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Abstract:–We characterize minimal b-γ-open sets in topological spaces. We show that any nonempty subset of 

a minimal b-γ-open set is pre b-γ-open.   As an application of a theory of minimal b-γ-open sets,  we obtain a 

sufficient condition for a b-γ-locally finite space to be a pre b-γ-Hausdorff space. 
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I. INTRODUCTION 
Andrijevic [1] introduced and investigated the notions of b-open sets, and Kasahara [4] defined the 

concept of an operation on topological spaces. Ogata [5] introduced the concept of γ-open sets and investigated 

the related topological proporties of the associated topology τγ and τ, where τγ is the collection of all γ-open sets.  

In this paper, we study fundamental properties of minimal b-γ-open sets and apply them to obtain some results 

in topological spaces.  In Section 3, we characterize minimal b-γ-open sets. In Section 4, we study minimal b-γ-

open sets in b-γ-locally finite spaces. In Section 5, we apply the theory of minimal b-γ-open sets to study pre b-

γ-open sets. Finally, we show that some conditions on minimal b-γ-open sets implies pre b-γ-Hausdorffness of a 

space. 

 

II. PRELIMINARIES 
The complement of a b-open set is said to be b-closed. The family of all b-open sets is denoted by 

BO(X, τ). 

Definition 2.1. [4] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ to 

power set P(X) of X such that V ⊆ γ(V) for each V ∈ τ, where γ(V) denotes the value of γ at V.  It is denoted by 

γ : τ → P(X). 

Definition 2.2. [5] A subset A of a topological spac (X, τ) is called γ-open set if for each x ∈ A there exists an 

open set U such that x ∈ U and γ(U) ⊆ A. 

Definition  2.3.  [2] Let γ  be a mapping on BO(X) in to P(X) and γ : BO(X) → P (X) is called an operation on 

BO(X), such that V ⊆ γ(V) for each V ∈ BO(X). 

Definition 2.4. [2] A subset A of a space X is called b-γ-open if for each x ∈ A, there exists a b-open set U such 

that x ∈ U and γ(U) ⊆ A.  

Definition 2.5. [2] Let A be a subset of (X, τ), and γ : BO(X) → P (X) be an operation on BO(X). Then the b-γ-

closure of A is denoted by τγ-bCl(A) and defined as τγ-bCl(A)= ∩{ F : F is b-γ-closed and A ⊆ F }. 

Theorem 2.6. [2] For a point x ∈ X, x ∈ τγ-bCl(A) if and only if for every b-γ-open set V of X containing x, A ∩ 

V ≠ φ. 

Definition 2.7. [2] An operation γ on BO(X) is said to be b-regular if for every b-open sets U and V  of each x ∈ 

X, there exists a b-open set W of x such that γ(W) ⊆ γ(U) ∩ γ(V). 

Proposition 2.8. [2] Let γ be a b-regular operation on BO(X).  If A and B are b-γ-open sets in X, then A ∩ B is 

also a b-γ-open set. 

Theorem 2.9. [2] Let A and B be subsets of a topological space (X, τ) and γ : BO(X) → P (X) an operation on 

BO(X, τ). Then we have the following properties: 

(1) If A ⊆ B, then τγ-bCl(A) ⊆ τγ-bCl(B). 

(2) If γ : BO(X) → P (X) is b-regular, then τγ-bCl(A ∪ B) = τγ-bCl(A) ∪ τγ-bCl(B) holds. 

 

III. MINIMAL B-Γ-OPEN SETS 

              In view of the definition of minimal γ-open sets [3], we define minimal b-γ-open sets as: 

Definition 3.1. Let X be a space and A ⊆ X a b-γ-open set.  Then A is called a minimal b-γ-open set if φ and A 

are the only b-γ-open subsets of A. 

  The folloing examples shows that minimal b-γ-open sets and minimal γ-open sets are independent of each 

other. 
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Example 3.2. Consider X = {a, b, c} with the topology τ = {φ, X}. Define an operation γ : BO(X) → P (X) by 

γ(A) = A. The b-γ-open sets are φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and X.  Here {a} is minimal b-γ-open but 

not minimal γ-open.  Also we consider X = {a, b, c} with the topology τ = {φ, {a, b}, X}.  Define γ : BO(X) → 

P (X) as γ(A) = A, the set {a, b} is minimal γ-open but not minimal b-γ-open. 

