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Abstract: In this paper, Lagrangian formulations for geometric nonlinear plane stress/strain problems based on 

different stress measures are evaluated. A Total Lagrangian formulation based on the exact Engineering strains 

is developed. The 2ndPiola-Kirchhoff stresses based on the well known Green strains and the Engineering 

stresses based on the exact Engineering (geometric or conventional) strains obtained from Total Lagrangian 

formulations are compared with the true Cauchy stresses. The Engineering stresses based on the assumption of 

small shear strains are also compared with the above mentioned stresses. Geometric nonlinear Total 

Lagrangian formulations applied on two-dimensional elasticity using 4-node plane finite elements were used. 

The formulations were implemented into the finite element program (NUSAP). The solution of nonlinear 

equations was obtained by the Newton-Raphson method. The program was applied to obtain stresses for the 

different strain measures. The true Cauchy stresses were obtained by using the Logarithmic strains. The 

evaluation was based on comparing the results of three numerical examples. For moderate and large strains, 

the exact Engineering stresses are good measures of the correct physical stresses.  Thus, these must be used 

when the stresses are required from a Total Lagrangian solution. 

Keywords: Cauchy stresses, Engineering strain, Geometric Nonlinear, Plain stress/strain, Total Lagrangian  

 

I. INTRODUCTION 
Almost all structures behave in some nonlinear manner prior to reaching their limit of resistance. For 

this reason, most modern codes have incorporated certain provisions to consider nonlinear effects e.g. limit state 

design methods. Also, the use of light, high strength materials, resulting in light “tall” structures, introduces 

certain degrees of nonlinearity. This coupled with advance in solution methods and computing facilities make 

room for geometric nonlinear analysis. The major problem in geometrically nonlinear (GNL) finite element 

analysis is the need to define reference coordinates and to specify the relevant stress and strain measures. 

The two main finite element formulations for GNL problems are the Eulerian formulations (EFMS) 

and the Lagrangian formulations (LFMS). As stated, among others, by Yang and Kuo [1], Crisfield [2], 

Zeinkiewicz and Taylor [3] and Mohamed [4] LFMS, in contrast to EFMS, are suitable in solid mechanics 

applications. This is mainly due to the ease with which they handle complicated boundaries and their ability to 

follow material points enabling the accurate treatment of history dependent materials. There are two main 

approaches to LFMS, namely the Total Lagrangian (TL) and the Updated Lagrangian (UL). Yang and Kuo [1], 

Zeinkiewicz and Taylor [3], Belytschko [5] and Marinkowic et al [6], stated that the UL approach provides the 

most efficient formulation and can be considered equivalent to the EFM. Wood and Zeinkiewicz [7] stated that 

the TL approach offers advantages since the initial configuration remains constant which simplifies formulation 

and computation. Surana and Sorem [8] presented a TL approach for framed structures with no restrictions  on 

rotation increments. Djermane et al [9] pointed out that the TL formulation is now recognized as the most 

realistic civil engineering approach. But, the main serious drawback of the TL approach is that it is based on the 

Green strains, which are unsuitable for work with large strains. Also, the 2
nd

Piola-Kirchhoff stresses, which are 

work conjugate to the Green strains, are defined in the deformed configuration and should be transformed to the 

undeformed configuration [1], [2], [3], [4] and [8]. Thus, the TL approach while being very well established, 

having the above mentioned advantages and giving accurate displacement values, will result in stresses with no 

physical significance [2]. 

As for the definition of stress and strain measures, Crisfield [2] and Bonet and Wood [10] proposed the 

use, as work conjugate in the virtual work expression, the Green strains with the 2
nd

Piola-Kirchhoff stresses, the 

Engineering (conventional or geometric) strains with the Engineering stresses and the Logarithmic strains with 

the Cauchy "true" stresses. Yang and Kuo [1] used, as work conjugate, the Green-Lagrange strains with the 

2
nd

Piola-Kirchhoff stresses, the Infinitesimal strains with the Cauchy stresses and the Updated Green strains 

with the Updated Kirchhoff stresses. They adopted the Updated Kirchhoff stresses as the measure of the "true" 
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physical stresses. In fact, the proposition that: using the UL approach converts the 2
nd

Piola-Kirchhoff stresses to 

the "true" stresses is also adopted by many researchers [2], [3], [5], [6] and [10]. 

An alternative TL approach that results in evaluating "correct" stresses was developed by Surana and 

Sorem [8]. Their formulation for framed structures removed the restrictions of small rotation increments by 

retaining nonlinear terms in the definition of the element displacement field. Mohamed [4] presented a TL 

formulation based on the Engineering strains which resulted in the correct stresses for small strain large rotation 

deformation of beams. Mohamed and Adam [11], [12] extended the TL formulation based on Engineering 

strains to the analysis of shell structures. Akasha [13] and Akasha and Mohamed [14], [15] developed a similar 

TL formulation for plane stress/strain problems. These formulations were based on using the Engineering strains 

with the Engineering stresses in the virtual work expression.  The formulations were developed basing the 

variation of the Engineering strains on the variation of Green strains. These formulations are similar to the 

positional formulation based on Engineering strains used by Greco and Ferreira [16]. The formulations were, 

also, extended to include the evaluation of the true Cauchy stresses based on Logarithmic strains [13], [14] and 

[17]. The only limitation of these formulations is the assumption that the shear strains are small. However, it is 

possible to avoid this limitation by considering the exact variation of the Engineering strains.  

