set C containing B such that C € t,-bCI(B U A), then B U D is a pre b-y-open set for any nonempty
subset D of A, where vy is b-regular.

Proof. By Theorem 3.12 (3), we have 1,-bCI(B U D) =1,-bCI(B) U t,-bCI(D) = 1,-bCI(B) U 1,-bCI(A)
= 1,-bCI(B U A). By supposition C < 1,-bCI(B U A) = 1,-bCI(B U D) implies t,-bInt(C) < t,-bInt(z,-bCI(B U
D)). Since C is a b-y-open neighborhood of B, namely C is a b-y-open such that B € C, we have B € C = 1,
bInt(C) € t,-bInt(t,-bCI(B U D)). Moreover we have t,-bInt(A) &€ t,-bInt(t,-bCI(B U A)), for t,-bInt(A) = A &
1,-bCI(A) € 1,-bCI(B) U 1,-bCl(A) = 1,-bCI(B U A). Since A is a b-y-open set, we have D € A = 1,-bInt(A) S
1,-bInt(t,-bCI(B U A)) = 1,-bInt(1,-bCI(B U D)). Therefore B U D € 1,-bInt(t,-0CI(B U D)) implies B U D is a
pre b-y-open set.

Corollary 3.18. Let A be a minimal b-y-open set and B a nonempty subset of X. If there exists a b-y-
open set C containing B such that C < t,-bCI(A), then B U D is a pre b-y-open set for any nonempty subset D of
A, where v is b-regular.

Proof. By assumption, we have C € 1,-bCI(B) U 1,-bCl(A) = 1,-bCI(B U A). By Theorem 3.17, we see that B U
D is a pre b-y-open set.

V. FINITE B-I'-OPEN SETS

In this section, we study some properties of minimal b-y-open sets in finite b-y-open sets and b-y-locally
finite spaces.
Proposition 4.1. Let X be a space and ¢ # B a finite b-y-open set in X. Then there exists at least one (finite)
minimal b-y-open set A such that A < B.
Proof. Suppose that B is a finite b-y-open set in X. Then we have the following two possibilities:
(1) B is a minimal b-y-open set.
(2) B is not a minimal b-y-open set.
In case (1), if we choose B = A, then the proposition is proved. If the case (2) is true, then there exists a
nonempty (finite) b-y-open set B; which is properly contained in B. If B, is minimal b-y-open, we take A = B;.
If B, is not a minimal b-y-open set, then there exists a nonempty (finite) b-y-open set B, such that B, < B; € B.
We continue this process and have a sequence of b-y-open sets ... € B, € ... € B, € B; € B. Since B is a finite,
this process will end in a finite number of steps. That is, for some natural number k, we have a minimal b-y-open
set Bk such that B, = A. This completes the proof.
Definition 4.2. A space X is said to be a b-y-locally finite space, if for each x € X there exists a finite b-y-open
set Ain X such that x € A.
Corollary 4.3. Let X be a b-y-locally finite space and B a nonempty b-y-open set. Then there exists at least one
(finite) minimal b-y-open set A such that A € B, where v is b-regular.
Proof. Since B is a nonempty set, there exists an element x of B. Since X is a b-y-locally finite space, we have a
finite b-y-open set Bx such that x € Bx . Since B N By is a finite b-y-open set, we get a minimal b-y-open set A
such that A € B N B, € B by Proposition 4.1.
Proposition 4.4. Let X be a space and for any o € | , B, a b-y-open set and ¢ # A a finite b-y-open set. Then A
N ( Nge| By) is a finite b-y-Open set, where v is b-regular.
Proof. We see that there exists an integer n such that A N (Ny e, By) = A N (N"-; By) and hence we have the
result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5. Let X be a space and for any a € |, B, @ b-y-open set and for any § € J, Ag a nonempty finite b-
y-open set. Then (Ugey Ag) N (Nye i By) is a b-y-open set, where vy is b-regular.