Proposition 3.3. Let X be a space. Then: 

(1) Let A be a minimal b-γ-open set and B a b-γ-open set. Then A ∩ B = φ or A ⊆ B, where γ is b-regular. 

(2) Let B and C be minimal b-γ-open sets. Then B ∩ C = φ or B = C, where γ is b-regular. 

Proof.  (1) Let B be a b-γ-open set such that A ∩ B ≠ φ.  Since A is a minimal b-γ-open set and A ∩ B ⊆ A, we 

have A ∩ B = A. Therefore A ⊆ B. 

(2) If B ∩ C ≠ φ, then we see that B ⊆ C and C ⊆ B by (1). Therefore B = C.  

Proposition 3.4. Let A be a minimal b-γ-open set.  If x is an element of A, then A ⊆ B for any b-γ-open 

neighborhood B of x, where γ is b-regular. 

Proof. Let B be a b-γ-open neighborhood of x such that A  B. Since γ is b-regular operation, then A ∩ B is b-γ-

open set such that A ∩ B ⊆ A and A ∩ B ≠ φ. This contradicts our assumption that A is a minimal b-γ-open set. 

The following example shows that the condition that γ  is b-regular is necessary for the above 

proposition. 

Example 3.5. Consider X = {a, b, c} with the topology τ = {φ, {a}, {b}, {a, b}, {a, c}, X}. Define an operation γ 

on BO(X) by γ(A) =  A if b ∈ A and γ(A) = Cl(A) if b∉ A. Then calculations show that the operation γ is not b-

regular. Clearly A = {a, c} is a minimal b-γ-open set. Thus for a ∈ A, there exist a b-γ-open set B = {a, b} of a 

such that A  B.  

Proposition 3.6. Let A be a minimal b-γ-open set. Then for any element x of A, A= ∩{ B : B is b-γ-open 

neighborhood of x}, where γ is b-regular. 

Proof. By Proposition 3.4 and the fact that A is b-γ-open neighborhood of x, we have A ⊆ ∩{ B : B is b-γ-open 

neighborhood of x } ⊆ A. Therefore we have the result. 

Proposition 3.7. Let A be a minimal b-γ-open set in X and x ∈ X such that x ∉ A. Then for any b-γ-open 

neighborhood C  of x, C ∩ A = φ or A ⊆ C, where γ is b-regular. 

Proof. Since C is a b-γ-open set, we have the result by Proposition 3.3. 

Corollary  3.8.  Let A be a minimal b-γ-open set in X  and x ∈ X  such that x ∉ A.  Define Ax = ∩{ B:  B is b-γ-

open neighborhood of x}. Then Ax ∩ A = φ or A ⊆ Ax, where γ is b-regular. 

Proof. If A ⊆ B for any b-γ-open neighborhood B of x, then A ⊆ ∩{ B: B is b-γ-open neighborhood of x}.   

Therefore A ⊆ Ax.  Otherwise there exists a b-γ-open neighborhood B of x such that B ∩ A = φ. Then we have 

Ax ∩ A = φ.  

Corollary 3.9. If A is a nonempty minimal b-γ-open set of X, then for a nonempty subset C of A, A ⊆ τγ-bCl(C), 

where γ is b-regular. 

Proof. Let C  be any nonempty subset of A.  Let y ∈ A and B  be any b-γ-open  neighborhood  of  y.  By  

Proposition  3.4,  we  have  A ⊆ B  and C = A ∩ C ⊆ B ∩ C.  Thus we have B ∩ C ≠ φ and hence y ∈ τγ-bCl(C). 

This implies that A ⊆ τγ-bCl(C). This copmletes the proof.  

Proposition 3.10. Let A be a nonempty b-γ-open subset of a space X.  If A ⊆ τγ-bCl(C), then τγ-bCl(A) = τγ-

bCl(C), for any nonempty subset C of A. 

Proof. For any nonempty subset C of A, we have τγ-bCl(C) ⊆ τγ-bCl(A). On the other hand, by supposition we 

see τγ-bCl(A) ⊆ τγ-bCl(τγ-bCl(C)) = τγ-bCl(C) implies τγ-bCl(A) ⊆ τγ-bCl(C).  Therefore we have τγ-bCl(A) = 

τγ-bCl(C) for any nonempty subset C of A.  