This paper presents a TL formulation based the exact variation of Engineering strains. The paper is, 

also take an evaluation of the TL nonlinear stresses which are compared with the true Cauchy stresses presented 

by Akasha and Mohamed [17] using the Logarithmic strains. The comparison is carried out for plane 

stress/strain problems with the intention of investigating the effect of large strains on the different stress 

measures. The effect of avoiding the limitation on shear strains is, also, looked into. The comparison is 

considered as a criterion for ensuring the accuracy, consistency and convergence to the correct results of the 

nonlinear analysis. Thus, the aim of the evaluation is pointing out when the TL formulation based on 

Engineering strains is to be used, with confidence, in the analysis of large strain problems. 

 

II. NONLINEAR FINITE ELEMENT FORMULATION  
In the following sections there are two alternative Lagrangian formulations of the incremental 

equilibrium equations for large strain two dimensional problems which are outlined below. 

 

2.1 Geometrically Non-linear Finite Element TL Formulation based on Green strains (TLG): 
The 2

n
dPiola-Kirchhoff stresses, work conjugate to the Green-Lagrange strains, are the internal forces 

per unit initial area acting along the normal and tangential directions at the deformed configuration [1], [2] and 

[4]. Thus, these stresses are referred to the convected coordinates in the deformed configuration but measured 

per unit area of the undeformed body with attempts to take this into consideration in the virtual work expression 

result in an unsymmetrical stiffness matrix [4]. Hence, direct proportionality between the 2
nd

Piola-Kirchhoff 

stresses, s0, and the Green-Lagrange strains, e0, is assumed when writing the virtual work expression. In two 

dimensions, with reference to the initial configuration (t=0), the Green strains are given by: 

𝒆𝟎 =  𝑒𝑥,𝑒𝒚,𝑒𝑥𝑦  
𝑇

 =  
1

2
 𝐅T𝐅 −  𝐈                                                                            (1) 

where F is the displacement gradient matrix. 

In a finite element formulation equation (1) is written as: 

 𝒆𝟎 = 𝒆0
𝟎 +  𝒆0

𝑳   =  𝑩𝟎𝒂𝟎 +
1

2
𝑩𝑳 𝒂𝟎 𝒂0                                                                  (2) 

where 𝒂𝟎 is the vector of nodal variables. 

The nonlinear strain e0
Lcan be written as: 

𝒆𝟎
𝑳 =

1

2
𝑩𝑳 𝒂𝟎 𝒂0  =  

1

2
𝑨𝜃𝑮0𝒂0                                                                                  (3) 

The strain displacement matrix B is given by: 

𝑩 =  𝑩𝟎  +  𝑩𝑳 𝒂𝟎                                                                                                       (4) 
The tangent stiffness matrix now takes the form: 

𝑲𝑇 = 𝑲0 +  𝑲𝐿 𝒂𝟎 + 𝑲𝜎                                                                                          (5) 

where: 

𝑲0 + 𝑲𝐿 𝒂𝟎 =  𝑩𝑇𝑫𝑩 𝑑𝑉0
𝑉0

                                                                                   (6)𝑎 

in which D is the modulus matrix, and the initial stress stiffness matrix is given by: 

𝑲𝜎 =  𝑮0
𝑇𝑷0𝑖𝑮0𝑑𝑉0

𝑉0

                                                                                                    (6)𝑏 

in which 𝑷0𝑖 is the initial stress matrix. 

The displacement increments ∆a0
i  are evaluated by using KT  and the residuals as: 
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∆𝒂0
𝑖 = − 𝑲𝑇

−1𝝋𝑖                                                                                                               (7) 

The total displacements are, then, obtained as: 

a0
i+1 =  a0

i + ∆a0
i                                                                                                            (8) 

The strain increments are defined by: 

∆𝒆𝑜
𝑖  =   𝑩𝟎 + 𝑩𝑳 𝒂0

𝑖  +  
1

2
𝑩𝑳 ∆𝒂0

𝑖    ∆𝒂0
𝑖                                                           (9) 

And the stress increments are given by: 

∆𝒔𝟎
𝒊  = 𝑫∆𝒆𝑜

𝑖                                                                                                                      (10) 

And the total stresses are: 

𝒔𝟎
𝒊+𝟏  =  𝒔0

𝒊 + ∆𝒔𝟎
𝒊                                                                                                             (11) 

