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Abstract:––This paper proposes an algorithm based on sub image-partitioning strategy. The proposed Scheme divides a 

grayscale (or color) image into overlapped 6×6 blocks each of which is partitioned into four small 3x3 non-overlapped sub-

images. A new spatial approach for efficiently computing 2-dimensional linear convolution or cross-correlation between 

suitable flipped and fixed filter coefficients (sub image for cross-correlation) and corresponding input sub image is 

presented. Computation of convolution is iterated vertically and horizontally for each of the four input sub-images. The 

convolution outputs of these four sub-images are processed to be converted from 6×6 arrays to 4×4 arrays so that the core of 

the original image is reproduced. The present algorithm proposes a simplified processing technique based on a particular 

arrangement of the input samples, spatial filtering and small sub images. This results in reducing the computational 

complexity as compared with other well-known FFT-based techniques. This algorithm lends itself for partitioned small sub-

images, local image spatial filtering and noise reduction. The effectiveness of the algorithm is demonstrated through some 

simulation examples. 
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I. NTRODUCTION 
Convolution is a very useful tool to determine the response of a given system. For example, in a wavelet bank 

filter, bands are computed using convolution [1]. In image processing, convolution operation is useful for detecting the edges 

[2]. So far, several methods have been developed to compute 2-D system responses such as the circulant or Toeplitz matrices 

[3], sliding window method as a spatial filtering [4], which requires moving the center of a mask through an image and does 

not require folding a mask as in case of tabular method. However, the computation of responses using the above methods is a 

redundant one, so it has a global response computation, which causes beside noise amplification, spatially undesirable noise 

distribution on output image also. Thus, they are only suitable for computation of global signals and not applied for specific 

area of interest (inside the image). In other hand, convolution algorithms in principle are complex due to the number of 

operations. Block spatial convolutions help in implementing local convolution or short Convolutions without using FFT, 

which only estimate the direct convolution. In some literature [3]-[5] it is noticed that the authors consider the filter size as a 

measure of the number of operations per output pixel (sample), for example an impulse response of M×N coefficients 

requires an M×N multiplications per sample. In contrary to this the authors in [6] conclude that the number of operations 

involved in a direct convolution is less for small arrays size and may take the form of a trapezoidal function. We have 

adopted this conclusion as a basis in our present work and have tested another function, namely a falling ramp. The 

advantage of the proposed algorithm in this paper resides in that it can be used also for measuring the degree of similarity 

between sub-images, which is not found in the previously mentioned literature. The algorithm integrates the convolution and 

correlation in one processing system. Partitioning(segmentation) of image to sub-images are applicable in techniques for 

hiding information and water marking where the spatial domain technique is the most common one [7], [8]. Available 

literature reveals a lack of details of partitioning and sequence of blocks. For this reason, the present work gains an 

importance. Exploiting image processing locality in cache pre-fetching [9] is one of the benefits of partitioning. The authors 

in [10] propose a scheme of partitioning based on an anticlockwise division of a rectangular block image of size (64x512) 

for the iris ring into eight sub-images of size (64x64). A vector consisting of an ordered sequence of sub-image features are 

then extracted from the local information contained in the eight sub-images. In [11] a partition fusion technique for multi-

focus images is developed for improving the image quality. It compares conventional partition fusion technique for image 

sub- blocks taking even sizes only, which might result in asymmetry and a modified partition fusion method where sub-

blocks are selected of the fused image based on their clarity measures. The clarity measure of an image sub block was 

determined by second order derivative of the sub image. Algorithms [10],[11] are based on gray image. A gray image can 

provide enough information to identify different individuals, but the common in nature that colors are different. Moreover, 

block sizes used are large and need large processing filters, which result in increased distortion at borders of images in 

addition to processing complexity [6]. 