Proposition  3.11.  Let A be a nonempty b-γ-open subset of a space X. If τγ-bCl(A) = τγ-bCl(C), for any 

nonempty subset C  of A, then A is a minimal b-γ-open set. 

Proof. Suppose that A is not a minimal b-γ-open set. Then there exists a nonempty b-γ-open set B such that B ⊆ 

A and hence there exists an element x ∈ A such that x ∉ B.Then we have τγ-bCl( { x } ) ⊆ (X \ B) implies that τγ 

-bCl({x}) ≠ τγ-bCl(A). This contradiction proves the proposition.   

Combining Corollary 3.9 and Propositions 3.10 and 3.11, we have: 

Theorem 3.12.  Let A be a nonempty b-γ-open subset of space X. Then the following are equivalent: 

(1) A is minimal b-γ-open set, where γ is b-regular. 

(2) For any nonempty subset C of A, A ⊆ τγ-bCl(C). 

(3) For any nonempty subset C of A, τγ-bCl(A) = τγ-bCl(C). 

Definition 3.13. Let A be a subset of (X, τ), and γ : BO(X) → P (X) be an operation on BO(X). Then the b-γ-

interior of A is denoted by τγ-bInt(A) and defined as τγ-bInt(A)= ∪{U : U is b-γ-open and U ⊆ A}. 

Definition 3.14.  A subset A of a space X is called a pre b-γ-open set if A ⊆ τγ-bInt(τγ -bCl(A)). The family of 

all pre b-γ-open sets of X will be denoted by PBOγ(X). 

Definition 3.15. A space X is called pre b-γ-Hausdorff if for each x, y ∈ X, x ≠ y there exist subsets U  and V of 

PBOγ(X) such that x ∈ U, y ∈ V, and U ∩ V  = φ. 



Some Applications of Minimal b-γ-Open Sets 

www.ijeijournal.com    P a g e  | 72 

Theorem  3.16.  Let A be a minimal b-γ-open set. Then any nonempty subset C of A is a pre b-γ-open set, where 

γ is b-regular. 

Proof. By Corollary 3.9, we have A ⊆ τγ-bCl(C) implies τγ-bInt(A) ⊆ τγ-bInt(τγ-bCl(C)). Since A is a b-γ-open 

set, we have C ⊆ A = τγ-bInt(A) ⊆ τγ-bInt(τγ-bCl(C)) or C ⊆ τγ-bInt(τγ-bCl(C)), that is C pre b-γ-open. Hence 

the proof.  

Theorem  3.17.  Let A be a minimal b-γ-open set and B  be a nonempty subset of X. If there exists a b-

γ-open set C containing B such that C ⊆ τγ-bCl(B ∪ A), then B ∪ D is a pre b-γ-open set for any nonempty 

subset D of A, where γ is b-regular. 

Proof. By Theorem 3.12 (3),  we have τγ-bCl(B ∪ D)  = τγ-bCl(B) ∪ τγ-bCl(D) = τγ-bCl(B) ∪ τγ-bCl(A) 

= τγ-bCl(B ∪ A). By supposition C ⊆ τγ-bCl(B ∪ A) = τγ-bCl(B ∪ D) implies τγ-bInt(C) ⊆ τγ-bInt(τγ-bCl(B ∪ 

D)). Since C is a b-γ-open neighborhood of B, namely C is a b-γ-open such that B ⊆ C, we have B ⊆ C = τγ-

bInt(C) ⊆ τγ-bInt(τγ-bCl(B ∪ D)). Moreover we have τγ-bInt(A) ⊆ τγ-bInt(τγ-bCl(B ∪ A)), for τγ-bInt(A) = A ⊆ 

τγ-bCl(A) ⊆ τγ-bCl(B) ∪ τγ-bCl(A) = τγ-bCl(B ∪ A). Since A is a b-γ-open set, we have D ⊆ A = τγ-bInt(A) ⊆ 

τγ-bInt(τγ-bCl(B ∪ A)) = τγ-bInt(τγ-bCl(B ∪ D)). Therefore B ∪ D ⊆ τγ-bInt(τγ-bCl(B ∪ D)) implies B ∪ D is a 

pre b-γ-open set.  