From which the nodal residual forces are evaluated as follows: 

−𝝋𝒊+𝟏  = 𝑹 −  𝑩𝑇𝒔𝟎
𝒊+𝟏𝑑𝑉0

𝑉0

                                                                                      (12) 

where 𝑹 is the vector of applied equivalent nodal forces and:  

𝑩 =  𝑩𝟎  +  𝑩𝑳 𝒂0
𝒊+𝟏  

 

2.2 Geometrically Non-linear Finite Element TL Formulation based on Engineering strains (TLE):  

In two dimensions the geometric strains, unit stretches, εx  and εy  are defined by the change in length 

per unit initial length of line elements originally oriented parallel to the x and y axes respectively. The shear 

strain γ
xy

 is the actual angle change. 

The geometric strains, as defined above, are given in terms of Green strains by: 

𝜀𝑥  =   𝑔𝑥 . 𝑔𝑥 
1

2  − 1 =   1 + 2𝑒𝑥 
1

2 −  1                                                                             

𝜀𝑦  =    𝑔𝑦 . 𝑔𝑦 
1

2 −  1 =   1 + 2𝑒𝑦 
1

2 − 1                                                                    (13) 

And the shear strain is defined as: 

𝛾𝑥𝑦  =  sin−1
𝑒𝑥𝑦

 1 + 2𝑒𝑥 
1

2 1 + 2𝑒𝑦 
1

2

                                                                            (14) 

where: 

𝑒𝑥𝑦 =  𝑔𝑥 . 𝑔𝑦  =   1 + 2𝑒𝑥 
1

2 1 + 2𝑒𝑦 
1

2  sin 𝛾𝑥𝑦                                                                

                        𝑔𝑥  = 
𝜕𝑅

𝜕𝑥
  , 𝑔𝑦 =

𝜕𝑅

𝜕𝑦
  are the displacement gradient vectors, and R is the position vector after 

deformation. 

The variation in the Engineering strains is given by: 

𝛿𝜺0  = 𝑯 𝛿𝒆0                                                                                                            (15) 
where:  

𝛿𝒆0  =   𝑩0 + 𝑩𝐿 𝒂0  𝛿𝒂0                                                                          
                 =   𝑩0 + 𝑨𝜃𝑮0 𝛿𝒂0  = 𝑩𝛿𝒂0                                                               (16) 

From which, the variations in the Engineering strains are given by: 

𝛿𝜺0  = 𝑯𝑩𝛿𝒂0  =  𝑩∗ 𝛿𝒂0                                                                                     (17) 

In which B is the strain matrix, and H relates variation in Engineering strains to variation in Green 

strains. 

The incremental equilibrium equations in terms of Engineering stresses are:  

𝑲𝑇
∗  ∆𝒂0  =  𝑹 −  𝑩𝑇𝑯𝑇𝝈 𝑑𝑉0

𝑉0

 =   𝑹 −  𝑩∗𝑇𝝈 𝑑𝑉0
𝑉0

                                      (18) 

where 𝝈 are the Engineering stresses.  

The tangent stiffness matrix   𝑲𝑇
∗   is now given by:   

𝑲𝑇
∗  =  𝑲0

∗ +  𝑲𝐿
∗ + 𝑲𝜎

∗ +  𝑲𝜎
∗∗                                                                                     (19) 

where:  

𝑲0
∗  =   𝑩0

𝑇𝑯𝑇𝑫𝑯𝑩0𝑑𝑉0
𝑉0

                                                                                           20 𝑎 

and 

𝑲𝐿
∗  =   𝑩0

𝑇𝑯𝑇𝑫𝑯𝑩𝐿𝑑𝑉0
𝑉0

+  𝑩𝐿
𝑇𝑯𝑇𝑫𝑯𝑩0𝑑𝑉0

𝑉0

+  𝑩𝐿
𝑇𝑯𝑇𝑫𝑯𝑩𝐿𝑑𝑉0

𝑉0

     20 𝑏 

and 𝑲𝜎
∗   is the symmetric matrix dependent on the Engineering stress, and can be written as: 
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𝑲𝜎
∗  =  𝑮0

𝑇𝑷𝟎𝒊
∗ 𝑮0𝑑𝑉0

𝑉0

                                                                                                    (21) 

where 𝑮0 is a matrix containing shape function derivatives. 

and the initial stress matrix 𝑷𝟎𝒊
∗  is defined as:  

𝑷𝟎𝒊
∗  =   

𝜎𝒙
∗ 𝐼 𝜎𝒙𝒚

∗  𝐼 

𝜎𝒙𝒚
∗  𝐼 𝜎𝒚

∗ 𝐼 
                                                                                              (22) 

where  𝐼  is 22 unit matrix. 

and 𝝈∗is the stress vector given by:  