V. APPLICATIONS

Let A be a nonempty finite b-y-open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if y is b-
regular, then there exists a natural number m such that {A;, A,, ..., A} is the class of all minimal b-y-open sets
in A satisfying the following two conditions:
(1) ForanyLnwith | <, n<mand [ # n, Aj N A, = o.
(2) If C is a minimal b-y-open set in A, then there exists 1 with 1 <1< m such that C = A.
Theorem 5.1. Let X be a space and ¢ # A a finite b-y-open set such that A is not a minimal b-y-open set. Let {
Ay, A, ..., A} be aclass of all minimal b-y-open setsin Aandy € A\ (A; U A, U ... U Ap). Define Ay =N{B:
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B is a b-y-open neighborhood of y}. Then there exists a natural number k € { 1, 2, ..., m} such that Ay is
contained in Ay, where v is b-regular.

Proof. Suppose on the contrary that for any natural number k € { 1, 2, ..., m }, Ay is not contained in A,. By
Corollary 3.8, for any minimal b-y-open set A in A, Ax N A, = ¢. By Proposition 4.4, ¢ # A, is a finite b-y-
open set. Therefore by Proposition 4.1, there exists a minimal b-y-open set C such that C € A,. Since C € A, €
A, we have C is a minimal b-y-open set in A. By supposition, for any minimal b-y-open set A, we have A, N
C c AN Ay = ¢. Therefore for any natural number k € { 1, 2, ..., m} , C # Ay. This contradicts our assumption.
Hence the proof.

Proposition 5.2. Let X be a space and ¢ # A be a finite b-y-open set which is not a minimal b-y-open set. Let
{As, A, ..., An} be aclass of all minimal b-y-open setsin Aandy € A\ (A; U A, U ... U Ay). Then there exists
a natural number k € {1, 2, ..., m} such that for any b-y-open neighborhood B, of y, Ay is contained in By, where
v is b-regular.

Proof. This follows from Theorem 5.1, as N{ B : B is a b-y-open of y } € B,. Hence the proof.

Theorem 5.3. Let X be a space and ¢ # A be a finite b-y-open set which is not a minimal b-y-open set. Let {A;,
Ay, ..., An} be the class of all minimal b-y-opensetsin Aandy € A\ (A; U A, U ... U A). Then there exists a
natural number k € {1, 2, ..., m} such that y € t,-bCI(Ay), where y is b-regular.

Proof. It follows from Proposition 5.2, that there exists a natural number k € {1, 2, ..., m} such that A, < B for
any b-y-open neighborhood B of'y. Therefore ¢ # A N Ay € A N B implies y € t,-bCI(A,). This completes

the proof.

Proposition 5.4. Let ¢ # A be a finite b-y-open set in a space X and for each k € {1, 2, ..., m}, A is a minimal
b-y-open sets in A. If the class {A;, Ay, ..., An} contains all minimal b-y-open sets in A, then for any ¢ # By S
A A € 1,-bCI(B; U B, U ... U By ), where v is b-regular.

Proof. If A is a minimal b-y-open set, then this is the result of Theorem 3.12 (2). Otherwise A is not a minimal
b-y-open set. If x is any element of A\ (A, U A, U ... U Ap), we have X € 1,-bCI(Al1 ) U ,-bCI(A;) U ... U 7
bCI(An) by Theorem 5.3. Therefore A € t,-bCI(A;) U 1,-bCI(A;) U ... U 1,-bCI(Ay) = 1,-bCI(B,) U 1,-bCI(B) U
... Ut,-bCI(Bp) =1,-bCI(B; U B, U ... U By) by Theorem 3.12 (3).

Proposition 5.5. Let ¢ # A be a finite b-y-open set and Ay is a minimal b-y-open set in A, foreach k € {1, 2, ...,
m}. If for any ¢ # By € Ay, A € 1,-bCI(B; U B, U ... U By) then 1,-bCI(A) = 1,-bCI(B; U B, U ... U Bpy).

Proof. For any ¢ # Bx € A with k € {1, 2, ..., m}, we have 1,-bCI(B; U B, U ... U By) € 1,-bCI(A). Also, we
have 1,-bCI(A) &€ 1,-bCl(7,-bCI(B; U B, U ... U Bm)) = 1,-bCI(B; U B, U ... U By,). Therefore we have t,-0CI(A)
=1,-bCI(B; U B, U ... U By,) for any nonempty subset By of A, with k €{1, 2, ..., m}.