It is not necessary to use length of filters radix-2 as in [5],[11], some time we need symmetric filter with odd 

length. Length of the filters directly affects computation time of analysis and re synthesis; shorter filters are favored in more 

cases. Linear phase response can be achieved by using symmetric filters. In algorithm [5] step number seven computes the 

inverse 2-D FFT, which needs to keep quarter the output array only, this means loss of time used to compute other three 

quarters. Our scheme is expected to be clear in comparing it with a conventional convolution such as the sliding-window or 

double circulant matrix [3],[12],[13]. It suggests a new block convolution where blocks are convolved independently with 

local filters for more reliable and fast processing. In our algorithm we, in advance compute desired parts (small sub-images), 

what we need only and without redundant operations.  
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The rest of the paper is organized as follows:In Section 2, we provide the problem statement of this work, section 3 

proposed design our algorithm, which consist of two steps partitioning and short convolution. The partitioning approach is 

described in subsection 3.1, short convolution is presented in sub section 3.2, while mathematical processing section is 

performed in section 3.3, experiment and performance evaluation of our approach are presented also. Section 4 deals with 

the evaluation results of simulation while section 5 represents discussion and conclusion. Appendix includes two-Matlab 

functions. 

 

II. PROBLEM STATEMENTS 
To realize short convolutions we need overlapping between sub-images to prevent discontinuity and to make real 

time processing. Extracting features such as point and edge detection and exploiting corner point in image alignment 

(registration) etc, needs local partitioning the entire image to sub-images. In other hand, short convolution helps to 

implement spatial and direct convolution with less operations, this gives exact solution rather than the FFT estimated 

solutions. Now the problem is how to design the three distinct steps of the algorithm: step 1 is the partitioning of the input 

image to overlapped sub-images followed by a second partitioning of the previous one into smaller sub-images. Step 2 is the 

block convolution after a suitable flipping. The double partitioning is also useful for the extraction of local features or any 

other desired operations. Finally, the increase of pixels resulting after the convolution of the overlapped sub-images is 

compensated by converting the 6x6 sub-images at the output of the four processors into 4x4 sub-images. The algorithm is 

tested experimentally using the Matlab software package to evaluate its performance. 

 

III. PROPOSED DESIGN ALGORITHM 
This paper explores a new method for computing the 2-D convolution that is based on the algorithm represented 

by Figs. 1 and 2 using two main steps: partitioning (partitioning) and filtering as well as similarity measuring. Discrete input 

image is applied to the splitter input.Splitter shows itself as primary filter or discretizer. It determines the sub image size of a 

specified periodic deterministic function. The four sampled output periodic blocks with specificsize are applied to four 

convolution processors 

 

3.1 Partitioning  

Assume that an X×Y grayscale (or color image layers) image (indices x and y as I(x, y)) (Fig. 1a) has to be 

partitioned into overlapped sub-images. Each has the dimension 6x6 as shown in Fig. 1b, X1×Y1= 6×6 and is a function of 

the indices x1 and y1; S1(x1, y1). As mentioned before, overlapping here reduces latency and prevents discontinuity 

resulting from partitioning, thus giving high fficiency. Each sub-image has to be partitioned to four small non-overlapped 

sub-images with indices x2 and y2; S2(x2, y2) the size of each of these subimages must be equal to that of the spatial filter 

sizes; M×M=X2×Y2=3×3. The first partitioning with overlap and non-overlap band (delta=D) are implemented using 

relations below: 

 

 

 

 

 

 

 

 

 

 

Where the indices i and j stand for the horizontal and vertical overlapped blocks, respectively.For example, Fig. 1a 

shows a partitioning with L = 2, = 4.The second partitioning is repeated in the same manner as before in order to give on 

overlapped 

small sub-images (indices x2 and y2) with parameters: 

 

 

 

 

 

 

 

Where the indices i1 and j1 stand 

for the horizontal and vertical non-overlapped blocks, respectively, and (X-L)/(X1-L) = m and (Y-L) / (Y1-L) = n; m×n are 

the maximum number of overlapped sub-images, but X1/M=m1, Y1/M = n1; m1×n1 are the maximum number of no 

overlapped sub-images. It should be to note that in Eqs. 4 and 5 the non-overlapping enlarges the band to number M.  