𝝈∗ =   

𝜎𝒙
∗

𝜎𝒚
∗

𝜎𝒙𝒚
∗
  =  𝑯𝑇  

𝜎𝒙
𝜎𝒚
𝜎𝒙𝒚

                                                                                               (23) 

and the additional geometric stiffness matrix 𝑲𝜎
∗∗ takes the following form:  

𝑲𝜎
∗∗  =   𝑩𝑇𝑷𝟎𝒊

∗∗𝑩 𝑑𝑉0
𝑉0

                                                                                                 (24) 

where 𝑷𝟎𝒊
∗∗ is obtained from:  

𝛿𝑯𝑇𝝈 =  𝑷𝟎𝒊
∗∗𝛿𝜺0  = 𝑷𝟎𝒊

∗∗ 𝑩𝛿𝒂0                                                                                 (25) 

Upon solving the incremental equilibrium equations for the displacement increments ∆a0
i  and evaluating 

the total displacements a incremental strains are obtained as:  

∆𝜺0
𝑖  =   𝑯  𝐁𝟎 +  𝐁𝑳 𝒂0

𝑖  + 
1

2
𝐁𝑳 ∆𝒂0

𝑖    ∆𝒂0
𝑖                                                  (26) 

The stress increments are then given by:  

∆𝝈0
𝑖  = 𝑫∆𝜺0

𝑖                                                                                                                  (27) 
And the total stresses are:  

𝝈0
𝑖+1  =  𝝈0

𝑖 + ∆𝝈0
𝑖                                                                                                         (28) 

The residual forces, for a new displacement increment, are then equal to: 

−𝝋𝒊+𝟏  = 𝐑 −  𝑩𝑇𝑯𝑇𝝈𝟎
𝒊+𝟏𝑑𝑉0

𝑉0

 

= 𝐑 −  𝑩∗𝑇𝝈𝟎
𝒊+𝟏𝑑𝑉0

𝑉0

                                                                                               (29) 

 

III. NUMERICAL RESULTS ANDDISCUSSION 
The finite element TLG and TLE formulations described in the above section were implemented in the 

NUSAP coded by FORTRAN. Three numerical examples of large deformation problems were examined to 

demonstrate the degree of accuracy that can be obtained by using the geometrically non-linear formulations based 

on 4-node isoparametric plane stress/strain elements. The examples were also solved by using Green strains and 

the approximate Engineering strains [15]. The results of the stresses of the three TL formulations are compared 

with the true Cauchy stresses based on Logarithmic strains obtained using the formulation presented in references 

[13] and [17]. 

 

3.1 Cantilever under point load at free end: 
The TLE (Eng Exact), approximate TLE (Eng) and TLG (Green) formulations were tested by 

analyzing the cantilever plate with vertical load at the free end. The cantilever is of dimensions L=2.5 m, D = 1 

m and t = 0.1 m as shown in Figure (1). The numerical values of material property parameters are; Young's 

modulus, E = 2x10
8
 kN/m

2
 and Poisson’s ratio υ = 0.3. The structure is modeled with 40 equal size 

isoparametric elements. The cantilever was, also, analyzed using Logarithmic (Log) strains for comparison.  

Graphical comparison of results of the stresses at the support and at mid- span are presented in Figures 

(2) to (7). Tables (1), (2) and (3) show the stresses at mid-span. The results of the true Cauchy stresses are also 

shown. At mid-span the results for the direct stresses are almost identical for the Log and Eng exact 

formulations. The slight differences may be attributed to the large strain value at mid-span. The Green values 

vary greatly from the correct values and are almost zero in the x-direction for maximum load. The differences in 

the shear stress values are mainly due to the assumption that the shear strain is small in the formulations other 

than Eng Exact. The results for the direct stresses at the support are in close agreement. Those for the shear 

stresses at the support are in close agreement for Eng Exact and Log formulations. The shear values from the 

Eng formulation are approximate. The shear values from the Green formulation differ largely from the correct 

values as expected. 
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Fig. (1) Cantilever plate with vertical load at free end 

 

Table (1): Average Nodal Stress in x-direction at mid span 

LOAD 

(kN) 

Stress (kN/m
2
) 

LOAD 

(kN) 

Stress (kN/m
2
) 

Green Eng Log 
Eng 

Exact 
Green Eng Log 

Eng 

Exact 
0 0 0 0 0 92000 -5.64E+06 -5.84E+06 -6.63E+06 -4.86E+06 

4000 -2.99E+05 -2.99E+05 -2.99E+05 -2.99E+05 100000 -5.82E+06 -5.83E+06 -6.65E+06 -4.51E+06 

20000 -1.48E+06 -1.50E+06 -1.51E+06 -1.49E+06 116000 -5.89E+06 -5.09E+06 -5.70E+06 -2.82E+06 

36000 -2.62E+06 -2.71E+06 -2.80E+06 -2.66E+06 132000 -5.47E+06 -3.03E+06 -2.79E+06 6.57E+05 

52000 -3.69E+06 -3.89E+06 -4.14E+06 -3.75E+06 148000 -4.42E+06 8.10E+05 2.94E+06 6.54E+06 

68000 -4.63E+06 -4.94E+06 -5.41E+06 -4.59E+06 164000 -2.62E+06 6.94E+06 1.24E+07 1.55E+07 

84000 -5.37E+06 -5.67E+06 -6.38E+06 -4.95E+06 180000 8.12E+04 1.58E+07 2.63E+07 2.81E+07 

 