Corollary 3.18. Let A be a minimal b-γ-open set and B a nonempty subset of X. If there exists a b-γ-

open set C containing B such that C ⊆ τγ-bCl(A), then B ∪ D is a pre b-γ-open set for any nonempty subset D of 

A, where γ is b-regular. 

Proof. By assumption, we have C ⊆ τγ-bCl(B) ∪ τγ-bCl(A) = τγ-bCl(B ∪ A). By Theorem 3.17, we see that B ∪ 

D is a pre b-γ-open set.  

 

IV. FINITE B-Γ-OPEN SETS 
           In this section, we study some properties of minimal b-γ-open sets in finite b-γ-open sets and b-γ-locally 

finite spaces. 

Proposition  4.1.  Let X  be a space and φ ≠ B  a finite b-γ-open set in X. Then there exists at least one (finite) 

minimal b-γ-open set A such that A ⊆ B. 

Proof. Suppose that B  is a finite b-γ-open set in X.   Then we have the following two possibilities: 

(1) B is a minimal b-γ-open set. 

(2) B is not a minimal b-γ-open set. 

In case (1), if we choose B = A, then the proposition is proved. If the case (2) is true, then there exists a 

nonempty (finite) b-γ-open set B1 which is properly contained in B.  If B1 is minimal b-γ-open, we take A = B1. 

If B1 is not a minimal b-γ-open set, then there exists a nonempty (finite) b-γ-open set B2 such that B2 ⊆ B1 ⊆ B.  

We continue this process and have a sequence of b-γ-open sets ... ⊆ Bm ⊆ ... ⊆ B2 ⊆ B1 ⊆ B. Since B  is a finite,  

this process will end in a finite number of steps. That is, for some natural number k, we have a minimal b-γ-open 

set Bk such that Bk = A. This completes the proof.  

Definition 4.2.  A space X  is said to be a b-γ-locally finite space, if for each x ∈ X there exists a finite b-γ-open 

set A in X such that x ∈ A. 

Corollary 4.3. Let X be a b-γ-locally finite space and B a nonempty b-γ-open set. Then there exists at least one 

(finite) minimal b-γ-open set A such that A ⊆ B, where γ is b-regular. 

Proof. Since B is a nonempty set, there exists an element x of B. Since X is a b-γ-locally finite space, we have a 

finite b-γ-open set Bx such that x ∈ Bx . Since B ∩ Bx is a finite b-γ-open set, we get a minimal b-γ-open set A 

such that A ⊆ B ∩ Bx ⊆ B by Proposition 4.1.  

Proposition 4.4. Let X be a space and for any α ∈ I , Bα a b-γ-open set and φ  ≠ A a finite b-γ-open set.  Then A 

∩ ( ∩α ∈ I Bα) is a finite b-γ-open set, where γ is b-regular. 

Proof. We see that there exists an integer n such that A ∩ (∩α ∈ I Bα) = A ∩ (∩
n
i=1 Bαi) and hence we have the 

result.  

    Using Proposition 4.4, we can prove the following: 

Theorem  4.5.  Let X  be a space and for any α ∈ I, Bα a b-γ-open set and for any β ∈ J, Aβ a nonempty finite b-

γ-open set.  Then (∪β∈J Aβ) ∩ (∩α ∈ I Bα) is a b-γ-open set, where γ is b-regular. 

 

V. APPLICATIONS 

             Let A be a nonempty finite b-γ-open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if γ is b-

regular, then there exists a natural number m such that {A1, A2, ..., Am} is the class of all minimal b-γ-open sets 

in A satisfying the following two conditions: 

(1) For any l, n with 1 ≤ l, n ≤ m and l ≠  n, Al ∩ An = φ. 

(2) If C is a minimal b-γ-open set in A, then there exists l with 1 ≤ l ≤ m such that C = Al. 

Theorem 5.1. Let X be a space and φ ≠ A a finite b-γ-open set such that A is not a minimal b-γ-open set. Let { 

A1, A2, ..., Am} be a class of all minimal b-γ-open sets in A and y ∈ A \ (A1 ∪ A2 ∪ ... ∪ Am).  Define Ay = ∩{ B:  
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B is a b-γ-open neighborhood of y}. Then there exists a natural number k ∈ { 1, 2, ..., m} such that Ak is 

contained in Ay, where γ is b-regular. 