 The partitioning and convolution processes can be performed in the one of the following manners: 
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1. Each time, a 6×6 overlapping block is subdivided into 4 small non-overlapping blocks each of 3×3 elements and the 

resulting four sub-blocks are then subjected to the convolution with the corresponding processors as shown in Figs. 1b, c and 

2. This method is presented in this paper. The Matlab code for this method is given in Fig. 3. 2. The entire image of size 

X×Y is first divided into overlapped 6x6 blocks. Then the resulting image is subdivided into non-overlapped blocks of the 

size 3×3. Then each 4 blocks of the size 3×3 are subjected to convolution. The advantage of this method resides in its 

simplicity however it requires more memory space. In many cases, partitioning helps to make processing implemented 

independently "in parallel "[5], [11]. In this paper, as we will see later on, the two points that need to be highlighted are: first, 

the four-processor banks in Fig. 2 are operating in parallel, and second, number o foperations is minimized by the factor of 

two. Taking into consideration these points, and in case of still image (single still picture), a fast image processing is  

expected. The issue of real time processing and video signal processing ' movie' requires further measures to ensure 

acceleration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig 1: Layout of the Partitioning grid for the input Image Filtering pass. 

(a) Formed input Image I(x, y) (b) First sub-Image with size X1×Y1 (Eq. 8) 

(c) Impulse Responses of the System [hf] Partitioned to four M×M=3×3 Coefficients 

 

3.2 Short Convolution Method 

3.2.1 Description of Algorithm 

The short convolution algorithm (length 3) as in Fig. 2 is used in this paper to develop an efficient implementation 

method for 2-D block processing. In our case each block filter inside the processor takes a set of input samples, (e.g. [x1]) 

and produces one pixel after convolution, (e.g. P11). The size of the input set should coincide with the filter coefficients. It 

should be noted that an input samples set must decrease by one column from its preceding one and the same is applied to the 

filter coefficients. Referring to Fig. 2, the set [x1] is a 3×3- array, the set [x1c] is a 3×2-array (one column less than [x1]), 

and the set [x2c] is a 3×1-array (one column less than [x1c]. Similarly, the filter coefficients are denoted by [h3c], [h2c], and 

[h1c]. The convolution results in an array that is a function of the size; e.g., P11 [3×3], P12 [3×2], and P13 [3×1] (rows 

remain constant while columns change from 3 to1). These samples are returned as the first output row. The second output 

row is then obtained after omitting the first row from the original set [x1], and the third row from the original filter 

coefficient set [hf]. The new sets [x1r] and [h3r] are subjected to the convolution by repeating the previous processing 

method. The second row will be P21 [2×3], P22 [2×2], and P23 [2×1]. 

Finally, the third row is obtained after omitting the second row from the preceding input samples set and 

coefficients set. Detailed description of the signal designation is illustrated in Table1 and Matlab function [y1] =  

newconv2DO(x1, hf). From the analysis of the processing, we observe that a change between output rows is obtained by 

decreasing the applied signal indices downwards and the system coefficients upwards. However, to get samples of the output 

row, the input signal decreases by a column from left to right and the system coefficients from right to left. In addition, it is 

seen that the number of operations per output pixel is varying with the output row. At the end of the process, the overall 

processor outputs are four sets each of 3x3 samples. Intermediate level samples, are concatenated to form convolved 

intermediate block of 6x6 samples. Finally the result is processed using Eq. 10 to obtain a 4x4 matrix sub-images (see 

Appendix for the Matlab function [yo] =calloutO (y1, y2, y3, y4)). 
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Table 1: Signals and Description 

 