 
 

Fig. (2): Average Nodal Stress in x-direction at mid span     Fig. (3): Average Nodal Stress in y-direction at mid span 
 

Table (2): Average Nodal Stress in y-direction at mid span 

LOA

D 

(kN) 

Stress (kN/m
2
) 

LOAD 

(kN) 

Stress (kN/m
2
) 

Green Eng Log 
Eng 

Exact 
Green Eng Log 

Eng 

Exact 
0 0 0 0 0 92000 3.74E+05 9.81E+05 1.01E+06 1.99E+06 

4000 2.42E+04 2.44E+04 2.44E+04 2.43E+04 100000 6.92E+05 1.68E+06 1.90E+06 3.02E+06 

20000 1.20E+05 1.28E+05 1.38E+05 1.20E+05 116000 1.63E+06 3.81E+06 4.82E+06 6.08E+06 

36000 1.98E+05 2.27E+05 2.77E+05 1.77E+05 132000 3.08E+06 7.24E+06 9.81E+06 1.09E+07 

52000 2.22E+05 2.53E+05 3.65E+05 9.64E+04 148000 5.18E+06 1.24E+07 1.76E+07 1.80E+07 

68000 1.35E+05 7.97E+04 2.34E+05 2.89E+05 164000 8.06E+06 1.96E+07 2.88E+07 2.79E+07 

84000 1.39E+05 4.81E+05 3.91E+05 1.22E+06 180000 1.19E+07 2.93E+07 4.42E+07 4.11E+07 

 

 

 

 

 

Average Nodal Stress in y-direction at mid span
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Table (3): Average Shear Stress at mid span 

LOAD 

(kN) 

Stress (kN/m2) 
LOAD 

(kN) 

Stress (kN/m2) 

Green Eng Log 
Eng 

Exact 
Green Eng Log 

Eng 

Exact 
0 0 0 0 0 92000 -5.71E+05 -8.71E+05 -9.87E+05 -9.32E+05 

4000 2.17E+04 -2.17E+04 -2.17E+04 -2.17E+04 100000 -6.48E+05 -1.05E+06 -1.22E+06 -1.12E+06 

20000 -1.08E+05 -1.10E+05 -1.10E+05 -1.11E+05 116000 -8.31E+05 -1.48E+06 -1.83E+06 -1.54E+06 

36000 -1.94E+05 -2.05E+05 -2.06E+05 -2.12E+05 132000 -1.06E+06 -1.99E+06 -2.53E+06 -1.98E+06 

52000 -2.84E+05 -3.24E+05 -3.29E+05 -3.40E+05 148000 -1.35E+06 -2.48E+06 -3.08E+06 -2.25E+06 

68000 -3.84E+05 -4.86E+05 -5.10E+05 -5.18E+05 164000 -1.72E+06 -2.73E+06 -2.90E+06 -2.06E+06 

84000 -5.03E+05 -7.20E+05 -7.92E+05 -7.71E+05 180000 -2.17E+06 -2.42E+06 -1.07E+06 -9.74E+05 

 

 
 

Fig. (4) Average shear stress at mid span Vertex           Fig. (5) Average Nodal Stress in x-direction at support 

 

 
 

Fig. (6) Average Nodal Stress in y-direction at mid span       Fig. (7) Average shear stress at Support 

 
3.2 Cantilever under pure bending at free end: 

A cantilever subjected to pure moment is considered. The cantilever is of dimensions L = 3000 mm,     

D = 300 mm and thickness t = 60 mm as shown in Figure (8). The numerical values of material property 

parameters are Young's modulus, E = 210 GPa, and Poisson’s ratio,  = 0.3. The structure is modeled with a 

mesh of 40-isoparametric elements. The mesh is of equal elements size of 150x150 mm. The variations in the 

stresses at the support and at mid-span with load increments as computed by Eng exact formulation are 

compared with the Eng and Green formulations from Ref [15] and the Log formulation result presented in Ref 

[17]. The results are presented in Figures (9) to (14) and tables (4) to (9).   