Proof. Suppose on the contrary that for any natural number k ∈ { 1, 2, ..., m }, Ak is not contained in Ay.  By 

Corollary 3.8, for any minimal b-γ-open set Ak in A, Ak ∩ Ay = φ.  By Proposition 4.4, φ ≠ Ay is a finite b-γ-

open set. Therefore by Proposition 4.1, there exists a minimal b-γ-open set C such that C ⊆ Ay.  Since C ⊆ Ay ⊆ 

A,  we have C  is a minimal b-γ-open set in A. By supposition, for any minimal b-γ-open set Ak, we have Ak ∩ 

C ⊆ Ak ∩ Ay = φ. Therefore for any natural number k ∈ { 1, 2, ..., m} , C ≠ Ak. This contradicts our assumption. 

Hence the proof.  

Proposition 5.2. Let X be a space and φ ≠ A be a finite b-γ-open set which is not a minimal b-γ-open set. Let 

{A1, A2, ..., Am} be a class of all minimal b-γ-open sets in A and y ∈ A \ (A1 ∪ A2 ∪ ... ∪ Am).  Then there exists 

a natural number k ∈ {1, 2, ..., m} such that for any b-γ-open neighborhood By of y, Ak is contained in By, where 

γ is b-regular. 

Proof. This follows from Theorem 5.1, as ∩{ B : B is a b-γ-open of y } ⊆ By. Hence the proof. 

Theorem 5.3. Let X be a space and φ ≠ A be a finite b-γ-open set which is not a minimal b-γ-open set. Let {A1, 

A2, ..., Am} be the class of all minimal b-γ-open sets in A and y ∈ A \ (A1 ∪ A2 ∪ ... ∪ Am).   Then there exists a 

natural number k ∈ {1, 2, ..., m} such that y ∈ τγ-bCl(Ak), where γ  is b-regular. 

Proof. It follows from Proposition 5.2, that there exists a natural number k ∈ {1, 2, ..., m} such that Ak ⊆ B for 

any b-γ-open neighborhood B of y. Therefore φ ≠ Ak ∩ Ak ⊆ Ak ∩ B implies y ∈ τγ-bCl(Ak). This completes 

the proof.  

Proposition  5.4.  Let φ ≠ A be a finite b-γ-open set in a space X  and for each k ∈ {1, 2, ..., m}, Ak is a minimal 

b-γ-open sets in A.  If the class {A1, A2, ..., Am} contains all minimal b-γ-open sets in A, then for any φ ≠ Bk ⊆ 

Ak, A ⊆ τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm ), where γ is b-regular. 

Proof. If A is a minimal b-γ-open set, then this is the result of Theorem 3.12 (2). Otherwise A is not a minimal 

b-γ-open set. If x is any element of A \ (A1 ∪ A2 ∪ ... ∪ Am), we have x ∈ τγ-bCl(A1 ) ∪ τγ-bCl(A2) ∪ ... ∪ τγ-

bCl(Am) by Theorem 5.3. Therefore A ⊆ τγ-bCl(A1) ∪ τγ-bCl(A2) ∪ ... ∪ τγ-bCl(Am) = τγ-bCl(B1) ∪ τγ-bCl(B2) ∪ 

... ∪ τγ-bCl(Bm) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm) by Theorem 3.12 (3).  

Proposition 5.5. Let φ ≠ A be a finite b-γ-open set and Ak is a minimal b-γ-open set in A,  for each k ∈ {1, 2, ..., 

m}.  If for any φ ≠ Bk ⊆ Ak, A ⊆ τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm) then τγ-bCl(A) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm). 

Proof. For any φ ≠ Bk ⊆ Ak with k ∈ {1, 2, ..., m}, we have τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm) ⊆ τγ-bCl(A). Also, we 

have τγ-bCl(A) ⊆ τγ-bCl(τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm)) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm). Therefore we have τγ-bCl(A) 

= τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm) for any nonempty subset Bk of Ak with k ∈{1, 2, ..., m}. 

Proposition  5.6.  Let φ  ≠ A be a finite b-γ-open set and for each k ∈ {1, 2, ..., m}, Ak is a minimal b-γ-open set 

in A.  If for any φ ≠ Bk ⊆ Ak, τγ-bCl(A) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm),  then  the  class {A1, A2, ..., Am} contains 

all minimal b-γ-open sets in A. 