3.2.2 Mathematical Processing 

The processor is ideally suited for real-time image processing applications, such as edge enhancement and edge 

etection.For the convolution-transform for each pixel shown in Fig. 2, the coefficients Pr, c is obtained by computing the 

two-dimensional dot product of [hf] and each 3×3 sub image. Convolution results as obtained from the first processor (y1) 

are as follows: 

 

 

 

 

 

 

 

 

 

In Eq. 6 the size of the filter MMand the input signal must change from a maximum M (maximum degree 

of overlapping) to a minimum one (minimum degree of overlapping). In Fig. 2 the convolution blocks indicate that the size 

of arrays used for convolution decreases gradually from 3×3 to 1×1. This reflects that the number of operations is variable 

and follows a falling ramp function with the lag index, instead of a trapezoidal form as in [11]; i.e. processors work in one 

mode (decreasing) instead of three modes (increasing-constantdecreasing).Eq. 7 shows that, in our case the output 

convolution samples are equal to the input samples (Fig. 2); this is not the case in [5] where only a quarter of the output 

samples,estimated by inverse FFT, are used.The remaining input sub-images are applied to the corresponding processors 

after appropriate flipping as given by Eq. 8 and require exactly the same operation steps as the first one. Flipping is applied 

differently in order to keep the algorithm applicable equally for all processors. Therefore, all processors perform same 

operation. 
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Here matrix J is the exchange matrix. 

Fig 2: Algorithm for small Convolution 

Matlab function [y1] newconv2DO(x1, hf) 

 

Similar operations as dictated by Eq. 8 are also performed with filter coefficients (Fig 1b). An intermediate stage is 

introduced according to Eq. 9. The external function yIT successively converts the results of the four processors (6x6 pixels) 

to the final processing level, which is saved as output of 4x4 blocks (Eq. 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where C1, C2, C3 and C4 are the local corner convolved points of the four sub-images. Eq. 10 points out that the 

increase in the number of pixels due to overlapping (Fig. 1) is compensated here horizontally then vertically or parallel after 

convolution takes place using function[yo]=calloutO(y1,y2,y3,y4) (see Appendix). This is similar to the methods, which 

apply operations after convolution methods such as overlap-add, or overlap-save methods [12]. It should be noted that corner 

points have an important particularity that they do not add to neighboring pixels of sub-images and maintain properties of  
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convolved sub-images. For sub image of size X2×Y2, to be convolved with a filter whose impulse response has a 

support M×M=X2×Y2=3×3 (Figs. 1b and c), the number of multiplications as indicated in processor1 of Fig. 2 is 36. If we 

apply the doubly circulant matrix 2-D filtering technique given by Eq. 11 [7] in Fig. 1, the number of multiplications would 

be constant and equal to nine per output sample. For an output matrix of 5×5 it reach 225 operations and for our case the 

output matrix 3x3 requires 81 operations, so the gain in simplicity more than 2. 

 

 

 

 

 

 

 

 

 

 

In Eq. 11 H0 to H4 are basic matrices of dimension 3×3, and.x0, x1, x2 are input column vectors of length 3 

stacked to give column–ordered vector length 9. Output vectors y0 to y4 are columns of length 5 and represent 2-D array 

size 5×5. 

Noise labeled with convolution can be reduced by well-known linear or nonlinear techniques. Nonlinear methods 

often provide good noise cleaning technique in which each pixel is compared to the average of its eight neighbors. 

According to Eq. 12. 
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Each core pixel C is compared to the average of its eight neighbors Si. If the level of the difference is greater than 

some threshold level T, the pixel is judged to be noisy, and it is replaced by its neighborhood average. 

Pseudo code below (Fig. 3) shows how we exploit previous partitioning for implementation block -convolution. 

Fig 3: Partitioning and Convolution Matlab code 

 

IV. EXPEREMENTAL RESULTS and PERFORMANCE EVALUATION 
Grayscale image (possibly color image layers) of size 1206×1206 is used in the experiments of this paper (see Fig. 