As can be seen from the tables the values of the stresses are generally small. The stresses in the x-

direction are in close agreement for all formulations up to the 24000 N load. The Eng Exact and Log values 

clearly agree for all loads. There is a large difference between these values and the Green value for maximum 

load. The stresses in the y-direction and the shear stresses at mid-span show a similar trend with the Green 

values almost zero for all loads. This shows that the Engineering stresses, in contrast to the stresses obtained 

using Green strains, are correct measures of the physical stresses. The stresses at the support vary linearly and 

are all in close agreement. This is mainly due to the small strain values at the support. 
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Figure 8: Cantilever under pure bending 

 

Table (4): Average Nodal Stress in x-direction at mid span 

Stress (N/mm
2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

1.23E+00 1.24E+00 1.22E+00 1.24E+00 6000 

2.43E+00 2.47E+00 2.41E+00 2.50E+00 12000 

3.37E+00 3.54E+00 3.49E+00 3.58E+00 18000 

3.63E+00 4.09E+00 4.35E+00 3.94E+00 24000 

2.61E+00 3.58E+00 4.84E+00 2.71E+00 30000 

 

 
 

Fig. (9): Average Nodal Stress in x-direction at mid span      Fig. (10): Average Nodal Stress in y-direction at mid span 

 

Table (5): Average Nodal Stress in y-direction at mid span 

Stress (N/mm
2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

9.13E-02 9.59E-02 9.75E-02 9.62E-02 6000 

7.57E-02 1.21E-01 1.66E-01 1.05E-01 12000 

3.18E-01 1.50E-01 1.33E-01 2.86E-01 18000 

1.54E+00 1.10E+00 1.15E-01 1.67E+00 24000 

4.18E+00 3.26E+00 7.18E-01 4.92E+00 30000 

 

Table (6): Average Shear Stress at mid span 
Stress (N/mm

2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

2.67E-03 1.26E-03 6.77E-04 4.47E-05 6000 

2.23E-02 1.48E-02 5.56E-03 1.50E-02 12000 

8.97E-02 6.87E-02 2.32E-02 8.82E-02 18000 

2.48E-01 2.02E-01 6.56E-02 2.83E-01 24000 

5.40E-01 4.43E-01 1.47E-01 6.39E-01 30000 
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Fig. (11) Average shear stress at mid-span                           Fig. (12) Average Nodal Stress in x-direction at support 

 

Table (7): Average Nodal Stress in x-direction at support 

Stress (N/mm
2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

1.82E+00 1.80E+00 1.81E+00 1.78E+00 6000 

3.66E+00 3.58E+00 3.64E+00 3.50E+00 12000 

5.54E+00 5.35E+00 5.47E+00 5.19E+00 18000 

7.44E+00 7.12E+00 7.31E+00 6.86E+00 24000 

9.36E+00 8.90E+00 9.15E+00 8.52E+00 30000 

 

Table (8): Average Nodal Stress in y direction at support 

Stress (N/mm
2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

9.13E-02 9.59E-02 9.75E-02 9.62E-02 6000 

7.57E-02 1.21E-01 1.66E-01 1.05E-01 12000 

3.18E-01 1.50E-01 1.33E-01 2.86E-01 18000 

1.54E+00 1.10E+00 1.15E-01 1.67E+00 24000 

4.18E+00 3.26E+00 7.18E-01 4.92E+00 30000 
 

Fig. (13): Average Nodal Stress in y-direction at support              Fig. (14): Average Shear Stress at support 
 

Table (9): Average Shear Stress at support 

Stress (N/mm
2
) LOAD 

(N) Eng Exact Eng (Geom) Green Log 

0 0 0 0 0 

1.24E+00 1.25E+00 1.23E+00 1.23E+00 6000 

2.50E+00 2.52E+00 2.43E+00 2.44E+00 12000 

3.77E+00 3.82E+00 3.61E+00 3.64E+00 18000 

5.05E+00 5.14E+00 4.77E+00 4.81E+00 24000 

6.36E+00 6.49E+00 5.90E+00 5.97E+00 30000 
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3.3 Clamped beam under point force 
A beam with two-fixed ends is considered. The beam is of length L = 200 mm, height D = 10 mm and 

thickness 1 mm as shown in Figure (15). The numerical values for material property parameters are Young's 

modulus, E = 210 GPa, Poisson's ratio, = 0.3. The beam is modeled with a mesh of 20-elementes. 

The variation of the stresses at the support and at mid-span with the load increments as computed from 

the Eng Exact formulation and for the approximate Eng and Green formulations (Ref. [15]), are compared with 

the true stresses(Ref. [17]) in Figures (16) to (21). 

 
Fig. (15): Clamped beam under point force 

 

Tables (10), (11) and (12) show the values for average nodal stresses at mid-span. Very large loads 

were applied in example resulting in large strains.  

There is a marked difference between the Green and the other formulations’ values for the stresses at 

the support for large load values. This is expected for cases of large strain. The Eng Exact values are the closest 

to the Log (Cauchy) values for direct stresses. A similar trend is shown by the values of the stresses in the x-

direction at mid span with a maximum percentage difference between the Eng Exact and Log values of about 

7% (around 69% for the Green and 37% for Eng). The stress at mid-span in the y-direction shows a similar 

variation with the Eng Exact and Log values  in close agreement and continuously increasing and the Green 

values almost constant and close to zero. The maximum difference between the Eng Exact values and Eng 

values is around 45%. This clearly shows the effect of assuming that the shear strain is small. The Eng Exact 

shear stresses at mid-span values are large, compared to the other values, and are almost of a linear variation. 