Proposition 5.6. Let @ # A be a finite b-y-open set and for each k € {1, 2, ..., m}, Ay is a minimal b-y-open set
in A. If for any ¢ # By € Ay, 1,-bCI(A) = 1,-bCI(B; U B, U ... U By), then the class {A, A, ..., Ap} contains
all minimal b-y-open sets in A.

Proof. Suppose that C is a minimal b-y-open set in A and C # Ay for k € {1, 2, ..., m}. Then we have C N 1,~
bCI(Ax) = ¢ for each k € {1, 2, ..., m}. It follows that any element of C is not contained in 7,-0CI(A; U A, U ...
U Ap). This is a contradiction to the fact that C € A < 1,-bCI(A) = 1,-bCI(B; U B, U ... U By,). This completes
the proof.

Combining Proposition 5.4, 5.5 and 5.6,we have the following theorem:

Theorem 5.7. Let A be a nonempty finite b-y-open set and Ak a mini- mal b-y-open set in A for each k € {1, 2,
..., m}. Then the following three conditions are equivalent:

(1) The class {Ay, Ay, ..., An} contains all minimal b-y-open sets in A.

(2) For any ¢ # B, € A, AS 1,-bCI(B, U B, U ... U By).

(3) For any ¢ # By € Ay, 1,-bCI(A) = 1,-bCI(B; U B, U ... U By), where vy is b-regular.

Suppose that @ # A is a finite b-y-open set and {A;, A,, ..., An} is a lass of all minimal b-y-open sets in A
such that for each k € {1, 2, ..., m}, yx € Ay. Then by Theorem 5.7, it is clear that {yi, Y2, ..., ym} iS @ pre b-y-
open set.

Theorem 5.8. Let A be a nonempty finite b-y-open set and {A;, A,, ..., An} is a class of all minimal b-
v-open sets in A. Let B be any subset of A\ (A; U A, U ... U A,;) and By be any nonempty subset of Ay for each
ke{l,2,..,m}y ThenBUB;UB,U...UB,isapre b-y-open set.

Proof. By Theorem 5.7, we have A € 1,-bCI(B; U B, U ... U By) € 1,-bCI(B U B; U B, U ... U By). Since Ais a
b-y-open set, then we have B U B; U B, U ... U B, € A = 1,-bInt(A) € t,-bInt(t,-bCI(B U B; U B, U ... U By)).
Then we have the result.

Theorem 5.9. Let X be a b-y-locally finite space. If a minimal b-y-open set A < X has more than one element,
then X is a pre b-y-Hausdorff space, where v is b-regular.

Proof. Let X, y € X such that x # y. Since X is a b-y-locally finite space, there exists finite b-y-open
sets U and V such that x € U and y € V. By Proposition 4.1, there exists the class {U;, Uy, ..., U} of all
minimal b-y-open sets in U and the class {Vy, V, ..., Vin} of all minimal b-y-open sets in V. We consider three
possibilities:
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(1) If there exists i of {1, 2, ..., n} and j of {1, 2, ..., m} such that x € U; and y € V;, then by Theorem 3.16 , {x}
and {y} are disjoint pre b-y-open sets which contains x and y, respectively.

(2) If there exists i of {1, 2, ..., n} such that x € U; and y & V; for any j of {1, 2, ..., m}, then we find an element
yj of V; for each j such that {x} and {y, y1, Y2, ..., Ym} are pre b-y-open sets and {x} N {y, y1, Y2, ..., Yn} = @ by
Theorems 3.16, 5.8 and the assumption.

(3) Ifx ¢ Uiforanyiof {1, 2, .. n}andy ¢ Vj forany jof {1, 2, ..., m}, then we find elements xi of U; and y;
of V; for each i, j such that {x, X1, Xz, ..., X} and {y, y1, ¥2, ..., Ym} are pre b-y-open sets and {X, X1, Xz, ..., Xn}
N {Y, Y1, Y2, --» ¥m} = ¢ by Theorem 5.8 and the assumption. Hence X is a pre b-y-Hausdorff space.
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