3). An original image as shown in Fig. 4a is subjected after partitioning to filtering with folded impulse response hf=[1, 2, 1; 

0, 0, 0;-1, -2, -1] and without partitioning (Matlab convolution using either double circulant matrix or sliding window) with 

impulse response hm=[-1, -2, -1; 0, 0, 0; 1, 2, 1]. For enhancing output image point, gray level modification is undertaken 

i.e. dividing output image by F=max (min (output image matrix)). 

The results of extracting horizontal Sobel high pass edge components of original image are shown in Figs. 4b and 

4c. Fig.4c (right) results due to the conventional convolution, whereas Fig.4b results due to the proposed block convolution. 

Comparing the two results, it is observed, that the image in Fig. 4b shows better local features than that in Fig4.c where local 

edge detail (inner borders) has been lost, and a distortion as global features (outer borders) of x y = hf -1×hf -1 has 

been introduced. Our aim here is to evaluate the results of both two-convolution methods shown before by using two 

objective evaluation criteria: spatial quality correlation coefficient [4,14]; the peak signal-to-noise ratio (PSNR) and the 

corresponding Mean Square Error (MSE), computed using Matlab functions below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Image with a Sobel Horizontal edge detector 

b-Output image due to proposed method   c-Output image due to classical methods 

 

c =corr2 (y1_n, y) and [psnr, mse] = psnr_mse_maxerr (y1_n , y)  (13) 

Here y and y1_n are variables that represent images before addition of Gaussian noise (Fig4- c) and after it, 

respectively. Same process is repeated for the results of the proposed algorithm (Fig4-b). For illustration, the results of 

evaluation are shown together in Table-2 and Fig. 5 . Higher PSNR of image means better quality of the measured image and 

vice versa to MSE. The PSNR results by the proposed method are higher than that by classical methods. The difference is 

around 7dB, this is why images resulted from proposed method are visually distinguishable better. Regarding this evaluation, 

we can say that there is a matching between objective and subjective evaluations. Spatial quality of the proposed method is 

higher than that of the conventional convolution techniques mentioned above this page. Under the effect of white Gaussian, 

SNR from 0 db to 30 db, the performance of the proposed algorithm does not change and it preserves the same properties 

attained from noise free source. Moreover, the proposed technique could also generate high quality images when the noisy 

images de-noised with thresholding (see Eq,12).The proposed algorithm guarantees that the quality of the resulting 

convolved image is always satisfactory for noise free source, noisy and de-noised convolved images. The presented 

partitioning algorithm can be useful in many applications such as image classification, fusion [14] and identifications [9] and 

others. 

 



2D BLOCK FOR SPATIAL CONVOLUTION  

ISSN: 2278-7461    www.ijeijournal.com    P a g e  | 52 

 

 

 

 

 

 

 

 

 

table2: Evaluation results (min and max) from PSNR and MSE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig 5 : Correlation coefficient for conventional and proposed method 

 

V. DISCUSSION & CONCLUSION 
In this paper, an algorithm has been designed for decreasing complexity and minimizing number of operations 

enough to reconstruct the input image. We have presented and implemented a 2-D algorithm for the sub-image (block) 

digital filtering or cross correlation measuring based on double partitioning of large 2-D image into smaller sub-images. 

Moreover, the decomposition of computation into parallel processing as depicted in processor1 has reduced the complexity. 