The Log and Eng shear values are in close agreement. This results from the assumption that the shear strain is 

small in these formulations. The Green shear values at mid-span are very small compared to the values from the 

other formulations and are of a non- uniform alternating nature. Thus, the Green strain formulation is not 

suitable for evaluating the correct physical stresses. Also, the assumption that the shear strain is small limits the 

use of the approximate Eng formulation for cases of small strain. Table (13) and Figure (22) show the maximum 

principal stresses at mid-span for the Log and Eng Exact formulations. These are almost identical with a 

maximum difference of about 6%. Hence, the stresses obtained using the Eng Exact formulation are considered 

to be  the correct measure of the physical stresses in large strain GNL. 

 

 
Fig. (16): Average Nodal Stress in x-direction at support        Fig. (17): Average Nodal Stress in y-direction at support 
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Fig. (18): Average Shear Stress at support         Fig. (19): Average Nodal Stress in x-direction at mid span 

 

Table (10): Average Nodal Stress in x-direction at mid span 

 

Table (11): Average Nodal Stress in y-direction at mid span 

LOAD 

(N) 

Stress (N/mm2) 
LOAD 

(N) 

Stress (N/mm2) 

Log Green 
Eng 

(Geom) 
Eng Exact Log Green 

Eng 

(Geom) 

Eng 

Exact 

0 0 0 0 0 17800 1.76E+03 6.18E+02 1.57E+03 2.20E+03 

1000 3.21E+02 3.17E+02 3.21E+02 3.39E+02 19400 2.35E+03 7.55E+02 2.01E+03 2.90E+03 

2600 7.52E+02 7.14E+02 7.41E+02 8.76E+02 21000 3.03E+03 8.75E+02 2.48E+03 3.68E+03 

4200 6.43E+02 5.45E+02 6.08E+02 7.71E+02 22600 3.80E+03 9.77E+02 2.97E+03 4.54E+03 

5800 3.39E+02 2.13E+02 2.97E+02 3.94E+02 24200 4.65E+03 1.06E+03 3.48E+03 5.45E+03 

7400 1.52E+02 1.93E+01 1.20E+02 1.58E+02 25800 5.58E+03 1.12E+03 4.00E+03 6.41E+03 

9000 1.13E+02 2.03E+01 9.79E+01 1.10E+02 27400 6.58E+03 1.15E+03 4.51E+03 7.40E+03 

10600 1.98E+02 1.07E+01 1.98E+02 2.23E+02 29000 7.65E+03 1.17E+03 5.03E+03 8.43E+03 

12200 3.87E+02 1.13E+02 3.92E+02 4.69E+02 30600 8.77E+03 1.17E+03 5.54E+03 9.47E+03 

13800 6.69E+02 2.47E+02 6.60E+02 8.33E+02 32200 9.93E+03 1.15E+03 6.03E+03 1.05E+04 

15400 1.04E+03 3.95E+02 9.89E+02 1.30E+03 33800 1.11E+04 1.11E+03 6.50E+03 1.16E+04 

17000 1.50E+03 5.45E+02 1.37E+03 1.88E+03 35400 1.23E+04 1.06E+03 6.96E+03 1.26E+04 

 

 
Fig. (20): Average Nodal Stress in y-direction at mid span              Fig. (21): Average Shear Stress at mid span 
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LOAD 

(N) 

Stress (N/mm2) 

Log Green 
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Eng Exact Log Green 
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(Geom) 

Eng 

Exact 

0 0 0 0 0 17800 7.47E+03 5.31E+03 6.64E+03 7.52E+03 

1000 1.25E+03 1.23E+03 1.23E+03 1.23E+03 19400 8.40E+03 5.60E+03 7.30E+03 8.50E+03 

2600 3.46E+03 3.28E+03 3.26E+03 3.31E+03 21000 9.44E+03 5.86E+03 7.98E+03 9.55E+03 

4200 4.23E+03 4.00E+03 3.92E+03 4.10E+03 22600 1.06E+04 6.10E+03 8.69E+03 1.07E+04 

5800 4.15E+03 3.98E+03 3.84E+03 4.13E+03 24200 1.18E+04 6.30E+03 9.41E+03 1.19E+04 

7400 4.07E+03 3.95E+03 3.77E+03 4.14E+03 25800 1.31E+04 6.48E+03 1.01E+04 1.31E+04 

9000 4.18E+03 4.07E+03 3.83E+03 4.29E+03 27400 1.45E+04 6.62E+03 1.08E+04 1.43E+04 

10600 4.47E+03 4.34E+03 4.01E+03 4.59E+03 29000 1.60E+04 6.74E+03 1.15E+04 1.56E+04 

12200 4.93E+03 4.71E+03 4.26E+03 5.03E+03 30600 1.75E+04 6.82E+03 1.22E+04 1.69E+04 

13800 5.52E+03 5.18E+03 4.55E+03 5.59E+03 32200 1.91E+04 6.88E+03 1.29E+04 1.82E+04 

15400 6.24E+03 5.72E+03 4.86E+03 6.26E+03 33800 2.07E+04 6.92E+03 1.35E+04 1.95E+04 

17000 7.07E+03 6.32E+03 5.16E+03 7.04E+03 35400 2.23E+04 6.93E+03 1.41E+04 2.07E+04 
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Table (12): Average Shear Stress at mid span 