Proof. Suppose that C  is a minimal b-γ-open set in A and C  ≠ Ak for k ∈ {1, 2, ..., m}. Then we have C ∩ τγ-

bCl(Ak) = φ for each k ∈ {1, 2, ..., m}. It follows that any element of C is not contained in τγ-bCl(A1 ∪ A2 ∪ ... 

∪ Am). This is a contradiction to the fact that C ⊆ A ⊆ τγ-bCl(A) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm). This completes 

the proof.  

    Combining Proposition 5.4, 5.5 and 5.6,we have the following theorem: 

Theorem  5.7.  Let A be a nonempty finite b-γ-open set and Ak a mini- mal b-γ-open set in A for each k ∈ {1, 2, 

..., m}. Then the following three conditions are equivalent: 

(1) The class {A1, A2, ..., Am} contains all minimal b-γ-open sets in A. 

(2) For any φ ≠ Bk ⊆ Ak, A ⊆ τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm). 

(3) For any φ ≠ Bk ⊆ Ak, τγ-bCl(A) = τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm), where γ is b-regular. 

   Suppose that φ  ≠ A is a finite b-γ-open set and {A1, A2, ..., Am} is a lass of all minimal b-γ-open sets in A 

such that for each k ∈ {1, 2, ..., m}, yk ∈ Ak. Then by Theorem 5.7,  it is clear that {y1, y2, ..., ym} is a pre b-γ-

open set. 

Theorem 5.8. Let A be a nonempty finite b-γ-open set and {A1, A2, ..., Am} is a class of all minimal b-

γ-open sets in A. Let B be any subset of A \ (A1 ∪ A2 ∪ ... ∪ Am) and Bk be any nonempty subset of Ak for each 

k ∈ {1, 2, ..., m}. Then B ∪ B1 ∪ B2 ∪ ... ∪ Bm is a pre b-γ-open set. 

Proof. By Theorem 5.7, we have A ⊆ τγ-bCl(B1 ∪ B2 ∪ ... ∪ Bm) ⊆ τγ-bCl(B ∪ B1 ∪ B2 ∪ ... ∪ Bm). Since A is a 

b-γ-open set, then we have B ∪ B1 ∪ B2 ∪ ... ∪ Bm ⊆ A = τγ-bInt(A) ⊆ τγ-bInt(τγ-bCl(B ∪ B1 ∪ B2 ∪ ... ∪ Bm)). 

Then we have the result.  

Theorem 5.9. Let X be a b-γ-locally finite space.  If a minimal b-γ-open set A ⊆ X has more than one element, 

then X is a pre b-γ-Hausdorff space, where γ is b-regular. 

Proof. Let x, y ∈ X such that x ≠ y.  Since X is a b-γ-locally finite space, there exists finite b-γ-open 

sets U and V  such that x ∈ U and y ∈ V.  By Proposition 4.1, there exists the class {U1, U2, ..., Un} of all 

minimal b-γ-open sets in U and the class {V1, V2, ..., Vm} of all minimal b-γ-open sets in V. We consider three 

possibilities: 
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(1) If there exists i of {1, 2, ..., n} and  j of {1, 2, ..., m} such that x ∈ Ui and y ∈ Vj, then by Theorem 3.16 , {x} 

and {y} are disjoint pre b-γ-open sets which contains x and y, respectively. 

(2) If there exists i of {1, 2, ..., n} such that x ∈ Ui and y ∉ Vj for any j of {1, 2, ..., m}, then we find an element 

yj of  Vj for each j such that {x} and {y, y1, y2, ..., ym} are pre b-γ-open sets and {x} ∩ {y, y1, y2, ..., yn} = φ by 

Theorems 3.16, 5.8 and the assumption. 

(3) If x ∉ Ui for any i of {1, 2, ..., n} and y ∉ Vj for any j of {1, 2, ..., m}, then we find elements xi of Ui and yj 

of Vj for each  i, j such that {x, x1, x2, ..., xn} and {y, y1, y2, ..., ym} are  pre  b-γ-open  sets  and {x, x1, x2, ..., xn} 

∩ {y, y1, y2, ..., ym} = φ by Theorem 5.8 and the assumption. Hence X is a pre b-γ-Hausdorff space. 
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