The spatial filtering has been used to implement filtering stage. Since the convolution and correlation are two related 

operations, so this 

algorithm is common for them except that in correlation a mask needs not to be rotated by 180 degree prior 

correlations with the input image. Comparison of this algorithm with Matlab convolution function or cross-correlations 

functions gives zero error in gray-level values with small different in sizes. This algorithm is designed so that the side effects 

of convolution at the boundaries of image are reduced. This is accomplished by neglecting a surrounding frame of size 2x2, 

which is equal to the filter size 

minus one (M-1). A positive effect of this is translated by a reduction in complexity, which raises the advantages 

of this algorithm and gives an example of zooming-in of an entire image as shown in Fig. 4b of Appendix . This can be 

interpreted by the fact that a local scale reduction of each small sub-images results in a change of distance from the sensor. 

The proposed algorithm can be used in various applications as follows: - Hiding information and specially with hiding 

technology based on block-partitioning strategy. We can embed hiding process before or after convolution stage. Possibly, 

with some arrangement both convolution, hiding processes and geometric transformation may be implemented in parallel. It 

is possible to approximate complex geometric transformation by partitioning an image. 
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Image registration: corner points are specific points determined by all pixels of input sub image and have 

maximum number of operations, so they can be used as control points. 

These above mentioned applications constitute the objects for future research work. 

 

VI. APPENDIX 
Matlab-Functions: new convolution (newconv2DO) and call out results of convolution 

(callout O). 

Function [y1] =newconv2DO(x1, hf) 

p11=sum (sum (x1.*hf)); %1st o/p convolved sample of 1st row 

xr=x1(1:3, 2:3); %omit 1st column [x1c] from [x1] (see Fig.2) 

hr=hf (1:3, 1:2); %omit 3ed column [h3c] from [hf] 

p12=sum (sum (xr.*hr)); %2ed o/p convolved sample 

xrr=xr (1:3, 2); %again omit column2 from previous matrix [xr] 

hrr=hr (1:3, 1); %again omit column2 from previous matrix [hr] 

p13=sum (sum (xrr.*hrr)); %3ed o/p convolved samples 

X1= [p11 p12 p13]; %call results row1 

xr2=x1(2:3, 1:3); %omit1st row [x1r] from original [x1] 

hr2=hf (1:2, 1:3); %omit 3ed row [h3r] from original [hf] 

p21=sum (sum (xr2.*hr2)); %1st o/p convolved sample of 2nd row 

xr3=xr2 (1:2, 2:3); %omit 1st column [x1c] from previous matrix [xr2] 

hr3=hr2 (1:2, 1:2); %omit 3ed column [h3c] from previous matrix [hr2] 

p22=sum (sum (xr3.*hr3)); 

xr4=xr3 (1:2, 2); 

hr4=hr3 (1:2, 1); 

p23=sum (sum (xr4.*hr4)); 

X2= [p21 p22 p23]; %call results row2 

xr5=xr2 (2, 1:3); %omit 2nd row [x2r] from previous matrix [xr2] 

hr5=hr2 (1, 1:3); %omit 2nd row [h2r] from previous matrix [hr2] 

p31=sum (sum (xr5.*hr5)); 

xr6=xr5 (1, 2:3); hr6=hr5 (1, 1:2); 

p32=sum (sum (xr6.*hr6)); 

xr7=xr6 (1, 2); hr7=hr6 (1, 1); 

p33=sum (sum (xr7.*hr7)); 

X3= [p31 p32 p33]; %call results row3 

y1=[X1; X2; X3]; %O/P of 1st processor 

End 

Function [yo] =calloutO (y1, y2, y3, y4) 

Yf=zeros (6, 6); 

Yf (1:3, 1:3) =y1; 

Yf (1:3, 4:6) =y2; 

yf (4:6, 1:3) =y3; 

yf (4:6, 4:6) =y4; 

yf(1:6,2)=yf(1:6,2)+yf(1:6,6);%hor 

Yf (1:6, 3) =yf (1:6, 3) +yf (1:6, 5); 

yf(2,1:4)=yf(2,1:4)+yf(6,1:4);%ver. 

Yf (3, 1:4) =yf (3, 1:4) +yf (5, 1:4); 

Yo=yf (1:4, 1:4); 

End 
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