LOAD 

(N) 

Stress (N/mm2) 
LOAD 

(N) 

Stress (N/mm2) 

Log Green 
Eng 

(Geom) 
Eng Exact Log Green 

Eng 

(Geom) 

Eng 

Exact 

0 0 0 0 0 17800 2.42E+02 1.26E+02 2.45E+02 5.14E+02 

1000 3.73E-01 1.12E+00 1.43E+00 1.87E+00 19400 2.70E+02 1.18E+02 2.63E+02 5.82E+02 

2600 2.11E+01 1.31E+01 1.07E+01 3.90E+01 21000 3.01E+02 1.08E+02 2.82E+02 6.52E+02 

4200 1.12E+01 2.21E+00 8.19E+00 2.74E+01 22600 3.33E+02 9.55E+01 3.01E+02 7.23E+02 

5800 2.74E+01 4.11E+01 5.19E+01 3.50E+01 24200 3.66E+02 8.01E+01 3.21E+02 7.94E+02 

7400 6.55E+01 7.47E+01 9.21E+01 1.03E+02 25800 4.02E+02 6.24E+01 3.42E+02 8.66E+02 

9000 9.75E+01 9.85E+01 1.25E+02 1.66E+02 27400 4.38E+02 4.24E+01 3.63E+02 9.38E+02 

10600 1.25E+02 1.14E+02 1.52E+02 2.27E+02 29000 4.76E+02 2.04E+01 3.87E+02 1.01E+03 

12200 1.51E+02 1.24E+02 1.75E+02 2.88E+02 30600 5.16E+02 3.49E+00 4.12E+02 1.08E+03 

13800 1.76E+02 1.29E+02 1.96E+02 3.50E+02 32200 5.57E+02 2.92E+01 4.40E+02 1.16E+03 

15400 2.01E+02 1.31E+02 2.16E+02 4.14E+02 33800 5.99E+02 5.66E+01 4.70E+02 1.23E+03 

17000 2.28E+02 1.28E+02 2.35E+02 4.80E+02 35400 6.43E+02 8.55E+01 5.02E+02 1.31E+03 

 
Table (13) Maximum Principal Stress at Mid-span 

LOAD 

(N) 

Stress (N/mm
2
) 

LOAD 

Stress (N/mm
2
) 

LOAD 

(N) 

Stress (N/mm
2
) 

Log 
Eng 

Exact 
Log 

Eng 

Exact 
Log 

Eng 

Exact 

0 0.0 0.0 12200 4935.0 5048.0 24200 11819.0 11996.0 

1000 1250.0 1230.0 13800 5526.0 5616.0 25800 13121.0 13210.0 

2600 3460.0 3311.0 15400 6248.0 6294.0 27400 14524.0 14425.0 

4200 4230.0 4100.0 17000 7079.0 7084.0 29000 16027.0 15740.0 

5800 4150.0 4130.0 18600 7931.0 8054.0 30600 17530.0 17054.0 

7400 4071.0 4143.0 20200 8923.0 9076.0 32200 19134.0 18371.0 

9000 4182.0 4297.0 21800 10015.0 10178.0 33800 20737.0 19687.0 

10600 4474.0 4602.0 23400 11217.0 11390.0 35400 22341.0 20907.0 

 

 
Fig. (22) Maximum Principal Stress at Mid-span 

 

IV. CONCLUSIONS 
Based on the results of the numerical examples, it can be concluded that: 

1. The Total Lagrangian solutions based on the Green strains and 2
nd

Piola-Kirchhoff stresses while being not 

suitable for evaluating the correct physical stresses are necessary for use as a base for the solutions based on 

Engineering stresses. 

2. The exact Engineering strain based formulation results in correct physical stresses, which are very close to 

the true Cauchy stresses especially for small and moderately large strains. Bearing in mind the fact that the 

elastic constants are evaluated using these stresses, these formulations must be used when stresses are 

required in a Total Lagrangian analysis.  

3. The formulation based on approximate Engineering strains give excellent results in structures wherein the 

shear strains are small. 
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4. The use of Logarithmic strains is necessary when the exact true stresses are required. The results from the 

Log formulation presented here can be further enhanced by removing the restriction of small shear strains.   

5. The formulation based on the exact Engineering strains can be easily extended to three-dimensional 

analysis. 
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